Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793556

ABSTRACT

Yunnan province in China shares its borders with three neighboring countries: Myanmar, Vietnam, and Laos. The region is characterized by a diverse climate and is known to be a suitable habitat for various arthropods, including midges which are notorious for transmitting diseases which pose significant health burdens affecting both human and animal health. A total of 431,100 midges were collected from 15 different locations in the border region of Yunnan province from 2015 to 2020. These midges were divided into 37 groups according to the collection year and sampling site. These 37 groups of midges were then homogenized to extract nucleic acid. Metatranscriptomics were used to analyze their viromes. Based on the obtained cytochrome C oxidase I gene (COI) sequences, three genera were identified, including one species of Forcipomyia, one species of Dasyhelea, and twenty-five species of Culicoides. We identified a total of 3199 viruses in five orders and 12 families, including 1305 single-stranded positive-stranded RNA viruses (+ssRNA) in two orders and seven families, 175 single-stranded negative-stranded RNA viruses (-ssRNA) in two orders and one family, and 1719 double-stranded RNA viruses in five families. Six arboviruses of economic importance were identified, namely Banna virus (BAV), Japanese encephalitis virus (JEV), Akabane virus (AKV), Bluetongue virus (BTV), Tibetan circovirus (TIBOV), and Epizootic hemorrhagic disease virus (EHDV), all of which are capable, to varying extents, of causing disease in humans and/or animals. The survey sites in this study basically covered the current distribution area of midges in Yunnan province, which helps to predict the geographic expansion of midge species. The complexity and diversity of the viral spectrum carried by midges identified in the study calls for more in-depth research, which can be utilized to monitor arthropod vectors and to predict the emergence and spread of zoonoses and animal epidemics, which is of great significance for the control of vector-borne diseases.


Subject(s)
Ceratopogonidae , Phylogeny , Animals , China , Ceratopogonidae/virology , Ceratopogonidae/genetics , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , Transcriptome , Insect Vectors/virology , Virome/genetics , Humans
2.
Nat Commun ; 14(1): 4079, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429936

ABSTRACT

Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within individual bats, and hence the frequency of virus co-infection and spillover among them. We characterize the mammal-associated viruses in 149 individual bats sampled from Yunnan province, China, using an unbiased meta-transcriptomics approach. This reveals a high frequency of virus co-infection (simultaneous infection of bat individuals by multiple viral species) and spillover among the animals studied, which may in turn facilitate virus recombination and reassortment. Of note, we identify five viral species that are likely to be pathogenic to humans or livestock, based on phylogenetic relatedness to known pathogens or in vitro receptor binding assays. This includes a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV and SARS-CoV-2. In vitro assays indicate that this recombinant virus can utilize the human ACE2 receptor such that it is likely to be of increased emergence risk. Our study highlights the common occurrence of co-infection and spillover of bat viruses and their implications for virus emergence.


Subject(s)
COVID-19 , Chiroptera , Coinfection , Severe acute respiratory syndrome-related coronavirus , Animals , Humans , Phylogeny , SARS-CoV-2 , Virome , China/epidemiology , Severe acute respiratory syndrome-related coronavirus/genetics
3.
Microbiol Spectr ; 11(4): e0512222, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37306586

ABSTRACT

Nelson Bay reovirus (NBV) is an emerging zoonotic virus that can cause acute respiratory disease in humans. These viruses are mainly discovered in Oceania, Africa, and Asia, and bats have been identified as their main animal reservoir. However, despite recent expansion of diversity for NBVs, the transmission dynamics and evolutionary history of NBVs are still unclear. This study successfully isolated two NBV strains (MLBC1302 and MLBC1313) from blood-sucking bat fly specimens (Eucampsipoda sundaica) and one (WDBP1716) from the spleen specimen of a fruit bat (Rousettus leschenaultii), which were collected at the China-Myanmar border area of Yunnan Province. Syncytia cytopathic effects (CPE) were observed in BHK-21 and Vero E6 cells infected with the three strains at 48 h postinfection. Electron micrographs of ultrathin sections showed numerous spherical virions with a diameter of approximately 70 nm in the cytoplasm of infected cells. The complete genome nucleotide sequence of the viruses was determined by metatranscriptomic sequencing of infected cells. Phylogenetic analysis demonstrated that the novel strains were closely related to Cangyuan orthoreovirus, Melaka orthoreovirus, and human-infecting Pteropine orthoreovirus HK23629/07. Simplot analysis revealed the strains originated from complex genomic reassortment among different NBVs, suggesting the viruses experienced a high reassortment rate. In addition, strains successfully isolated from bat flies also implied that blood-sucking arthropods might serve as potential transmission vectors. IMPORTANCE Bats are the reservoir of many viral pathogens with strong pathogenicity, including NBVs. Nevertheless, it is unclear whether arthropod vectors are involved in transmitting NBVs. In this study, we successfully isolated two NBV strains from bat flies collected from the body surface of bats, which implies that they may be vectors for virus transmission between bats. While the potential threat to humans remains to be determined, evolutionary analyses involving different segments revealed that the novel strains had complex reassortment histories, with S1, S2, and M1 segments highly similar to human pathogens. Further experiments are required to determine whether more NBVs are vectored by bat flies, their potential threat to humans, and transmission dynamics.


Subject(s)
Arthropods , Orthoreovirus , Animals , Humans , China , Genome, Viral , Orthoreovirus/genetics , Phylogeny
4.
Microorganisms ; 11(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37375121

ABSTRACT

Leptospirosis has been identified as a zoonotic disease caused by pathogenic spirochetes of the bacterial genus Leptospira. Rodents are considered the primary hosts of these bacteria, whereas many recent studies suggest that bats may serve as potential natural reservoirs. However, studies on pathogenic spirochetes hosted by bat populations still need to be completed in China. In this study, a total of 276 bats belonging to five genera collected in Yunnan Province (Southwest China) from 2017 to 2021 were included in the screening. Pathogenic spirochetes were detected by PCR amplification and sequencing targeting four genes (rrs, secY, flaB, and LipL32), resulting in 17 positive samples. Phylogenetic analysis based on multi-loci concatenated sequences, inferred by MLST approach, identified the strains as two novel Leptospira species within the pathogenic group. Of note, only Rousettus leschenaultii was found to harbor these spirochetes, suggesting it may be one of the potential natural reservoirs in circulating leptospires in this region. Nevertheless, the pathogenesis and transmission dynamics still need to be fully understood, requiring in-depth studies on other animals and the surrounding population.

5.
Front Cell Infect Microbiol ; 13: 1283019, 2023.
Article in English | MEDLINE | ID: mdl-38179426

ABSTRACT

Ticks, an arthropod known for transmitting various pathogens such as viruses, bacteria, and fungi, pose a perpetual public health concern. A total of 2,570 ticks collected from Nujiang Prefecture in Yunnan Province between 2017 and 2022 were included in the study. Through the meta-transcriptomic sequencing of four locally distributed tick species, we identified 13 RNA viruses belonging to eight viral families, namely, Phenuiviridae, Nairoviridae, Peribunyaviridae, Flaviviridae, Chuviridae, Rhabdoviridae, Orthomyxoviridae, and Totiviridae. The most prevalent viruses were members of the order Bunyavirales, including three of Phenuiviridae, two were classified as Peribunyaviridae, and one was associated with Nairoviridae. However, whether they pose a threat to human health still remains unclear. Indeed, this study revealed the genetic diversity of tick species and tick-borne viruses in Nujiang Prefecture based on COI gene and tick-borne virus research. These data clarified the genetic evolution of some RNA viruses and furthered our understanding of the distribution pattern of tick-borne pathogens, highlighting the importance and necessity of monitoring tick-borne pathogens.


Subject(s)
RNA Viruses , Ticks , Viruses , Animals , Humans , China , Viruses/genetics , RNA Viruses/genetics , Gene Expression Profiling
6.
bioRxiv ; 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36451889

ABSTRACT

Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within bats at the level of individual animals, and hence the frequency of virus co-infection and inter-species transmission. Using an unbiased meta-transcriptomics approach we characterised the mammalian associated viruses present in 149 individual bats sampled from Yunnan province, China. This revealed a high frequency of virus co-infection and species spillover among the animals studied, with 12 viruses shared among different bat species, which in turn facilitates virus recombination and reassortment. Of note, we identified five viral species that are likely to be pathogenic to humans or livestock, including a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV-2 and SARS-CoV, with only five amino acid differences between its receptor-binding domain sequence and that of the earliest sequences of SARS-CoV-2. Functional analysis predicts that this recombinant coronavirus can utilize the human ACE2 receptor such that it is likely to be of high zoonotic risk. Our study highlights the common occurrence of inter-species transmission and co-infection of bat viruses, as well as their implications for virus emergence.

7.
Pathogens ; 11(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36365035

ABSTRACT

Bartonella species has been validated as blood-borne bacteria in mammals and has a substantial opportunity to be harbored by a variety of hematophagous arthropod vectors. Bats, along with their ectoparasites, are recognized worldwide as one of the natural reservoir hosts for these bacteria. However, there have been few investigations of Bartonella bacteria toward a broad range of obligated bat ectoparasites in China. Here, molecular detection of Bartonella species was performed to survey the infection among bat ectoparasites and follow-up phylogenetic analyses to further characterize the evolutionary relationships of the genus. A total of 434 bat ectoparasites involving four types of arthropods, namely, bat mites, bat tick, bat fleas, and bat flies (further divided into traditionally fly-like bat flies and wingless bat flies) were collected in 10 trapping sites in Yunnan Province, southwestern China. Bartonella was detected by PCR amplification and sequencing through four gene target fragments (gltA, ftsZ, rpoB, and ITS). Accordingly, diverse Bartonella species were discovered, including both the validated species and the novel genotypes, which were characterized into several geographical regions with high prevalence. Phylogenetic analyses based on gltA and multi-locus concatenated sequences both demonstrated strong phylogeny-trait associations of Bartonella species from bats and their parasitic arthropods, suggesting the occurrence of host switches and emphasizing the potential connecting vector role of these ectoparasites. Nevertheless, the maintenance and transmission of Bartonella in both bat and hemoparasite populations have not been fully understood, as well as the risk of spillage to humans, which warrants in-depth experimental studies focusing on these mammals and their ectoparasites.

SELECTION OF CITATIONS
SEARCH DETAIL
...