Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Chromatogr ; 34(10): e4917, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32543724

ABSTRACT

In the current study, two groups of rats (five per group) were administered a single oral dose of 500 mg/kg acetaminophen. For toxicokinetic assessment, the Group 1 animals were bled via conventional sparse (two animals/time point) sublingual vein bleeding (~0.5 ml) with anesthesia, while the Group 2 animals were bled via serial tail vein microsampling (~0.075 ml) without anesthesia. All collected blood was processed for plasma. Each Group 2 plasma sample (~30 µl) was divided into 'wet' and 'dried' (dried plasma spots). All plasma samples were analyzed by LC-MS/MS for acetaminophen and its major metabolites acetaminophen glucuronide and acetaminophen sulfate. In addition, plasma and urine samples were collected for analysis of corticosterone and creatinine to assess stress levels. Comparable plasma exposure to acetaminophen and its two metabolites was observed in the plasma obtained via conventional sparse sublingual vein bleeding and serial tail vein microsampling and between the 'wet' and 'dried' plasma obtained by the latter. Furthermore, comparable corticosterone levels or corticosterone/creatinine ratios between the two groups suggested that serial microsampling without anesthesia did not increase the levels of stress as compared with conventional sampling with anesthesia, confirming the utility of microsampling for plasma or dried plasma spots in rodent toxicokinetic assessment.


Subject(s)
Acetaminophen , Blood Specimen Collection , Dried Blood Spot Testing/methods , Tail/blood supply , Acetaminophen/blood , Acetaminophen/chemistry , Acetaminophen/toxicity , Animals , Blood Specimen Collection/adverse effects , Blood Specimen Collection/methods , Chromatography, Liquid , Corticosterone/blood , Male , Models, Chemical , Rats , Stress, Psychological , Tandem Mass Spectrometry , Toxicokinetics
2.
J Med Chem ; 55(5): 2452-68, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22313242

ABSTRACT

On the basis of the previously reported benzimidazole 1,3'-bipyrrolidine benzamides (1), a new class of 2-(pyrrolidin-1-yl)ethyl-3,4-dihydroisoquinolin-1(2H)-one derivatives (3-50) were synthesized and evaluated as potent H(3) receptor antagonists. In particular, compound 39 exhibited potent in vitro binding and functional activities at the H(3) receptor, good selectivities against other neurotransmitter receptors and ion channels, acceptable pharmacokinetic properties, and a favorable in vivo profile.


Subject(s)
Benzamides/chemical synthesis , Histamine H3 Antagonists/chemical synthesis , Isoquinolines/chemical synthesis , Pyrrolidines/chemical synthesis , Receptors, Histamine H3/metabolism , Animals , Benzamides/pharmacokinetics , Benzamides/pharmacology , Blood Proteins/metabolism , Cell Line , Cytochrome P-450 Enzyme Inhibitors , Dogs , Drinking Behavior/drug effects , Drug Inverse Agonism , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Guinea Pigs , Histamine Agonists/chemical synthesis , Histamine Agonists/pharmacokinetics , Histamine Agonists/pharmacology , Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/pharmacology , Humans , In Vitro Techniques , Isoquinolines/pharmacokinetics , Isoquinolines/pharmacology , Macaca fascicularis , Male , Microsomes, Liver/metabolism , Permeability , Protein Binding , Pyrrolidines/pharmacokinetics , Pyrrolidines/pharmacology , Radioligand Assay , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Stereoisomerism , Structure-Activity Relationship
3.
Neurodegener Dis ; 7(1-3): 153-9, 2010.
Article in English | MEDLINE | ID: mdl-20197696

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative condition characterized by an increasing loss of dopaminergic neurons resulting in motor dysfunction. However, cognitive impairments in PD patients are a common clinical feature that has gained increased attention. OBJECTIVE: The purpose of the current study was to evaluate the effects of an MPTP-induced dopaminergic lesion in mice on social odor recognition (SOR) memory. METHODS: Mice were acutely treated with MPTP and evaluated for memory impairments in the SOR assay and characterized using biochemical and immunohistochemical methods approximately 2 weeks later. RESULTS: Here we demonstrate that SOR memory is sensitive to MPTP treatment and that it correlates with multiple measures of nigrostriatal integrity. MPTP treatment of C57BL/6N mice produced a profound decrease in dopamine levels, dopamine transporter binding and tyrosine hydroxylase immunoreactivity in the striatum. These impairments in stratial dopaminergic function were blocked by pretreatment with the MAO-B inhibitor deprenyl. Changes in the dopaminergic system parallel those observed in SOR with MPTP treatment impairing recognition memory in the absence of a deficit in odor discrimination during learning. Deprenyl pretreatment blocked the MPTP-induced impairment of SOR memory. CONCLUSION: The use of the SOR memory model may provide a preclinical method for evaluating cognitive therapies for PD.


Subject(s)
MPTP Poisoning/complications , MPTP Poisoning/psychology , Memory Disorders/etiology , Recognition, Psychology/physiology , Social Dominance , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Analysis of Variance , Animals , Disease Models, Animal , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Exploratory Behavior/drug effects , MPTP Poisoning/chemically induced , MPTP Poisoning/pathology , Male , Mice , Mice, Inbred C57BL , Substantia Nigra/drug effects , Tyrosine 3-Monooxygenase/metabolism
4.
Bioorg Med Chem Lett ; 20(3): 1237-40, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20042333

ABSTRACT

Using a focused screen of biogenic amine compounds we identified a novel series of H(3)R antagonists. A preliminary SAR study led to reduction of MW while increasing binding affinity and potency. Optimization of the physical properties of the series led to (S)-6n, with improved brain to plasma exposure and efficacy in both water intake and novel object recognition models.


Subject(s)
Benzamides/chemistry , Benzimidazoles/chemistry , Histamine H3 Antagonists/chemistry , Pyrrolidines/chemistry , Receptors, Histamine H3 , Animals , Benzamides/blood , Benzamides/metabolism , Benzimidazoles/blood , Benzimidazoles/metabolism , Caco-2 Cells , Cell Line , Histamine H3 Antagonists/blood , Histamine H3 Antagonists/metabolism , Humans , Indoles/blood , Indoles/chemistry , Indoles/metabolism , Protein Binding , Pyrrolidines/blood , Pyrrolidines/metabolism , Rats , Receptors, Histamine H3/blood , Receptors, Histamine H3/metabolism
5.
Neurobiol Dis ; 31(3): 334-41, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18606547

ABSTRACT

The diuretic amiloride has recently proven neuroprotective in models of cerebral ischemia, a property attributable to the drug's inhibition of central acid-sensing ion channels (ASICs). Given that Parkinson's disease (PD), like ischemia, is associated with cerebral lactic acidosis, we tested amiloride in the MPTP-treated mouse, a model of PD also manifesting lactic acidosis. Amiloride was found to protect substantia nigra (SNc) neurons from MPTP-induced degeneration, as determined by attenuated reductions in striatal tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunohistochemistry, as well as smaller declines in striatal DAT radioligand binding and dopamine levels. More significantly, amiloride also preserved dopaminergic cell bodies in the SNc. Administration of psalmotoxin venom (PcTX), an ASIC1a blocker, resulted in a much more modest effect, attenuating only the deficits in striatal DAT binding and dopamine. These findings represent the first experimental evidence of a potential role for ASICs in the pathogenesis of Parkinson's disease.


Subject(s)
Acidosis, Lactic/drug therapy , Amiloride/pharmacology , Neuroprotective Agents/pharmacology , Parkinsonian Disorders/drug therapy , Substantia Nigra/drug effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Acid Sensing Ion Channels , Acidosis, Lactic/etiology , Acidosis, Lactic/physiopathology , Animals , Antiparkinson Agents/pharmacology , Binding, Competitive/drug effects , Binding, Competitive/physiology , Disease Models, Animal , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/metabolism , Peptides , Radioligand Assay , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism , Spider Venoms/pharmacology , Substantia Nigra/metabolism , Substantia Nigra/physiopathology , Tyrosine 3-Monooxygenase/metabolism
6.
Mol Cell Neurosci ; 34(4): 621-8, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17336088

ABSTRACT

Recent studies show that intracellular cholesterol levels can modulate the processing of amyloid precursor protein to Abeta peptide. Moreover, cholesterol-rich apoE-containing lipoproteins may also promote Abeta clearance. Agonists of the liver X receptor (LXR) transcriptionally induce genes involved in intracellular lipid efflux and transport, including apoE. Thus, LXR agonists have the potential to both inhibit APP processing and promote Abeta clearance. Here we show that LXR agonist, TO901317, increased hippocampal ABCA1 and apoE and decreased Abeta42 levels in APP transgenic mice. TO901317 had no significant effects on levels of Abeta40, full length APP, or the APP processing products. Next, we examined the effects of TO901317 in the contextual fear conditioning paradigm; TO901317 completely reversed the contextual memory deficit in these mice. These data demonstrate that LXR agonists do not directly inhibit APP processing but rather facilitate the clearance of Abeta42 and may represent a novel therapeutic approach to Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , DNA-Binding Proteins/agonists , Hippocampus/metabolism , Memory/drug effects , Peptide Fragments/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Sulfonamides/pharmacology , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/metabolism , Alzheimer Disease/metabolism , Animals , Apolipoproteins E/metabolism , Hippocampus/drug effects , Humans , Hydrocarbons, Fluorinated , Liver X Receptors , Male , Memory/physiology , Mice , Mice, Transgenic , Orphan Nuclear Receptors , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL