Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 92
1.
J Vet Med Sci ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38692859

Gastric ulcer is a common disease of pigs worldwide, with prevalence up to 93%. The etiology is multifactorial, with Helicobacter suis (H. suis) being considered as the primary pathogenic factor for porcine gastric ulcer. To date, prevalence of H. suis resulting in porcine gastric ulcer in Taiwan has not been investigated. In this study, we collected 360 pig stomachs from the slaughterhouses. In addition, stomach tissues from the 88 diseased pigs submitted for necropsy were divided into symptomatic and asymptomatic groups. Gastric lesions were scored, and polymerase chain reaction was used to determine the occurrence of gastric ulcer and the prevalence of H. suis. The positive rate of H. suis in the samples from slaughtered pigs was 49.7%, and infection of H. suis and the presence of gastric lesions were prone to occur in autumn. The positive rates of H. suis infection in the symptomatic and asymptomatic groups were 59.1% and 31.8%, respectively. Moreover, the proportion of the samples with gastroesophageal ulcer in the symptomatic group was 68.2%, predominantly observed in growing pigs. The incidence of the samples from the slaughterhouses with gastroesophageal erosion to ulceration revealed a significant difference between H. suis -infected and H. suis -uninfected pigs; however, there is no significant difference in the samples of diseased pigs. In conclusion, H. suis infection was associated with gastric ulcer in slaughtered pigs, but it was not the primary cause of gastroesophageal ulcer in diseased pigs with clinical symptoms.

3.
Sci Adv ; 10(8): eadj0347, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38394210

Hexanucleotide repeat expansion in C9ORF72 (C9) is the most prevalent mutation among amyotrophic lateral sclerosis (ALS) patients. The patients carry over ~30 to hundreds or thousands of repeats translated to dipeptide repeats (DPRs) where poly-glycine-arginine (GR) and poly-proline-arginine (PR) are most toxic. The structure-function relationship is still unknown. Here, we examined the minimal neurotoxic repeat number of poly-GR and found that extension of the repeat number led to a loose helical structure disrupting plasma and nuclear membrane. Poly-GR/PR bound to nucleotides and interfered with transcription. We screened and identified a sulfated disaccharide that bound to poly-GR/PR and rescued poly-GR/PR-induced toxicity in neuroblastoma and C9-ALS-iPSC-derived motor neurons. The compound rescued the shortened life span and defective locomotion in poly-GR/PR expressing Drosophila model and improved motor behavior in poly-GR-injected mouse model. Overall, our results reveal structural and toxicity mechanisms for poly-GR/PR and facilitate therapeutic development for C9-ALS.


Amyotrophic Lateral Sclerosis , Animals , Mice , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Dipeptides/pharmacology , Arginine/genetics , Sulfates , Drosophila/genetics , DNA Damage , DNA Repeat Expansion , C9orf72 Protein/genetics , C9orf72 Protein/metabolism
4.
J Vet Pharmacol Ther ; 47(1): 36-47, 2024 Jan.
Article En | MEDLINE | ID: mdl-37593974

Toltrazuril (TZR) is currently the only registered chemotherapeutic drug in the European Union for the treatment of Cystoisospora suis. This study investigated the comparative pharmacokinetics and tissue concentration-time profiles of TZR and its active metabolite, toltrazuril sulfone (TZR-SO2 ), after oral (per os, p.o.) and intramuscular (i.m.) administration to suckling piglets. Following a single administration of TZR orally at 50 mg/piglet or intramuscularly at 45 mg/piglet, higher concentrations of TZR and TZR-SO2 were observed in all three investigated tissues after p.o. administration. The mean TZR concentration in serum peaked at 14 µg/mL (34.03 h) and 5.36 µg/mL (120 h), while TZR-SO2 peaked at 14.12 µg/mL (246 h) and 9.92 µg/mL (330 h) after p.o. and i.m. administration, respectively. TZR was undetectable in the liver after p.o. administration (18 days) and in the jejunum (24 days) after i.m. injection, while TZR-SO2 was still detectable in all three tissues after 36 days regardless of administration routes. This study showed that p.o. formulation exhibited faster absorption and higher serum/tissue TZR/TZR-SO2 concentrations than i.m. formulation. Both formulations generated sufficient therapeutic concentrations in the serum and jejunum, and sustained enough time to protect against Cystoisospora suis infection in the piglets.


Coccidiostats , Animals , Swine , Administration, Oral , Triazines , Sulfones , Injections, Intramuscular/veterinary
5.
J Vet Pharmacol Ther ; 47(1): 62-63, 2024 Jan.
Article En | MEDLINE | ID: mdl-38047430
6.
J Clin Invest ; 134(2)2024 Jan 16.
Article En | MEDLINE | ID: mdl-37988169

Alzheimer's disease is characterized by the accumulation of amyloid-ß plaques, aggregation of hyperphosphorylated tau (pTau), and microglia activation. Galectin-3 (Gal3) is a ß-galactoside-binding protein that has been implicated in amyloid pathology. Its role in tauopathy remains enigmatic. Here, we showed that Gal3 was upregulated in the microglia of humans and mice with tauopathy. pTau triggered the release of Gal3 from human induced pluripotent stem cell-derived microglia in both its free and extracellular vesicular-associated (EV-associated) forms. Both forms of Gal3 increased the accumulation of pathogenic tau in recipient cells. Binding of Gal3 to pTau greatly enhanced tau fibrillation. Besides Gal3, pTau was sorted into EVs for transmission. Moreover, pTau markedly enhanced the number of EVs released by iMGL in a Gal3-dependent manner, suggesting a role of Gal3 in biogenesis of EVs. Single-cell RNA-Seq analysis of the hippocampus of a mouse model of tauopathy (THY-Tau22) revealed a group of pathogenic tau-evoked, Gal3-associated microglia with altered cellular machineries implicated in neurodegeneration, including enhanced immune and inflammatory responses. Genetic removal of Gal3 in THY-Tau22 mice suppressed microglia activation, reduced the level of pTau and synaptic loss in neurons, and rescued memory impairment. Collectively, Gal3 is a potential therapeutic target for tauopathy.


Galectin 3 , Tauopathies , tau Proteins , Animals , Humans , Mice , Alzheimer Disease/pathology , Disease Models, Animal , Galectin 3/genetics , Galectin 3/metabolism , Induced Pluripotent Stem Cells/metabolism , Mice, Transgenic , Microglia/pathology , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/metabolism
7.
PeerJ ; 11: e15823, 2023.
Article En | MEDLINE | ID: mdl-37790626

Background: Glaesserella parasuis (G. parasuis) belongs to the normal microbiota of the upper respiratory tract in the swine, but virulent strains can cause systemic infections commonly known as Glässer's disease that leads to significant economic loss in the swine industry. Fifteen serotypes of G. parasuis have been classified by gel immunodiffusion test while the molecular serotyping based on variation within the capsule loci have further improved the serotype determination of unidentified field strains. Serovar has been commonly used as an indicator of virulence; however, virulence can be significantly differ in the field isolates with the same serotype. To date, investigations of G. parasuis isolated in Taiwan regarding antimicrobial resistance, serotypes, genotypes and virulence factors remain unclear. Methods: A total of 276 G.parasuis field isolates were collected from 263 diseased pigs at the Animal Disease Diagnostic Center of National Chiayi University in Taiwan from January 2013 to July 2021. Putative virulence factors and serotypes of the isolates were identified by polymerase chain reaction (PCR) and antimicrobial susceptibility testing was performed by microbroth dilution assay. Additionally, the epidemiology of G. parasuis was characterized by multilocus sequence typing (MLST). Results: Serotype 4 (33.3%) and 5 (21.4%) were the most prevalent, followed by nontypable isolates (15.9%), serotype 13 (9.4%), 12 (6.5%), 14 (6.2%), 7 (3.3%), 1 (1.8%), 9 (1.1%), 11 (0.7%) and 6 (0.4%). Nine out of 10 putative virulence factors showed high positive rates, including group 1 vtaA (100%), fhuA (80.4%), hhdA (98.6%), hhdB (96.0%), sclB7 (99.6%), sclB11 (94.9%), nhaC (98.2%), HAPS_0254 (85.9%), and cirA (99.3%). According to the results of antimicrobial susceptibility testing, ceftiofur and florfenicol were highly susceptible (>90%). Notably, 68.8% isolates showed multidrug resistance. MLST revealed 16 new alleles and 67 new sequence types (STs). STs of these isolated G. parasuis strains were classified into three clonal complexes and 45 singletons by Based Upon Related Sequence Types (BURST) analysis. All the G. parasuis strains in PubMLST database, including strains from the diseased pigs in the study, were defined into two main clusters by Unweighted Pair Group Method with Arithmetic Mean (UPGMA). Most isolates in this study and virulent isolates from the database were mainly located in cluster 2, while cluster 1 included a high percentage of nasal isolates from asymptomatic carriers. In conclusion, this study provides current prevalence and antimicrobial susceptibility of G. parasuis in Taiwan, which can be used in clinical diagnosis and treatment of Glässer's disease.


Anti-Infective Agents , Haemophilus Infections , Haemophilus parasuis , Swine Diseases , Humans , Swine , Animals , Virulence Factors/genetics , Serogroup , Multilocus Sequence Typing , Taiwan/epidemiology , Swine Diseases/epidemiology , Haemophilus parasuis/genetics , Haemophilus Infections/epidemiology
9.
Emerg Infect Dis ; 29(8): 1634-1637, 2023 08.
Article En | MEDLINE | ID: mdl-37486207

A CTX-M-65‒producing Salmonella enterica serovar Infantis clone, probably originating in Latin America and initially reported in the United States, has emerged in Taiwan. Chicken meat is the most likely primary carrier. Four of the 9 drug resistance genes have integrated into the chromosome: blaCTX-M-65, tet(A), sul1, and aadA1.


Salmonella enterica , beta-Lactamases , United States , Animals , Serogroup , Taiwan/epidemiology , beta-Lactamases/genetics , Salmonella enterica/genetics , Chromosomes , Anti-Bacterial Agents/pharmacology , Chickens , Plasmids , Drug Resistance, Multiple, Bacterial/genetics
10.
Commun Biol ; 6(1): 767, 2023 07 21.
Article En | MEDLINE | ID: mdl-37479809

Abnormal polyglutamine (polyQ) expansion and fibrillization occur in Huntington's disease (HD). Amyloid modifier SERF enhances amyloid formation, but the underlying mechanism is not revealed. Here, the fibrillization and toxicity effect of SERF1a on Htt-exon1 are examined. SERF1a enhances the fibrillization of and interacts with mutant thioredoxin (Trx)-fused Httex1. NMR studies with Htt peptides show that TrxHttex1-39Q interacts with the helical regions in SERF1a and SERF1a preferentially interacts with the N-terminal 17 residues of Htt. Time-course analysis shows that SERF1a induces mutant TrxHttex1 to a single conformation enriched of ß-sheet. Co-expression of SERF1a and Httex1-polyQ in neuroblastoma and lentiviral infection of SERF1a in HD-induced polypotent stem cell (iPSC)-derived neurons demonstrates the detrimental effect of SERF1a in HD. Higher level of SERF1a transcript or protein is detected in HD iPSC, transgenic mice, and HD plasma. Overall, this study provides molecular mechanism for SERF1a and mutant Httex1 to facilitate therapeutic development for HD.


Amyloidogenic Proteins , Huntington Disease , Animals , Mice , Peptides/genetics , Transcription Factors , Exons , Huntington Disease/genetics , Mice, Transgenic
11.
Sci Rep ; 13(1): 8263, 2023 05 22.
Article En | MEDLINE | ID: mdl-37217544

Streptococcus suis (S. suis) infection can cause clinically severe meningitis, arthritis, pneumonia and septicemia in pigs. To date, studies on the serotypes, genotypes and antimicrobial susceptibility of S. suis in affected pigs in Taiwan are rare. In this study, we comprehensively characterized 388 S. suis isolates from 355 diseased pigs in Taiwan. The most prevalent serotypes of S. suis were serotypes 3, 7 and 8. Multilocus sequence typing (MLST) revealed 22 novel sequence types (STs) including ST1831-1852 and one new clonal complex (CC), CC1832. The identified genotypes mainly belonged to ST27, ST94 and ST1831, and CC27 and CC1832 were the main clusters. These clinical isolates were highly susceptible to ceftiofur, cefazolin, trimethoprim/sulfamethoxazole and gentamicin. The bacteria were prone to be isolated from cerebrospinal fluid and synovial fluid in suckling pigs with the majority belonging to serotype 1 and ST1. In contrast, ST28 strains that corresponded to serotypes 2 and 1/2 were more likely to exist in the lungs of growing-finishing pigs, which posted a higher risk for food safety and public health. This study provided the genetic characterization, serotyping and the most current epidemiological features of S. suis in Taiwan, which should afford a better preventative and treatment strategy of S. suis infection in pigs of different production stages.


Streptococcal Infections , Streptococcus suis , Swine Diseases , Swine , Animals , Serogroup , Multilocus Sequence Typing , Taiwan/epidemiology , Serotyping , Streptococcal Infections/epidemiology , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Swine Diseases/epidemiology , Swine Diseases/microbiology
12.
Proc Natl Acad Sci U S A ; 119(32): e2204779119, 2022 08 09.
Article En | MEDLINE | ID: mdl-35914128

Earlier work has shown that siRNA-mediated reduction of the SUPT4H or SUPT5H proteins, which interact to form the DSIF complex and facilitate transcript elongation by RNA polymerase II (RNAPII), can decrease expression of mutant gene alleles containing nucleotide repeat expansions differentially. Using luminescence and fluorescence assays, we identified chemical compounds that interfere with the SUPT4H-SUPT5H interaction and then investigated their effects on synthesis of mRNA and protein encoded by mutant alleles containing repeat expansions in the huntingtin gene (HTT), which causes the inherited neurodegenerative disorder, Huntington's Disease (HD). Here we report that such chemical interference can differentially affect expression of HTT mutant alleles, and that a prototypical chemical, 6-azauridine (6-AZA), that targets the SUPT4H-SUPT5H interaction can modify the biological response to mutant HTT gene expression. Selective and dose-dependent effects of 6-AZA on expression of HTT alleles containing nucleotide repeat expansions were seen in multiple types of cells cultured in vitro, and in a Drosophila melanogaster animal model for HD. Lowering of mutant HD protein and mitigation of the Drosophila "rough eye" phenotype associated with degeneration of photoreceptor neurons in vivo were observed. Our findings indicate that chemical interference with DSIF complex formation can decrease biochemical and phenotypic effects of nucleotide repeat expansions.


Azauridine , Huntingtin Protein , Huntington Disease , Mutant Proteins , Mutation , Nuclear Proteins , Phenotype , Repressor Proteins , Transcriptional Elongation Factors , Alleles , Animals , Azauridine/pharmacology , Cells, Cultured , DNA Repeat Expansion , Disease Models, Animal , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Humans , Huntingtin Protein/biosynthesis , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Luminescent Measurements , Mutant Proteins/biosynthesis , Mutant Proteins/genetics , Mutant Proteins/metabolism , Nuclear Proteins/metabolism , Photoreceptor Cells, Invertebrate/drug effects , Repressor Proteins/metabolism , Transcriptional Elongation Factors/metabolism
13.
Mov Disord ; 37(10): 2008-2020, 2022 10.
Article En | MEDLINE | ID: mdl-35997316

BACKGROUND: Huntington's disease (HD) is a neurodegenerative disease caused by CAG-repeat expansions (>36) in exon 1 of HTT, which dysregulates multiple cellular machineries. Translin-associated protein X (TRAX) is a scaffold protein with diverse functions, including suppressing the microRNA (miRNA)-mediated silencing by degrading pre-miRNA. To date, the role of TRAX in neurodegenerative diseases remains unknown. OBJECTIVES: We delineated the role of TRAX upregulation during HD progression. METHODS: Expression of TRAX in the brains of humans and three mouse models with HD were analyzed by immunohistochemistry staining, western blot, and quantitative reverse transcription-polymerase chain reaction. Adeno-associated viruses harboring TRAX short hairpin RNA were intrastriatally injected into HD mice to downregulate TRAX. HD-like symptoms were analyzed by behavioral and biochemical assessments. The miRNA-sequencing and RNA-sequencing analyses were used to identify the TRAX- regulated miRNA-messenger RNA (mRNA) axis during HD progression. The identified gene targets were validated biochemically in mouse and human striatal cells. RESULTS: We discovered that TRAX was upregulated in the brains of HD patients and three HD mouse models. Downregulation of TRAX enhanced 83 miRNAs (including miR-330-3p, miR-496a-3p) and subsequently changed the corresponding mRNA networks critical for HD pathogenesis (eg, DARPP-32 and brain-derived neurotrophic factor). Disruption of the TRAX-mediated miRNA-mRNA axis accelerated the progression of HD-like symptoms, including the degeneration of motor function, accumulation of mHTT aggregates, and shortened neurite outgrowth. CONCLUSIONS: We demonstrated that TRAX upregulation is authentic and protective in HD. Our study provides a novel layer of regulation for HD pathogenesis and may lead to the development of new therapeutic strategies for HD. © 2022 International Parkinson and Movement Disorder Society.


Huntington Disease , MicroRNAs , Neurodegenerative Diseases , Animals , Humans , Mice , Brain-Derived Neurotrophic Factor , Disease Models, Animal , Huntingtin Protein/genetics , Huntington Disease/metabolism , MicroRNAs/genetics , Neuroprotection , RNA, Messenger , RNA, Small Interfering
14.
Front Cell Dev Biol ; 10: 830432, 2022.
Article En | MEDLINE | ID: mdl-35309908

The centrosome is composed of a pair of centrioles and serves as the major microtubule-organizing center (MTOC) in cells. Centrosome dysfunction has been linked to autosomal recessive primary microcephaly (MCPH), which is a rare human neurodevelopmental disorder characterized by small brain size with intellectual disability. Recently, several mouse models carrying mutated genes encoding centrosomal proteins have been generated to address the genotype-phenotype relationships in MCPH. However, several human-specific features were not observed in the mouse models during brain development. Herein, we generated isogenic hiPSCs carrying the gene encoding centrosomal CPAP-E1235V mutant protein using the CRISPR-Cas9 genome editing system, and examined the phenotypic features of wild-type and mutant hiPSCs and their derived brain organoids. Our results showed that the CPAP-E1235V mutant perturbed the recruitment of several centriolar proteins involved in centriole elongation, including CEP120, CEP295, CENTROBIN, POC5, and POC1B, onto nascent centrioles, resulting in the production of short centrioles but long cilia. Importantly, our wild-type hiPSC-derived brain organoid recapitulated many cellular events seen in the developing human brain, including neuronal differentiation and cortical spatial lamination. Interestingly, hiPSC-CPAP-E1235V-derived brain organoids induced p53-dependent neuronal cell death, resulting in the production of smaller brain organoids that mimic the microcephaly phenotype. Furthermore, we observed that the CPAP-E1235V mutation altered the spindle orientation of neuronal progenitor cells and induced premature neuronal differentiation. In summary, we have shown that the hiPSC-derived brain organoid coupled with CRISPR/Cas9 gene editing technology can recapitulate the centrosome/centriole-associated MCPH pathological features. Possible mechanisms for MCPH with centriole/centrosome dysfunction are discussed.

15.
Vet Res Commun ; 46(3): 903-916, 2022 Sep.
Article En | MEDLINE | ID: mdl-35322371

Effects and mechanism of carbonyl cyanide chlorophenylhydrazone (CCCP) on antimicrobial activity of florfenicol (FF) and thiamphenicol (TAP) were investigated against amphenicol-resistant Actinobacillus pleuropneumoniae and Pasteurella multocida isolated from diseased swine. Broth microdilution and time-kill assays indicated that CCCP dose-dependently and substantially (4-32 fold MIC reduction) improved amphenicol antimicrobial activity. When combined with CCCP at the lowest literature reported dose (2-5 µg/mL), 85% FF resistant A. pleuropneumoniae and 92% resistant P. multocida showed significantly reduced FF MICs (≥ 4-fold). In contrast, none or few of the susceptible A. pleuropneumoniae and P. multocida had FF MICs reduction ≥ 4-fold. 90% FF resistant A. pleuropneumoniae and 96% resistant P. multocida carried the floR gene, indicating strong association with the FloR efflux pump. With CCCP, the intracellular FF concentration increased by 71% in floR+ resistant A. pleuropneumoniae and 156% in floR+ resistant P. multocida strains but not the susceptible strains. The degree of reduction in TAP MICs was found consistently in parallel to FF for both bacteria. Taken together, partially attributed to blockage of drug-efflux, the combination of FF or TAP with CCCP at sub-cytotoxic concentrations was demonstrated and showed feasibility to combat amphenicol-resistant A. pleuropneumoniae and P. multocida isolated from diseased swine.


Actinobacillus pleuropneumoniae , Pasteurella multocida , Swine Diseases , Actinobacillus pleuropneumoniae/genetics , Animals , Anti-Bacterial Agents/pharmacology , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Chloramphenicol/pharmacology , Microbial Sensitivity Tests/veterinary , Nitriles , Pasteurella multocida/genetics , Swine , Swine Diseases/drug therapy , Swine Diseases/microbiology
16.
IUBMB Life ; 74(8): 812-825, 2022 08.
Article En | MEDLINE | ID: mdl-35102668

Recent advances in induced pluripotent stem cell (iPSC) technology have allowed researchers to generate neurodegenerative disease-specific iPSCs and use the cells to derive a variety of relevant cell populations for laboratory modeling and drug testing. Nevertheless, these efforts have faced challenges related to immaturity and lack of complex developmental niches in the derived cell populations, limiting the utility of these in vitro models of neurodegenerative disease. Such limitations may be overcome by using human iPSC technology to generate three-dimensional (3D) brain organoids, which better recapitulate in vivo tissue architecture than traditional neuronal cultures to provide more complex and representative disease models and drug testing systems. In this review, we focus on the application of pluripotent stem cell-derived central nervous system (CNS) organoids to model neurodegenerative diseases. We first summarize recent progress in generating and characterizing various CNS organoids from pluripotent stem cells. We then review the application of CNS organoids for modeling several different human neurodegenerative diseases. We also describe several novel pathological mechanisms and drugs that were studied using patient iPSC-derived CNS organoids. Finally, we discuss remaining challenges and emerging opportunities for the use of 3D brain organoids for in vitro modeling of CNS development and neurodegeneration.


Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Central Nervous System , Humans , Induced Pluripotent Stem Cells/physiology , Neurodegenerative Diseases/pathology , Neurons/pathology , Organoids/pathology , Organoids/physiology
17.
Neurobiol Dis ; 160: 105531, 2021 12.
Article En | MEDLINE | ID: mdl-34634461

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive degeneration of motor neurons. Mislocalization of TAR DNA-binding protein 43 (TDP-43) is an early event in the formation of cytoplasmic TDP-43-positive inclusions in motor neurons and a hallmark of ALS. However, the underlying mechanism and the pathogenic impact of this mislocalization are relatively unexplored. We previously reported that abnormal AMPK activation mediates TDP-43 mislocalization in motor neurons of humans and mice with ALS. In the present study, we hypothesized that other nuclear proteins are mislocalized in the cytoplasm of motor neurons due to the AMPK-mediated phosphorylation of importin-α1 and subsequently contribute to neuronal degeneration in ALS. To test this hypothesis, we analyzed motor neurons of sporadic ALS patients and found that when AMPK is activated, importin-α1 is abnormally located in the nucleus. Multiple integrative molecular and cellular approaches (including proteomics, immunoprecipitation/western blot analysis, immunohistological evaluations and gradient analysis of preribosomal complexes) were employed to demonstrate that numerous RNA binding proteins are mislocalized in a rodent motor neuron cell line (NSC34) and human motor neurons derived from iPSCs during AMPK activation. We used comparative proteomic analysis of importin-α1 complexes that were immunoprecipitated with a phosphorylation-deficient mutant of importin-α1 (importin-α1-S105A) and a phosphomimetic mutant of importin-α1 (importin-α1-S105D) to identify 194 proteins that have stronger affinity for the unphosphorylated form than the phosphorylated form of importin-α1. Furthermore, GO and STRING analyses suggested that RNA processing and protein translation is the major machinery affected by abnormalities in the AMPK-importin-α1 axis. Consistently, the expression of importin-α1-S105D alters the assembly of preribosomal complexes and increases cell apoptosis. Collectively, we propose that by impairing importin-α1-mediated nuclear import, abnormal AMPK activation in motor neurons alters the cellular distribution of many RNA-binding proteins, which pathogenically affect multiple cellular machineries in motor neurons and contribute to ALS pathogenesis.


Amyotrophic Lateral Sclerosis/metabolism , Motor Neurons/metabolism , RNA-Binding Proteins/metabolism , Spinal Cord/metabolism , Adult , Aged , Amyotrophic Lateral Sclerosis/genetics , Animals , Apoptosis/physiology , Cell Nucleus/metabolism , Cytoplasm/metabolism , Female , Humans , Male , Mice , Middle Aged , Proteomics , RNA-Binding Proteins/genetics
19.
Sci Adv ; 7(7)2021 02.
Article En | MEDLINE | ID: mdl-33579706

The role of protein stabilization in cortical development remains poorly understood. A recessive mutation in the USP11 gene is found in a rare neurodevelopmental disorder with intellectual disability, but its pathogenicity and molecular mechanism are unknown. Here, we show that mouse Usp11 is expressed highly in embryonic cerebral cortex, and Usp11 deficiency impairs layer 6 neuron production, delays late-born neuronal migration, and disturbs cognition and anxiety behaviors. Mechanistically, these functions are mediated by a previously unidentified Usp11 substrate, Sox11. Usp11 ablation compromises Sox11 protein accumulation in the developing cortex, despite the induction of Sox11 mRNA. The disease-associated Usp11 mutant fails to stabilize Sox11 and is unable to support cortical neurogenesis and neuronal migration. Our findings define a critical function of Usp11 in cortical development and highlight the importance of orchestrating protein stabilization mechanisms into transcription regulatory programs for a robust induction of cell fate determinants during early brain development.


Cerebral Cortex , Neurogenesis , Animals , Cell Differentiation , Cell Movement , Cerebral Cortex/metabolism , Mice , Neurons/physiology , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism
20.
Sci Rep ; 10(1): 12686, 2020 07 29.
Article En | MEDLINE | ID: mdl-32728059

Despite great advancement in genetic typing, phenotyping is still an indispensable tool for categorization of bacteria. Certain amino acids may be essential for bacterial survival, growth, pathogenicity or toxin production, which prompts the idea that the intrinsic ability to utilize single amino acid under live-or-die situation could be a basis for differentiation of bacteria species. In this study, we determined the single amino acid consumption profiles of 7 bacterial species, and demonstrated that most bacteria have species-specific pattern of amino acid consumption. We also discovered that bacterial strains from different hosts, toxigenicity, and antibiotic-resistance presented distinct preference for certain amino acids. Taken altogether, the amino acid consumption profiles showed potential to be a novel tool complementary to study not only bacterial categorization but also biochemical characteristics of the bacteria such that its phenotyping can be used to uncover strategies for nutritional, pharmaceutical, taxonomic, and evolutionary aspects of bacterial researches.


Amino Acids/metabolism , Bacteria/classification , Bacteria/growth & development , Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Decision Trees , Drug Resistance, Bacterial , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
...