Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Sci Rep ; 14(1): 6637, 2024 03 19.
Article En | MEDLINE | ID: mdl-38503833

Structural fetal body MRI provides true 3D information required for volumetry of fetal organs. However, current clinical and research practice primarily relies on manual slice-wise segmentation of raw T2-weighted stacks, which is time consuming, subject to inter- and intra-observer bias and affected by motion-corruption. Furthermore, there are no existing standard guidelines defining a universal approach to parcellation of fetal organs. This work produces the first parcellation protocol of the fetal body organs for motion-corrected 3D fetal body MRI. It includes 10 organ ROIs relevant to fetal quantitative volumetry studies. We also introduce the first population-averaged T2w MRI atlas of the fetal body. The protocol was used as a basis for training of a neural network for automated organ segmentation. It showed robust performance for different gestational ages. This solution minimises the need for manual editing and significantly reduces time. The general feasibility of the proposed pipeline was also assessed by analysis of organ growth charts created from automated parcellations of 91 normal control 3T MRI datasets that showed expected increase in volumetry during 22-38 weeks gestational age range.


Fetus , Image Processing, Computer-Assisted , Pregnancy , Female , Humans , Image Processing, Computer-Assisted/methods , Fetus/diagnostic imaging , Magnetic Resonance Imaging/methods , Gestational Age , Prenatal Care
2.
medRxiv ; 2023 Sep 18.
Article En | MEDLINE | ID: mdl-37398121

Structural fetal body MRI provides true 3D information required for volumetry of fetal organs. However, current clinical and research practice primarily relies on manual slice-wise segmentation of raw T2-weighted stacks, which is time consuming, subject to inter- and intra-observer bias and affected by motion-corruption. Furthermore, there are no existing standard guidelines defining a universal approach to parcellation of fetal organs. This work produces the first parcellation protocol of the fetal body organs for motion-corrected 3D fetal body MRI. It includes 10 organ ROIs relevant to fetal quantitative volumetry studies. We also introduce the first population-averaged T2w MRI atlas of the fetal body. The protocol was used as a basis for training of a neural network for automated organ segmentation. It showed robust performance for different gestational ages. This solution minimises the need for manual editing and significantly reduces time. The general feasibility of the proposed pipeline was also assessed by analysis of organ growth charts created from automated parcellations of 91 normal control 3T MRI datasets that showed expected increase in volumetry during 22-38 weeks gestational age range. In addition, the results of comparison between 60 normal and 12 fetal growth restriction datasets revealed significant differences in organ volumes.

3.
Placenta ; 139: 25-33, 2023 08.
Article En | MEDLINE | ID: mdl-37295055

INTRODUCTION: The development of placenta and fetal brain are intricately linked. Placental insufficiency is related to poor neonatal outcomes with impacts on neurodevelopment. This study sought to investigate whether simultaneous fast assessment of placental and fetal brain oxygenation using MRI T2* relaxometry can play a complementary role to US and Doppler US. METHODS: This study is a retrospective case-control study with uncomplicated pregnancies (n = 99) and cases with placental insufficiency (PI) (n = 49). Participants underwent placental and fetal brain MRI and contemporaneous ultrasound imaging, resulting in quantitative assessment including a combined MRI score called Cerebro-placental-T2*-Ratio (CPTR). This was assessed in comparison with US-derived Cerebro-Placental-Ratio (CPR), placental histopathology, assessed using the Amsterdam criteria [1], and delivery details. RESULTS: Pplacental and fetal brain T2* decreased with increasing gestational age in both low and high risk pregnancies and were corrected for gestational-age alsosignificantly decreased in PI. Both CPR and CPTR score were significantly correlated with gestational age at delivery for the entire cohort. CPTR was, however, also correlated independently with gestational age at delivery in the PI cohort. It furthermore showed a correlation to birth-weight-centile in healthy controls. DISCUSSION: This study indicates that MR analysis of the placenta and brain may play a complementary role in the investigation of fetal development. The additional correlation to birth-weight-centile in controls may suggest a role in the determination of placental health even in healthy controls. To our knowledge, this is the first study assessing quantitatively both placental and fetal brain development over gestation in a large cohort of low and high risk pregnancies. Future larger prospective studies will include additional cohorts.


Placenta , Placental Insufficiency , Infant, Newborn , Pregnancy , Female , Humans , Placenta/diagnostic imaging , Placenta/pathology , Placental Insufficiency/diagnostic imaging , Placental Insufficiency/pathology , Fetal Growth Retardation/pathology , Prospective Studies , Retrospective Studies , Case-Control Studies , Gestational Age , Magnetic Resonance Imaging , Pregnancy, High-Risk , Brain/diagnostic imaging , Ultrasonography, Prenatal
4.
Commun Biol ; 6(1): 661, 2023 06 22.
Article En | MEDLINE | ID: mdl-37349403

A key feature of the fetal period is the rapid emergence of organised patterns of spontaneous brain activity. However, characterising this process in utero using functional MRI is inherently challenging and requires analytical methods which can capture the constituent developmental transformations. Here, we introduce a novel analytical framework, termed "maturational networks" (matnets), that achieves this by modelling functional networks as an emerging property of the developing brain. Compared to standard network analysis methods that assume consistent patterns of connectivity across development, our method incorporates age-related changes in connectivity directly into network estimation. We test its performance in a large neonatal sample, finding that the matnets approach characterises adult-like features of functional network architecture with a greater specificity than a standard group-ICA approach; for example, our approach is able to identify a nearly complete default mode network. In the in-utero brain, matnets enables us to reveal the richness of emerging functional connections and the hierarchy of their maturational relationships with remarkable anatomical specificity. We show that the associative areas play a central role within prenatal functional architecture, therefore indicating that functional connections of high-level associative areas start emerging prior to exposure to the extra-utero environment.


Brain Mapping , Brain , Adult , Pregnancy , Female , Infant, Newborn , Humans , Brain/diagnostic imaging , Brain Mapping/methods , Fetus , Magnetic Resonance Imaging
5.
bioRxiv ; 2023 Apr 27.
Article En | MEDLINE | ID: mdl-37131820

Fetal MRI is widely used for quantitative brain volumetry studies. However, currently, there is a lack of universally accepted protocols for fetal brain parcellation and segmentation. Published clinical studies tend to use different segmentation approaches that also reportedly require significant amounts of time-consuming manual refinement. In this work, we propose to address this challenge by developing a new robust deep learning-based fetal brain segmentation pipeline for 3D T2w motion corrected brain images. At first, we defined a new refined brain tissue parcellation protocol with 19 regions-of-interest using the new fetal brain MRI atlas from the Developing Human Connectome Project. This protocol design was based on evidence from histological brain atlases, clear visibility of the structures in individual subject 3D T2w images and the clinical relevance to quantitative studies. It was then used as a basis for developing an automated deep learning brain tissue parcellation pipeline trained on 360 fetal MRI datasets with different acquisition parameters using semi-supervised approach with manually refined labels propagated from the atlas. The pipeline demonstrated robust performance for different acquisition protocols and GA ranges. Analysis of tissue volumetry for 390 normal participants (21-38 weeks gestational age range), scanned with three different acquisition protocols, did not reveal significant differences for major structures in the growth charts. Only minor errors were present in < 15% of cases thus significantly reducing the need for manual refinement. In addition, quantitative comparison between 65 fetuses with ventriculomegaly and 60 normal control cases were in agreement with the findings reported in our earlier work based on manual segmentations. These preliminary results support the feasibility of the proposed atlas-based deep learning approach for large-scale volumetric analysis. The created fetal brain volumetry centiles and a docker with the proposed pipeline are publicly available online at https://hub.docker.com/r/fetalsvrtk/segmentation (tag brain_bounti_tissue).

6.
Elife ; 122023 04 03.
Article En | MEDLINE | ID: mdl-37010273

The development of connectivity between the thalamus and maturing cortex is a fundamental process in the second half of human gestation, establishing the neural circuits that are the basis for several important brain functions. In this study, we acquired high-resolution in utero diffusion magnetic resonance imaging (MRI) from 140 fetuses as part of the Developing Human Connectome Project, to examine the emergence of thalamocortical white matter over the second to third trimester. We delineate developing thalamocortical pathways and parcellate the fetal thalamus according to its cortical connectivity using diffusion tractography. We then quantify microstructural tissue components along the tracts in fetal compartments that are critical substrates for white matter maturation, such as the subplate and intermediate zone. We identify patterns of change in the diffusion metrics that reflect critical neurobiological transitions occurring in the second to third trimester, such as the disassembly of radial glial scaffolding and the lamination of the cortical plate. These maturational trajectories of MR signal in transient fetal compartments provide a normative reference to complement histological knowledge, facilitating future studies to establish how developmental disruptions in these regions contribute to pathophysiology.


Connectome , White Matter , Humans , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging , Fetus , Neural Pathways/physiology , Magnetic Resonance Imaging , Brain
7.
Nat Commun ; 14(1): 1550, 2023 03 21.
Article En | MEDLINE | ID: mdl-36941265

Fetal ventriculomegaly is the most common antenatally-diagnosed brain abnormality. Imaging studies in antenatal isolated ventriculomegaly demonstrate enlarged ventricles and cortical overgrowth which are also present in children with autism-spectrum disorder/condition (ASD). We investigate the presence of ASD traits in a cohort of children (n = 24 [20 males/4 females]) with isolated fetal ventriculomegaly, compared with 10 controls (n = 10 [6 males/4 females]). Neurodevelopmental outcome at school age included IQ, ASD traits (ADOS-2), sustained attention, neurological functioning, behaviour, executive function, sensory processing, co-ordination, and adaptive behaviours. Pre-school language development was assessed at 2 years. 37.5% of children, all male, in the ventriculomegaly cohort scored above threshold for autism/ASD classification. Pre-school language delay predicted an ADOS-2 autism/ASD classification with 73.3% specificity/66.7% sensitivity. Greater pre-school language delay was associated with more ASD symptoms. In this study, the neurodevelopment of children with isolated fetal ventriculomegaly, associated with altered cortical development, includes ASD traits, difficulties in sustained attention, working memory and sensation-seeking behaviours.


Autism Spectrum Disorder , Hydrocephalus , Language Development Disorders , Humans , Male , Child , Child, Preschool , Female , Pregnancy , Hydrocephalus/diagnostic imaging , Phenotype , Fetus
8.
bioRxiv ; 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38168226

We developed a computational pipeline (now provided as a resource) for measuring morphological similarity between cortical surface sulci to construct a sulcal phenotype network (SPN) from each magnetic resonance imaging (MRI) scan in an adult cohort (N=34,725; 45-82 years). Networks estimated from pairwise similarities of 40 sulci on 5 morphological metrics comprised two clusters of sulci, represented also by the bipolar distribution of sulci on a linear-to-complex dimension. Linear sulci were more heritable and typically located in unimodal cortex; complex sulci were less heritable and typically located in heteromodal cortex. Aligning these results with an independent fetal brain MRI cohort (N=228; 21-36 gestational weeks), we found that linear sulci formed earlier, and the earliest and latest-forming sulci had the least between-adult variation. Using high-resolution maps of cortical gene expression, we found that linear sulcation is mechanistically underpinned by trans-sulcal gene expression gradients enriched for developmental processes.

9.
Front Neurosci ; 16: 886772, 2022.
Article En | MEDLINE | ID: mdl-35677357

The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed.

10.
Dev Cogn Neurosci ; 54: 101103, 2022 04.
Article En | MEDLINE | ID: mdl-35364447

Developmental delays in infanthood often persist, turning into life-long difficulties, and coming at great cost for the individual and community. By examining the developing brain and its relation to developmental outcomes we can start to elucidate how the emergence of brain circuits is manifested in variability of infant motor, cognitive and behavioural capacities. In this study, we examined if cortical structural covariance at birth, indexing coordinated development, is related to later infant behaviour. We included 193 healthy term-born infants from the Developing Human Connectome Project (dHCP). An individual cortical connectivity matrix derived from morphological and microstructural features was computed for each subject (morphometric similarity networks, MSNs) and was used as input for the prediction of behavioural scores at 18 months using Connectome-Based Predictive Modeling (CPM). Neonatal MSNs successfully predicted social-emotional performance. Predictive edges were distributed between and within known functional cortical divisions with a specific important role for primary and posterior cortical regions. These results reveal that multi-modal neonatal cortical profiles showing coordinated maturation are related to developmental outcomes and that network organization at birth provides an early infrastructure for future functional skills.


Connectome , Magnetic Resonance Imaging , Brain , Connectome/methods , Humans , Infant , Infant Behavior , Infant, Newborn
11.
Neuroimage Clin ; 30: 102650, 2021.
Article En | MEDLINE | ID: mdl-33838546

BACKGROUND: Infants born preterm are at increased risk of neurological complications resulting in significant morbidity and mortality. The exact mechanism and the impact of antenatal factors has not been fully elucidated, although antenatal infection/inflammation has been implicated in both the aetiology of preterm birth and subsequent neurological sequelae. It is therefore hypothesized that processes driving preterm birth are affecting brain development in utero. This study aims to compare MRI derived regional brain volumes in fetuses that deliver < 32 weeks with fetuses that subsequently deliver at term. METHODS: Women at high risk of preterm birth, with gestation 19.4-32 weeks were recruited prospectively. A control group was obtained from existing study datasets. Fetal MRI was performed on a 1.5 T or 3 T MRI scanner: T2-weighted images were obtained of the fetal brain. 3D brain volumetric datsets were produced using slice to volume reconstruction and regional segmentations were produced using multi-atlas approaches for supratentorial brain tissue, lateral ventricles, cerebellum cerebral cortex and extra-cerebrospinal fluid (eCSF). Statistical comparison of control and high-risk for preterm delivery fetuses was performed by creating normal ranges for each parameter from the control datasets and then calculating gestation adjusted z scores. Groups were compared using t-tests. RESULTS: Fetal image datasets from 24 pregnancies with delivery < 32 weeks and 87 control pregnancies that delivered > 37 weeks were included. Median gestation at MRI of the preterm group was 26.8 weeks (range 19.4-31.4) and control group 26.2 weeks (range 21.7-31.9). No difference was found in supra-tentorial brain volume, ventricular volume or cerebellar volume but the eCSF and cerebral cortex volumes were smaller in fetuses that delivered preterm (p < 0.001 in both cases). CONCLUSION: Fetuses that deliver preterm have a reduction in cortical and eCSF volumes. This is a novel finding and needs further investigation. If alterations in brain development are commencing antenatally in fetuses that subsequently deliver preterm, this may present a window for in utero therapy in the future.


Infant, Extremely Premature , Premature Birth , Brain/diagnostic imaging , Female , Fetus , Gestational Age , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Pilot Projects , Pregnancy , Premature Birth/diagnostic imaging
12.
Neuroimage Clin ; 25: 102139, 2020.
Article En | MEDLINE | ID: mdl-31887718

Down Syndrome (DS) is the most frequent genetic cause of intellectual disability with a wide spectrum of neurodevelopmental outcomes. At present, the relationship between structural brain morphology and the spectrum of cognitive phenotypes in DS, is not well understood. This study aimed to quantify the development of the fetal and neonatal brain in DS participants, with and without a congenital cardiac defect compared with a control population using dedicated, optimised and motion-corrected in vivo magnetic resonance imaging (MRI). We detected deviations in development and altered regional brain growth in the fetus with DS from 21 weeks' gestation, when compared to age-matched controls. Reduced cerebellar volume was apparent in the second trimester with significant alteration in cortical growth becoming evident during the third trimester. Developmental abnormalities in the cortex and cerebellum are likely substrates for later neurocognitive impairment, and ongoing studies will allow us to confirm the role of antenatal MRI as an early biomarker for subsequent cognitive ability in DS. In the era of rapidly developing technologies, we believe that the results of this study will assist counselling for prospective parents.


Cerebellum , Cerebral Cortex , Down Syndrome/diagnostic imaging , Fetal Development , Fetus , Heart Defects, Congenital , Biomarkers , Cerebellum/abnormalities , Cerebellum/diagnostic imaging , Cerebellum/growth & development , Cerebral Cortex/abnormalities , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Comorbidity , Down Syndrome/epidemiology , Down Syndrome/pathology , Female , Fetal Development/physiology , Fetus/abnormalities , Fetus/diagnostic imaging , Gestational Age , Heart Defects, Congenital/epidemiology , Humans , Infant, Newborn , Longitudinal Studies , Magnetic Resonance Imaging , Male , Pregnancy , Prenatal Diagnosis
13.
Brain Struct Funct ; 222(5): 2295-2307, 2017 Jul.
Article En | MEDLINE | ID: mdl-27885428

The fetal brain shows accelerated growth in the latter half of gestation, and these changes can be captured by 2D and 3D biometry measurements. The aim of this study was to quantify brain growth in normal fetuses using Magnetic Resonance Imaging (MRI) and to produce reference biometry data and a freely available centile calculator ( https://www.developingbrain.co.uk/fetalcentiles/ ). A total of 127 MRI examinations (1.5 T) of fetuses with a normal brain appearance (21-38 gestational weeks) were included in this study. 2D and 3D biometric parameters were measured from slice-to-volume reconstructed images, including 3D measurements of supratentorial brain tissue, lateral ventricles, cortex, cerebellum and extra-cerebral CSF and 2D measurements of brain biparietal diameter and fronto-occipital length, skull biparietal diameter and occipitofrontal diameter, head circumference, transverse cerebellar diameter, extra-cerebral CSF, ventricular atrial diameter, and vermis height, width, and area. Centiles were constructed for each measurement. All participants were invited for developmental follow-up. All 2D and 3D measurements, except for atrial diameter, showed a significant positive correlation with gestational age. There was a sex effect on left and total lateral ventricular volumes and the degree of ventricular asymmetry. The 5th, 50th, and 95th centiles and a centile calculator were produced. Developmental follow-up was available for 73.1% of cases [mean chronological age 27.4 (±10.2) months]. We present normative reference charts for fetal brain MRI biometry at 21-38 gestational weeks. Developing growth trajectories will aid in the better understanding of normal fetal brain growth and subsequently of deviations from typical development in high-risk pregnancies or following premature delivery.


Brain/embryology , Fetus/diagnostic imaging , Magnetic Resonance Imaging , Biometry/methods , Female , Gestational Age , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pregnancy , Ultrasonography, Prenatal/methods
14.
Cereb Cortex ; 24(8): 2141-50, 2014 Aug.
Article En | MEDLINE | ID: mdl-23508710

Mild cerebral ventricular enlargement is associated with schizophrenia, autism, epilepsy, and attention-deficit/hyperactivity disorder. Fetal ventriculomegaly is the most common central nervous system (CNS) abnormality affecting 1% of fetuses and is associated with cognitive, language, and behavioral impairments in childhood. Neurodevelopmental outcome is partially predictable by the 2-dimensional size of the ventricles in the absence of other abnormalities. We hypothesized that isolated fetal ventriculomegaly is a marker of altered brain development characterized by relative overgrowth and aimed to quantify brain growth using volumetric magnetic resonance imaging (MRI) in fetuses with isolated ventriculomegaly. Fetal brain MRI (1.5 T) was performed in 60 normal fetuses and 65 with isolated ventriculomegaly, across a gestational age range of 22-38 weeks. Volumetric analysis of the ventricles and supratentorial brain structures was performed on 3-dimensional reconstructed datasets. Fetuses with isolated ventriculomegaly had increased brain parenchyma volumes when compared with the control cohort (9.6%, P < 0.0001) with enlargement restricted to the cortical gray matter (17.2%, P = 0.002). The extracerebral cerebrospinal fluid and third and fourth ventricles were also enlarged. White matter, basal ganglia, and thalamic volumes were not significantly different between cohorts. The presence of relative cortical overgrowth in fetuses with ventriculomegaly may represent the neurobiological substrate for cognitive, language, and behavioral deficits in these children.


Brain/embryology , Cerebral Ventricles/embryology , Fetal Diseases/pathology , Hydrocephalus/embryology , Hydrocephalus/pathology , Brain/pathology , Cerebral Ventricles/pathology , Female , Fetus , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Organ Size
15.
Cerebellum ; 12(5): 632-44, 2013 Oct.
Article En | MEDLINE | ID: mdl-23553467

Fetal magnetic resonance imaging (MRI) is now routinely used to further investigate cerebellar malformations detected with ultrasound. However, the lack of 2D and 3D biometrics in the current literature hinders the detailed characterisation and classification of cerebellar anomalies. The main objectives of this fetal neuroimaging study were to provide normal posterior fossa growth trajectories during the second and third trimesters of pregnancy via semi-automatic segmentation of reconstructed fetal brain MR images and to assess common cerebellar malformations in comparison with the reference data. Using a 1.5-T MRI scanner, 143 MR images were obtained from 79 normal control and 53 fetuses with posterior fossa abnormalities that were grouped according to the severity of diagnosis on visual MRI inspections. All quantifications were performed on volumetric datasets, and supplemental outcome information was collected from the surviving infants. Normal growth trajectories of total brain, cerebellar, vermis, pons and fourth ventricle volumes showed significant correlations with 2D measurements and increased in second-order polynomial trends across gestation (Pearson r, p < 0.05). Comparison of normal controls to five abnormal cerebellum subgroups depicted significant alterations in volumes that could not be detected exclusively with 2D analysis (MANCOVA, p < 0.05). There were 15 terminations of pregnancy, 8 neonatal deaths, and a spectrum of genetic and neurodevelopmental outcomes in the assessed 24 children with cerebellar abnormalities. The given posterior fossa biometrics enhance the delineation of normal and abnormal cerebellar phenotypes on fetal MRI and confirm the advantages of utilizing advanced neuroimaging tools in clinical fetal research.


Cerebellar Diseases/pathology , Cerebellum/pathology , Cranial Fossa, Posterior/pathology , Fetus/pathology , Magnetic Resonance Imaging , Adult , Cerebellum/abnormalities , Child , Cranial Fossa, Posterior/abnormalities , Female , Fetus/diagnostic imaging , Gestational Age , Humans , Image Processing, Computer-Assisted/methods , Infant , Magnetic Resonance Imaging/methods , Male , Middle Aged , Pregnancy , Radiography , Ultrasonography, Prenatal/methods , Young Adult
16.
Article En | MEDLINE | ID: mdl-24505714

Fetal MRI is a rapidly emerging diagnostic imaging tool. Its main focus is currently on brain imaging, but there is a huge potential for whole body studies. We propose a method for accurate and robust localisation of the fetal brain in MRI when the image data is acquired as a stack of 2D slices misaligned due to fetal motion. We first detect possible brain locations in 2D images with a Bag-of-Words model using SIFT features aggregated within Maximally Stable Extremal Regions (called bundled SIFT), followed by a robust fitting of an axis-aligned 3D box to the selected regions. We rely on prior knowledge of the fetal brain development to define size and shape constraints. In a cross-validation experiment, we obtained a median error distance of 5.7mm from the ground truth and no missed detection on a database of 59 fetuses. This 2D approach thus allows a robust detection even in the presence of substantial fetal motion.


Artificial Intelligence , Brain/anatomy & histology , Brain/embryology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Prenatal Diagnosis/methods , Algorithms , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
17.
J Clin Invest ; 119(11): 3301-10, 2009 Nov.
Article En | MEDLINE | ID: mdl-19855134

Aortic arch artery patterning defects account for approximately 20% of congenital cardiovascular malformations and are observed frequently in velocardiofacial syndrome (VCFS). In the current study, we screened for chromosome rearrangements in patients suspected of VCFS, but who lacked a 22q11 deletion or TBX1 mutation. One individual displayed hemizygous CHD7, which encodes a chromodomain protein. CHD7 haploinsufficiency is the major cause of coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, and ear anomalies/deafness (CHARGE) syndrome, but this patient lacked the major diagnostic features of coloboma and choanal atresia. Because a subset of CHARGE cases also display 22q11 deletions, we explored the embryological relationship between CHARGE and VCSF using mouse models. The hallmark of Tbx1 haploinsufficiency is hypo/aplasia of the fourth pharyngeal arch artery (PAA) at E10.5. Identical malformations were observed in Chd7 heterozygotes, with resulting aortic arch interruption at later stages. Other than Tbx1, Chd7 is the only gene reported to affect fourth PAA development by haploinsufficiency. Moreover, Tbx1+/-;Chd7+/- double heterozygotes demonstrated a synergistic interaction during fourth PAA, thymus, and ear morphogenesis. We could not rescue PAA morphogenesis by restoring neural crest Chd7 expression. Rather, biallelic expression of Chd7 and Tbx1 in the pharyngeal ectoderm was required for normal PAA development.


Alleles , Aorta, Thoracic/embryology , DNA-Binding Proteins/metabolism , Ectoderm/metabolism , Gene Expression Regulation, Developmental , T-Box Domain Proteins/metabolism , Animals , Comparative Genomic Hybridization , DNA-Binding Proteins/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Box Domain Proteins/genetics
18.
Development ; 136(18): 3173-83, 2009 Sep.
Article En | MEDLINE | ID: mdl-19700621

Elucidating the gene regulatory networks that govern pharyngeal arch artery (PAA) development is an important goal, as such knowledge can help to identify new genes involved in cardiovascular disease. The transcription factor Tbx1 plays a vital role in PAA development and is a major contributor to cardiovascular disease associated with DiGeorge syndrome. In this report, we used various genetic approaches to reveal part of a signalling network by which Tbx1 controls PAA development in mice. We investigated the crucial role played by the homeobox-containing transcription factor Gbx2 downstream of Tbx1. We found that PAA formation requires the pharyngeal surface ectoderm as a key signalling centre from which Gbx2, in response to Tbx1, triggers essential directional cues to the adjacent cardiac neural crest cells (cNCCs) en route to the caudal PAAs. Abrogation of this signal generates cNCC patterning defects leading to PAA abnormalities. Finally, we showed that the Slit/Robo signalling pathway is activated during cNCC migration and that components of this pathway are affected in Gbx2 and Tbx1 mutant embryos at the time of PAA development. We propose that the spatiotemporal control of this tightly orchestrated network of genes participates in crucial aspects of PAA development.


Arteries/embryology , Body Patterning/physiology , Branchial Region , Cell Movement/physiology , Ectoderm , Homeodomain Proteins/metabolism , Neural Crest/cytology , T-Box Domain Proteins/metabolism , Animals , Arteries/abnormalities , Arteries/anatomy & histology , Branchial Region/abnormalities , Branchial Region/blood supply , Branchial Region/embryology , Ectoderm/anatomy & histology , Ectoderm/embryology , Ectoderm/metabolism , Embryo, Mammalian/anatomy & histology , Embryo, Mammalian/physiology , Glycoproteins/metabolism , Heart/embryology , Homeodomain Proteins/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/metabolism , Signal Transduction/physiology , T-Box Domain Proteins/genetics , Roundabout Proteins
19.
Cancer Genomics Proteomics ; 6(4): 215-7, 2009.
Article En | MEDLINE | ID: mdl-19656998

In a family with multiple members affected by breast cancer we identified the novel mutation 1125delCT (exon 11) in BRCA1. Three out of three offsprings have the novel mutation while the mother affected by breast cancer does not carry the mutation. Linkage analysis revealed the transmission of the healthy haplotype from the mother to the three offsprings while the children inherited the mutated haplotype from the father. Our data document in an unquestionable way where the mutated haplotype was inherited from. In some families, although the transmission pathway seems obvious, the molecular analysis yields surprising results.


BRCA1 Protein/genetics , Breast Neoplasms/genetics , Inheritance Patterns/genetics , Mutation/genetics , Aged, 80 and over , Family , Female , Humans , Male , Middle Aged , Pedigree
20.
NMR Biomed ; 22(8): 857-66, 2009 Oct.
Article En | MEDLINE | ID: mdl-19598179

Microscopic MRI (microMRI) is an emerging technique for high-throughput phenotyping of transgenic mouse embryos, and is capable of visualising abnormalities in cardiac development. To identify cardiac defects in embryos, we have optimised embryo preparation and MR acquisition parameters to maximise image quality and assess the phenotypic changes in chromodomain helicase DNA-binding protein 7 (Chd7) transgenic mice. microMRI methods rely on tissue penetration with a gadolinium chelate contrast agent to reduce tissue T(1), thus improving signal-to-noise ratio (SNR) in rapid gradient echo sequences. We investigated 15.5 days post coitum (dpc) wild-type CD-1 embryos fixed in gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) solutions for either 3 days (2 and 4 mM) or 2 weeks (2, 4, 8 and 16 mM). To assess penetration of the contrast agent into heart tissue and enable image contrast simulations, T(1) and T(*) (2) were measured in heart and background agarose. Compared to 3-day, 2-week fixation showed reduced mean T(1) in the heart at both 2 and 4 mM concentrations (p < 0.0001), resulting in calculated signal gains of 23% (2 mM) and 29% (4 mM). Using T(1) and T(*) (2) values from 2-week concentrations, computer simulation of heart and background signal, and ex vivo 3D gradient echo imaging, we demonstrated that 2-week fixed embryos in 8 mM Gd-DTPA in combination with optimised parameters (TE/TR/alpha/number of averages: 9 ms/20 ms/60 degrees /7) produced the largest SNR in the heart (23.2 +/- 1.0) and heart chamber contrast-to-noise ratio (CNR) (27.1 +/- 1.6). These optimised parameters were then applied to an MRI screen of embryos heterozygous for the gene Chd7, implicated in coloboma of the eye, heart defects, atresia of the choanae, retardation of growth, genital/urinary abnormalities, ear abnormalities and deafness (CHARGE) syndrome (a condition partly characterised by cardiovascular birth defects in humans). A ventricular septal defect was readily identified in the screen, consistent with the human phenotype.


Embryo, Mammalian , Heart Defects, Congenital , Heart/embryology , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Phenotype , Animals , Contrast Media/metabolism , DNA-Binding Proteins/genetics , Female , Gadolinium DTPA/metabolism , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/pathology , Humans , Image Enhancement/instrumentation , Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Mice , Mice, Transgenic , Pregnancy
...