Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
JCI Insight ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39053472

ABSTRACT

Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurological disorder caused by a deleterious CAG repeat expansion in the coding region of the ataxin-7 gene. Infantile onset SCA7 leads to severe clinical manifestation of respiratory distress, but the exact cause of respiratory impairment remains unclear. Using the infantile SCA7 mouse model, the SCA7266Q/5Q mouse, we examined the impact of pathological poly-Q-ataxin-7 mutant ataxin-7 on hypoglossal (XII) and phrenic motor units. We identified the transcript profile of the medulla and cervical spinal cord and, investigated the XII and phrenic nerve and the neuromuscular junctions in the diaphragm and tongue. SCA-7 astrocytes showed significant intranuclear inclusions of ataxin-7 in the XII and putative phrenic motor nuclei. Transcriptomic analysis revealed dysregulation of genes involved in amino acid and neurotransmitter transportation and myelination. Additionally, SCA7 mice demonstrated blunted efferent output of the XII nerve and demyelination in both XII and phrenic nerves. Finally, there was an increased number of NMJ clusters with higher expression of synaptic markers in SCA7 mice compared to WT controls. These pre-clinical findings elucidate the underlying pathophysiology responsible for impaired glial cell function and death leading to dysphagia, aspiration and respiratory failure in infantile SCA7.

2.
Cell Rep Methods ; 4(7): 100816, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38981474

ABSTRACT

We developed a method that utilizes fluorescent labeling of nuclear envelopes alongside cytometry sorting for the selective isolation of Purkinje cell (PC) nuclei. Beginning with SUN1 reporter mice, we GFP-tagged envelopes to confirm that PC nuclei could be accurately separated from other cell types. We then developed an antibody-based protocol to make PC nuclear isolation more robust and adaptable to cerebellar tissues of any genotypic background. Immunofluorescent labeling of the nuclear membrane protein RanBP2 enabled the isolation of PC nuclei from C57BL/6 cerebellum. By analyzing the expression of PC markers, nuclear size, and nucleoli number, we confirmed that our method delivers a pure fraction of PC nuclei. To demonstrate its applicability, we isolated PC nuclei from spinocerebellar ataxia type 7 (SCA7) mice and identified transcriptional changes in known and new disease-associated genes. Access to pure PC nuclei offers insights into PC biology and pathology, including the nature of selective neuronal vulnerability.


Subject(s)
Mice, Inbred C57BL , Purkinje Cells , Animals , Purkinje Cells/metabolism , Mice , Cell Nucleus/metabolism , Cerebellum/metabolism , Cerebellum/cytology , Antibodies , GTP-Binding Proteins , Serine-Type D-Ala-D-Ala Carboxypeptidase
3.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891774

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder. While there are five FDA-approved drugs for treating this disease, each has only modest benefits. To design new and more effective therapies for ALS, particularly for sporadic ALS of unknown and diverse etiologies, we must identify key, convergent mechanisms of disease pathogenesis. This review focuses on the origin and effects of glutamate-mediated excitotoxicity in ALS (the cortical hyperexcitability hypothesis), in which increased glutamatergic signaling causes motor neurons to become hyperexcitable and eventually die. We characterize both primary and secondary contributions to excitotoxicity, referring to processes taking place at the synapse and within the cell, respectively. 'Primary pathways' include upregulation of calcium-permeable AMPA receptors, dysfunction of the EAAT2 astrocytic glutamate transporter, increased release of glutamate from the presynaptic terminal, and reduced inhibition by cortical interneurons-all of which have been observed in ALS patients and model systems. 'Secondary pathways' include changes to mitochondrial morphology and function, increased production of reactive oxygen species, and endoplasmic reticulum (ER) stress. By identifying key targets in the excitotoxicity cascade, we emphasize the importance of this pathway in the pathogenesis of ALS and suggest that intervening in this pathway could be effective for developing therapies for this disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Glutamic Acid , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Humans , Glutamic Acid/metabolism , Animals , Motor Neurons/metabolism , Motor Neurons/pathology , Aging/metabolism , Receptors, AMPA/metabolism , Endoplasmic Reticulum Stress , Mitochondria/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Astrocytes/metabolism , Reactive Oxygen Species/metabolism
4.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38328178

ABSTRACT

Nuclear clearance and cytoplasmic aggregation of the RNA-binding protein TDP-43 are observed in many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and fronto- temporal dementia (FTD). Although TDP-43 dysregulation of splicing has emerged as a key event in these diseases, TDP-43 can also regulate polyadenylation; yet, this has not been adequately studied. Here, we applied the dynamic analysis of polyadenylation from RNA-seq (DaPars) tool to ALS/FTD transcriptome datasets, and report extensive alternative polyadenylation (APA) upon TDP-43 alteration in ALS/FTD cell models and postmortem ALS/FTD neuronal nuclei. Importantly, many identified APA genes highlight pathways implicated in ALS/FTD pathogenesis. To determine the functional significance of APA elicited by TDP-43 nuclear depletion, we examined microtubule affinity regulating kinase 3 (MARK3). Nuclear loss of TDP-43 yielded increased expression of MARK3 transcripts with longer 3'UTRs, resulting in greater transcript stability and elevated MARK3 protein levels, which promotes increased neuronal tau S262 phosphorylation. Our findings define changes in polyadenylation site selection as a previously unrecognized feature of TDP-43-driven disease pathology in ALS/FTD and highlight a potentially novel mechanistic link between TDP-43 dysfunction and tau regulation.

6.
Cell Rep ; 42(11): 113436, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37952157

ABSTRACT

Skeletal muscle has recently arisen as a regulator of central nervous system (CNS) function and aging, secreting bioactive molecules known as myokines with metabolism-modifying functions in targeted tissues, including the CNS. Here, we report the generation of a transgenic mouse with enhanced skeletal muscle lysosomal and mitochondrial function via targeted overexpression of transcription factor E-B (TFEB). We discovered that the resulting geroprotective effects in skeletal muscle reduce neuroinflammation and the accumulation of tau-associated pathological hallmarks in a mouse model of tauopathy. Muscle-specific TFEB overexpression significantly ameliorates proteotoxicity, reduces neuroinflammation, and promotes transcriptional remodeling of the aged CNS, preserving cognition and memory in aged mice. Our results implicate the maintenance of skeletal muscle function throughout aging in direct regulation of CNS health and disease and suggest that skeletal muscle originating factors may act as therapeutic targets against age-associated neurodegenerative disorders.


Subject(s)
Neurodegenerative Diseases , Mice , Animals , Transcription Factors , Neuroinflammatory Diseases , Muscle, Skeletal , Mice, Transgenic , Aging , Central Nervous System , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
7.
Acta Neuropathol Commun ; 11(1): 164, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37845749

ABSTRACT

Identifying genetic modifiers of familial amyotrophic lateral sclerosis (ALS) may reveal targets for therapeutic modulation with potential application to sporadic ALS. GGGGCC (G4C2) repeat expansions in the C9orf72 gene underlie the most common form of familial ALS, and generate toxic arginine-containing dipeptide repeats (DPRs), which interfere with membraneless organelles, such as the nucleolus. Here we considered senataxin (SETX), the genetic cause of ALS4, as a modifier of C9orf72 ALS, because SETX is a nuclear helicase that may regulate RNA-protein interactions involved in ALS dysfunction. After documenting that decreased SETX expression enhances arginine-containing DPR toxicity and C9orf72 repeat expansion toxicity in HEK293 cells and primary neurons, we generated SETX fly lines and evaluated the effect of SETX in flies expressing either (G4C2)58 repeats or glycine-arginine-50 [GR(50)] DPRs. We observed dramatic suppression of disease phenotypes in (G4C2)58 and GR(50) Drosophila models, and detected a striking relocalization of GR(50) out of the nucleolus in flies co-expressing SETX. Next-generation GR(1000) fly models, that show age-related motor deficits in climbing and movement assays, were similarly rescued with SETX co-expression. We noted that the physical interaction between SETX and arginine-containing DPRs is partially RNA-dependent. Finally, we directly assessed the nucleolus in cells expressing GR-DPRs, confirmed reduced mobility of proteins trafficking to the nucleolus upon GR-DPR expression, and found that SETX dosage modulated nucleolus liquidity in GR-DPR-expressing cells and motor neurons. These findings reveal a hitherto unknown connection between SETX function and cellular processes contributing to neuron demise in the most common form of familial ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Animals , Amyotrophic Lateral Sclerosis/metabolism , Dipeptides/genetics , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Arginine/genetics , Arginine/metabolism , HEK293 Cells , Motor Neurons/metabolism , Drosophila/metabolism , RNA/metabolism , Frontotemporal Dementia/genetics , DNA Repeat Expansion/genetics , DNA Helicases/genetics , RNA Helicases/genetics , Multifunctional Enzymes/genetics
8.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37827155

ABSTRACT

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Subject(s)
Replication Protein A , Trinucleotide Repeat Expansion , Animals , Humans , Mice , DNA/genetics , DNA Mismatch Repair , Huntington Disease/genetics , Proteins/genetics , Spinocerebellar Ataxias/genetics , Replication Protein A/metabolism
9.
Acta Neuropathol Commun ; 11(1): 90, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37269008

ABSTRACT

X-linked spinal and bulbar muscular atrophy (SBMA; Kennedy's disease) is a rare neuromuscular disorder characterized by adult-onset proximal muscle weakness and lower motor neuron degeneration. SBMA was the first human disease found to be caused by a repeat expansion mutation, as affected patients possess an expanded tract of CAG repeats, encoding polyglutamine, in the androgen receptor (AR) gene. We previously developed a conditional BAC fxAR121 transgenic mouse model of SBMA and used it to define a primary role for skeletal muscle expression of polyglutamine-expanded AR in causing the motor neuron degeneration. Here we sought to extend our understanding of SBMA disease pathophysiology and cellular basis by detailed examination and directed experimentation with the BAC fxAR121 mice. First, we evaluated BAC fxAR121 mice for non-neurological disease phenotypes recently described in human SBMA patients, and documented prominent non-alcoholic fatty liver disease, cardiomegaly, and ventricular heart wall thinning in aged male BAC fxAR121 mice. Our discovery of significant hepatic and cardiac abnormalities in SBMA mice underscores the need to evaluate human SBMA patients for signs of liver and heart disease. To directly examine the contribution of motor neuron-expressed polyQ-AR protein to SBMA neurodegeneration, we crossed BAC fxAR121 mice with two different lines of transgenic mice expressing Cre recombinase in motor neurons, and after updating characterization of SBMA phenotypes in our current BAC fxAR121 colony, we found that excision of mutant AR from motor neurons did not rescue neuromuscular or systemic disease. These findings further validate a primary role for skeletal muscle as the driver of SBMA motor neuronopathy and indicate that therapies being developed to treat patients should be delivered peripherally.


Subject(s)
Bulbo-Spinal Atrophy, X-Linked , Mice , Humans , Male , Animals , Aged , Bulbo-Spinal Atrophy, X-Linked/metabolism , Bulbo-Spinal Atrophy, X-Linked/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Motor Neurons/metabolism , Mice, Transgenic , Phenotype , Nerve Degeneration/pathology
10.
Life Sci Alliance ; 6(8)2023 08.
Article in English | MEDLINE | ID: mdl-37221017

ABSTRACT

mTORC1 is the key rheostat controlling the cellular metabolic state. Of the various inputs to mTORC1, the most potent effector of intracellular nutrient status is amino acid supply. Despite an established role for MAP4K3 in promoting mTORC1 activation in the presence of amino acids, the signaling pathway by which MAP4K3 controls mTORC1 activation remains unknown. Here, we examined the process of MAP4K3 regulation of mTORC1 and found that MAP4K3 represses the LKB1-AMPK pathway to achieve robust mTORC1 activation. When we sought the regulatory link between MAP4K3 and LKB1 inhibition, we discovered that MAP4K3 physically interacts with the master nutrient regulatory factor sirtuin-1 (SIRT1) and phosphorylates SIRT1 to repress LKB1 activation. Our results reveal the existence of a novel signaling pathway linking amino acid satiety with MAP4K3-dependent suppression of SIRT1 to inactivate the repressive LKB1-AMPK pathway and thereby potently activate the mTORC1 complex to dictate the metabolic disposition of the cell.


Subject(s)
AMP-Activated Protein Kinases , Sirtuin 1 , Signal Transduction , Amino Acids , Mechanistic Target of Rapamycin Complex 1
11.
bioRxiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214832

ABSTRACT

Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disorder caused by a CAG-polyglutamine repeat expansion. SCA7 patients display a striking loss of Purkinje cell (PC) neurons with disease progression; however, PCs are rare, making them difficult to characterize. We developed a PC nuclei enrichment protocol and applied it to single-nucleus RNA-seq of a SCA7 knock-in mouse model. Our results unify prior observations into a central mechanism of cell identity loss, impacting both glia and PCs, driving accumulation of inhibitory synapses and altered PC spiking. Zebrin-II subtype dysregulation is the predominant signal in PCs, leading to complete loss of zebrin-II striping at motor symptom onset in SCA7 mice. We show this zebrin-II subtype degradation is shared across Polyglutamine Ataxia mouse models and SCA7 patients. It has been speculated that PC subtype organization is critical for cerebellar function, and our results suggest that a breakdown of zebrin-II parasagittal striping is pathological.

12.
STAR Protoc ; 4(2): 102205, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37000621

ABSTRACT

Translocation sequencing can be used to assess mechanisms of DNA repair and identify genome-wide double-strand breaks (DSBs) accessible to DNA repair machinery. Here, we present a protocol for mapping double-strand DNA break sites across the genome with translocation capture sequencing. Bait DSBs are introduced using a Cas9 nuclease and repaired by the host cell, connecting bait DSBs to other DSBs. Repair sites are detected by isolating bait site DNA, cleaving normal sequence to enrich off-site repair, and next-generation sequencing. For complete details on the use and execution of this protocol, please refer to Switonski et al. (2021).1.

13.
Nat Commun ; 14(1): 583, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737438

ABSTRACT

Alternative polyadenylation (APA) plays an essential role in brain development; however, current transcriptome-wide association studies (TWAS) largely overlook APA in nominating susceptibility genes. Here, we performed a 3' untranslated region (3'UTR) APA TWAS (3'aTWAS) for 11 brain disorders by combining their genome-wide association studies data with 17,300 RNA-seq samples across 2,937 individuals. We identified 354 3'aTWAS-significant genes, including known APA-linked risk genes, such as SNCA in Parkinson's disease. Among these 354 genes, ~57% are not significant in traditional expression- and splicing-TWAS studies, since APA may regulate the translation, localization and protein-protein interaction of the target genes independent of mRNA level expression or splicing. Furthermore, we discovered ATXN3 as a 3'aTWAS-significant gene for amyotrophic lateral sclerosis, and its modulation substantially impacted pathological hallmarks of amyotrophic lateral sclerosis in vitro. Together, 3'aTWAS is a powerful strategy to nominate important APA-linked brain disorder susceptibility genes, most of which are largely overlooked by conventional expression and splicing analyses.


Subject(s)
Amyotrophic Lateral Sclerosis , Parkinson Disease , Humans , Polyadenylation/genetics , Transcriptome/genetics , Amyotrophic Lateral Sclerosis/genetics , Genome-Wide Association Study , Parkinson Disease/genetics , 3' Untranslated Regions/genetics
14.
Sci Adv ; 9(1): eade1694, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36608116

ABSTRACT

Spinal and bulbar muscular atrophy is caused by polyglutamine (polyQ) expansions in androgen receptor (AR), generating gain-of-function toxicity that may involve phosphorylation. Using cellular and animal models, we investigated what kinases and phosphatases target polyQ-expanded AR, whether polyQ expansions modify AR phosphorylation, and how this contributes to neurodegeneration. Mass spectrometry showed that polyQ expansions preserve native phosphorylation and increase phosphorylation at conserved sites controlling AR stability and transactivation. In small-molecule screening, we identified that CDC25/CDK2 signaling could enhance AR phosphorylation, and the calcium-sensitive phosphatase calcineurin had opposite effects. Pharmacologic and genetic manipulation of these kinases and phosphatases modified polyQ-expanded AR function and toxicity in cells, flies, and mice. Ablation of CDK2 reduced AR phosphorylation in the brainstem and restored expression of Myc and other genes involved in DNA damage, senescence, and apoptosis, indicating that the cell cycle-regulated kinase plays more than a bystander role in SBMA-vulnerable postmitotic cells.


Subject(s)
Calcium , Receptors, Androgen , Mice , Animals , Receptors, Androgen/chemistry , Gain of Function Mutation , Cyclin-Dependent Kinases/genetics , Phosphoric Monoester Hydrolases/genetics
16.
Nature ; 606(7916): 945-952, 2022 06.
Article in English | MEDLINE | ID: mdl-35732742

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a heterogenous neurodegenerative disorder that affects motor neurons and voluntary muscle control1. ALS heterogeneity includes the age of manifestation, the rate of progression and the anatomical sites of symptom onset. Disease-causing mutations in specific genes have been identified and define different subtypes of ALS1. Although several ALS-associated genes have been shown to affect immune functions2, whether specific immune features account for ALS heterogeneity is poorly understood. Amyotrophic lateral sclerosis-4 (ALS4) is characterized by juvenile onset and slow progression3. Patients with ALS4 show motor difficulties by the time that they are in their thirties, and most of them require devices to assist with walking by their fifties. ALS4 is caused by mutations in the senataxin gene (SETX). Here, using Setx knock-in mice that carry the ALS4-causative L389S mutation, we describe an immunological signature that consists of clonally expanded, terminally differentiated effector memory (TEMRA) CD8 T cells in the central nervous system and the blood of knock-in mice. Increased frequencies of antigen-specific CD8 T cells in knock-in mice mirror the progression of motor neuron disease and correlate with anti-glioma immunity. Furthermore, bone marrow transplantation experiments indicate that the immune system has a key role in ALS4 neurodegeneration. In patients with ALS4, clonally expanded TEMRA CD8 T cells circulate in the peripheral blood. Our results provide evidence of an antigen-specific CD8 T cell response in ALS4, which could be used to unravel disease mechanisms and as a potential biomarker of disease state.


Subject(s)
Amyotrophic Lateral Sclerosis , CD8-Positive T-Lymphocytes , Clone Cells , Amyotrophic Lateral Sclerosis/immunology , Amyotrophic Lateral Sclerosis/pathology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Clone Cells/pathology , DNA Helicases/genetics , DNA Helicases/metabolism , Gene Knock-In Techniques , Mice , Motor Neurons/pathology , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Mutation , RNA Helicases/genetics , RNA Helicases/metabolism
17.
Acta Neuropathol Commun ; 9(1): 194, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34922620

ABSTRACT

Pathogenic variants in SETX cause two distinct neurological diseases, a loss-of-function recessive disorder, ataxia with oculomotor apraxia type 2 (AOA2), and a dominant gain-of-function motor neuron disorder, amyotrophic lateral sclerosis type 4 (ALS4). We identified two unrelated patients with the same de novo c.23C > T (p.Thr8Met) variant in SETX presenting with an early-onset, severe polyneuropathy. As rare private gene variation is often difficult to link to genetic neurological disease by DNA sequence alone, we used transcriptional network analysis to functionally validate these patients with severe de novo SETX-related neurodegenerative disorder. Weighted gene co-expression network analysis (WGCNA) was used to identify disease-associated modules from two different ALS4 mouse models and compared to confirmed ALS4 patient data to derive an ALS4-specific transcriptional signature. WGCNA of whole blood RNA-sequencing data from a patient with the p.Thr8Met SETX variant was compared to ALS4 and control patients to determine if this signature could be used to identify affected patients. WGCNA identified overlapping disease-associated modules in ALS4 mouse model data and ALS4 patient data. Mouse ALS4 disease-associated modules were not associated with AOA2 disease modules, confirming distinct disease-specific signatures. The expression profile of a patient carrying the c.23C > T (p.Thr8Met) variant was significantly associated with the human and mouse ALS4 signature, confirming the relationship between this SETX variant and disease. The similar clinical presentations of the two unrelated patients with the same de novo p.Thr8Met variant and the functional data provide strong evidence that the p.Thr8Met variant is pathogenic. The distinct phenotype expands the clinical spectrum of SETX-related disorders.


Subject(s)
DNA Helicases/genetics , Multifunctional Enzymes/genetics , Neurodegenerative Diseases/genetics , Polyneuropathies/genetics , RNA Helicases/genetics , Adolescent , Age of Onset , Animals , Child , Humans , Male , Mice , Mice, Transgenic , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/physiopathology , Polyneuropathies/pathology , Polyneuropathies/physiopathology
18.
Cell Rep ; 37(9): 110062, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34852229

ABSTRACT

A common mechanism in inherited ataxia is a vulnerability of DNA damage. Spinocerebellar ataxia type 7 (SCA7) is a CAG-polyglutamine-repeat disorder characterized by cerebellar and retinal degeneration. Polyglutamine-expanded ataxin-7 protein incorporates into STAGA co-activator complex and interferes with transcription by altering histone acetylation. We performed chromatic immunoprecipitation sequencing ChIP-seq on cerebellum from SCA7 mice and observed increased H3K9-promoter acetylation in DNA repair genes, resulting in increased expression. After detecting increased DNA damage in SCA7 cells, mouse primary cerebellar neurons, and patient stem-cell-derived neurons, we documented reduced homology-directed repair (HDR) and single-strand annealing (SSA). To evaluate repair at endogenous DNA in native chromosome context, we modified linear amplification-mediated high-throughput genome-wide translocation sequencing and found that DNA translocations are less frequent in SCA7 models, consistent with decreased HDR and SSA. Altered DNA repair function in SCA7 may predispose the subject to excessive DNA damage, leading to neuron demise and highlights DNA repair as a therapy target.


Subject(s)
Ataxin-7/metabolism , Cerebellar Diseases/pathology , DNA Repair , Histones/metabolism , Neurons/pathology , Peptides/genetics , Spinocerebellar Ataxias/complications , Acetylation , Animals , Ataxin-7/genetics , Cerebellar Diseases/etiology , Cerebellar Diseases/metabolism , Female , Histones/genetics , Humans , Male , Mice , Neurons/metabolism
19.
Sci Adv ; 7(34)2021 08.
Article in English | MEDLINE | ID: mdl-34417184

ABSTRACT

Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset neuromuscular condition caused by an abnormal polyglutamine (polyQ) tract expansion in androgen receptor (AR) protein. SBMA is a disease with high unmet clinical need. Recent studies have shown that mutant AR-altered transcriptional activity is key to disease pathogenesis. Restoring the transcriptional dysregulation without affecting other AR critical functions holds great promise for the treatment of SBMA and other AR-related conditions; however, how this targeted approach can be achieved and translated into a clinical application remains to be understood. Here, we characterized the role of AR isoform 2, a naturally occurring variant encoding a truncated AR lacking the polyQ-harboring domain, as a regulatory switch of AR genomic functions in androgen-responsive tissues. Delivery of this isoform using a recombinant adeno-associated virus vector type 9 resulted in amelioration of the disease phenotype in SBMA mice by restoring polyQ AR-dysregulated transcriptional activity.


Subject(s)
Bulbo-Spinal Atrophy, X-Linked , Receptors, Androgen , Animals , Bulbo-Spinal Atrophy, X-Linked/genetics , Bulbo-Spinal Atrophy, X-Linked/therapy , Genetic Therapy , Mice , Phenotype , Protein Isoforms/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
20.
Mol Genet Genomic Med ; 9(12): e1745, 2021 12.
Article in English | MEDLINE | ID: mdl-34263556

ABSTRACT

BACKGROUND: Senataxin (SETX) is a DNA/RNA helicase critical for neuron survival. SETX mutations underlie two inherited neurodegenerative diseases: Ataxia with Oculomotor Apraxia type 2 (AOA2) and Amyotrophic Lateral Sclerosis type 4 (ALS4). METHODS: This review examines SETX key cellular processes and we hypothesize that SETX requires SUMO posttranslational modification to function properly. RESULTS: SETX is localized to distinct foci during S-phase of the cell cycle, and these foci represent sites of DNA polymerase/RNA polymerase II (RNAP) collision, as they co-localize with DNA damage markers 53BP1 and H2AX. At such sites, SETX directs incomplete RNA transcripts to the nuclear exosome for degradation via interaction with exosome component 9 (Exosc9), a key component of the nuclear exosome. These processes require SETX SUMOylation. SETX was also recently localized within stress granules (SGs), and found to regulate SG disassembly, a process that similarly requires SUMOylation. CONCLUSION: SETX undergoes SUMO modification to function at S-phase foci in cycling cells to facilitate RNA degradation. SETX may regulate similar processes in non-dividing neurons at sites of RNAP II bidirectional self-collision. Finally, SUMOylation of SETX appears to be required for SG disassembly. This SETX function may be crucial for neuron survival, as altered SG dynamics are linked to ALS disease pathogenesis. In addition, AOA2 point mutations have been shown to block SETX SUMOylation. Such mutations induce an ataxia phenotype indistinguishable from those with SETX null mutation, underscoring the importance of this modification.


Subject(s)
Ataxia/etiology , Ataxia/metabolism , DNA Helicases/metabolism , Genomic Instability , Motor Neuron Disease/etiology , Motor Neuron Disease/metabolism , Multifunctional Enzymes/metabolism , RNA Helicases/metabolism , RNA Stability , Stress Granules/metabolism , Animals , Ataxia/diagnosis , Biomarkers , DNA Helicases/genetics , DNA-Directed DNA Polymerase/metabolism , Disease Susceptibility , Exosomes/metabolism , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Multifunctional Enzymes/genetics , Mutation , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , RNA Helicases/genetics , RNA Polymerase II/metabolism , S Phase , S Phase Cell Cycle Checkpoints , Sumoylation
SELECTION OF CITATIONS
SEARCH DETAIL