Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Clin Cancer Res ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078289

ABSTRACT

PURPOSE: Cytarabine (also known as ara-C) has been the backbone of acute myeloid leukemia (AML) chemotherapy for over five decades. Recent pharmacogenomics-based 10-SNP ara-C score (ACS10) showed low ACS10 (£0) to be associated with poor outcome in AML patients treated with standard chemotherapy. Here, we evaluated ACS10 score in the context of three different induction 1 regimens in pediatric AML patients. EXPERIMENTAL DESIGN: ACS10 score groups (low,£0 or high,>0) were evaluated for association with event-free survival (EFS) and overall survival (OS) by three randomized treatment arms in patients treated on the AML02 (NCT00136084) and AML08 (NCT00703820) clinical trials: AML02 low-dose cytarabine (LDAC arm, n=91), AML02+AML08 high-dose cytarabine (HDAC arm, n=194) and AML08 clofarabine+ cytarabine (Clo/Ara-C arm, n=105) induction 1 regimens. RESULTS: Within the low-ACS10 score (£0) group, significantly improved EFS and OS was observed among patients treated with Clo/Ara-C as compared to LDAC (EFS, HR=0.45, 95% CI, 0.23-0.88, p=0.020; OS, HR=0.44, 95% CI, 0.19-0.99, p=0.048). In contrast, within the high-ACS10 score group (score >0) augmentation with Clo/Ara-C was not favorable as compared to LDAC (Clo/Ara-C vs. LDAC, EFS, HR=1.95, 95% CI: 1.05-3.63, p=0.035; OS HR=2.17, 95%CI: 1.05-4.49; p=0.037). Personalization models predicted 9% improvement in outcome in ACS10 score-based tailored induction (Clo/Ara-C for low and LDAC for high-ACS10 groups) as compared to non-personalized approaches (p<0.002). CONCLUSIONS: Our findings suggest that tailoring induction regimens using ACS10 scores can significantly improve outcome in patients with AML. Given the SNPs are germline, preemptive genotyping can accelerate matching the most effective remission induction regimen.

2.
JAMA Netw Open ; 7(5): e2411726, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38753328

ABSTRACT

Importance: Disparities in outcomes exist between Black and White patients with acute myeloid leukemia (AML), with Black patients experiencing poorer prognosis compared with their White counterparts. Objective: To assess whether varying intensity of induction therapy to treat pediatric AML is associated with reduced disparities in treatment outcome by race. Design, Setting, and Participants: A comparative effectiveness analysis was conducted of 86 Black and 359 White patients with newly diagnosed AML who were enrolled in the AML02 trial from 2002 to 2008 or the AML08 trial from 2008 to 2017. Statistical analysis was conducted from July 2023 through January 2024. Interventions: Patients in AML02 were randomly assigned to receive standard low-dose cytarabine-based induction therapy or augmented high-dose cytarabine-based induction therapy, whereas patients in AML08 received high-dose cytarabine-based therapy. Main Outcomes and Measures: Cytarabine pharmacogenomic 10-single-nucleotide variant (ACS10) scores were evaluated for association with outcome according to race and treatment arm. Results: This analysis included 86 Black patients (mean [SD] age, 8.8 [6.5] years; 54 boys [62.8%]; mean [SD] leukocyte count, 52 600 [74 000] cells/µL) and 359 White patients (mean [SD] age, 9.1 [6.2] years; 189 boys [52.6%]; mean [SD] leukocyte count, 54 500 [91 800] cells/µL); 70 individuals with other or unknown racial and ethnic backgrounds were not included. Among all patients without core binding factor AML who received standard induction therapy, Black patients had significantly worse outcomes compared with White patients (5-year event-free survival rate, 25% [95% CI, 9%-67%] compared with 56% [95% CI, 46%-70%]; P = .03). By contrast, among all patients who received augmented induction therapy, there were no differences in outcome according to race (5-year event-free survival rate, Black patients, 50% [95% CI, 38%-67%]; White patients, 48% [95% CI, 42%-55%]; P = .78). Among patients who received standard induction therapy, those with low ACS10 scores had a significantly worse 5-year event-free survival rate compared with those with high scores (42.4% [95% CI, 25.6%-59.3%] and 70.0% [95% CI, 56.6%-83.1%]; P = .004); however, among patients who received augmented induction therapy, there were no differences in 5-year event-free survival rates according to ACS10 score (low score, 60.6% [95% CI, 50.9%-70.2%] and high score, 54.8% [95% CI, 47.1%-62.5%]; P = .43). Conclusions and Relevance: In this comparative effectiveness study of pediatric patients with AML treated in 2 consecutive clinical trials, Black patients had worse outcomes compared with White patients after treatment with standard induction therapy, but this disparity was eliminated by treatment with augmented induction therapy. When accounting for ACS10 scores, no outcome disparities were seen between Black and White patients. Our results suggest that using pharmacogenomics parameters to tailor induction regimens for both Black and White patients may narrow the racial disparity gap in patients with AML.


Subject(s)
Cytarabine , Leukemia, Myeloid, Acute , White People , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Male , Child , Female , Cytarabine/therapeutic use , Treatment Outcome , Child, Preschool , White People/statistics & numerical data , White People/genetics , Pharmacogenetics , Adolescent , Antimetabolites, Antineoplastic/therapeutic use , Black or African American/statistics & numerical data , Induction Chemotherapy/methods
3.
Leukemia ; 38(6): 1246-1255, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38724673

ABSTRACT

T cells are important for the control of acute myeloid leukemia (AML), a common and often deadly malignancy. We observed that some AML patient samples are resistant to killing by human-engineered cytotoxic CD4+ T cells. Single-cell RNA-seq of primary AML samples and CD4+ T cells before and after their interaction uncovered transcriptional programs that correlate with AML sensitivity or resistance to CD4+ T cell killing. Resistance-associated AML programs were enriched in AML patients with poor survival, and killing-resistant AML cells did not engage T cells in vitro. Killing-sensitive AML potently activated T cells before being killed, and upregulated ICAM1, a key component of the immune synapse with T cells. Without ICAM1, killing-sensitive AML became resistant to killing by primary ex vivo-isolated CD8+ T cells in vitro, and engineered CD4+ T cells in vitro and in vivo. While AML heterogeneity implies that multiple factors may determine their sensitivity to T cell killing, these data show that ICAM1 acts as an immune trigger, allowing T cell killing, and could play a role in AML patient survival in vivo.


Subject(s)
Intercellular Adhesion Molecule-1 , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Mice , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Prognosis , Cytotoxicity, Immunologic
4.
Cancers (Basel) ; 15(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37958378

ABSTRACT

Juvenile myelomonocytic leukemia (JMML) is a deadly pediatric leukemia driven by RAS pathway mutations, of which >35% are gain-of-function in PTPN11. Although DNA hypermethylation portends severe clinical phenotypes, the landscape of histone modifications and chromatin profiles in JMML patient cells have not been explored. Using global mass cytometry, Epigenetic Time of Flight (EpiTOF), we analyzed hematopoietic stem and progenitor cells (HSPCs) from five JMML patients with PTPN11 mutations. These data revealed statistically significant changes in histone methylation, phosphorylation, and acetylation marks that were unique to JMML HSPCs when compared with healthy controls. Consistent with these data, assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis revealed significant alterations in chromatin profiles at loci encoding post-translational modification enzymes, strongly suggesting their mis-regulated expression. Collectively, this study reveals histone modification pathways as an additional epigenetic abnormality in JMML patient HSPCs, thereby uncovering a new family of potential druggable targets for the treatment of JMML.

5.
bioRxiv ; 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37790561

ABSTRACT

T cells are important for the control of acute myeloid leukemia (AML), a common and often deadly malignancy. We observed that some AML patient samples are resistant to killing by human engineered cytotoxic CD4 + T cells. Single-cell RNA-seq of primary AML samples and CD4 + T cells before and after their interaction uncovered transcriptional programs that correlate with AML sensitivity or resistance to CD4 + T cell killing. Resistance-associated AML programs were enriched in AML patients with poor survival, and killing-resistant AML cells did not engage T cells in vitro . Killing-sensitive AML potently activated T cells before being killed, and upregulated ICAM1 , a key component of the immune synapse with T cells. Without ICAM1, killing-sensitive AML became resistant to killing to primary ex vivo -isolated CD8 + T cells in vitro , and engineered CD4 + T cells in vitro and in vivo . Thus, ICAM1 on AML acts as an immune trigger, allowing T cell killing, and could affect AML patient survival in vivo . SIGNIFICANCE: AML is a common leukemia with sub-optimal outcomes. We show that AML transcriptional programs correlate with susceptibility to T cell killing. Killing resistance-associated AML programs are enriched in patients with poor survival. Killing-sensitive, but not resistant AML activate T cells and upregulate ICAM1 that binds to LFA-1 on T cells, allowing immune synapse formation which is critical for AML elimination.

6.
Appl Environ Microbiol ; 89(7): e0058323, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37404180

ABSTRACT

Microbial source tracking (MST) identifies sources of fecal contamination in the environment using host-associated fecal markers. While there are numerous bacterial MST markers that can be used herein, there are few such viral markers. Here, we designed and tested novel viral MST markers based on tomato brown rugose fruit virus (ToBRFV) genomes. We assembled eight nearly complete genomes of ToBRFV from wastewater and stool samples from the San Francisco Bay Area in the United States. Next, we developed two novel probe-based reverse transcription-PCR (RT-PCR) assays based on conserved regions of the ToBRFV genome and tested the markers' sensitivities and specificities using human and non-human animal stool as well as wastewater. The ToBRFV markers are sensitive and specific; in human stool and wastewater, they are more prevalent and abundant than a commonly used viral marker, the pepper mild mottle virus (PMMoV) coat protein (CP) gene. We used the assays to detect fecal contamination in urban stormwater samples and found that the ToBRFV markers matched cross-assembly phage (crAssphage), an established viral MST marker, in prevalence across samples. Taken together, these results indicate that ToBRFV is a promising viral human-associated MST marker. IMPORTANCE Human exposure to fecal contamination in the environment can cause transmission of infectious diseases. Microbial source tracking (MST) can identify sources of fecal contamination so that contamination can be remediated and human exposures can be reduced. MST requires the use of host-associated MST markers. Here, we designed and tested novel MST markers from genomes of tomato brown rugose fruit virus (ToBRFV). The markers are sensitive and specific to human stool and highly abundant in human stool and wastewater samples.


Subject(s)
Solanum lycopersicum , Wastewater , Animals , Fruit , Biomarkers , Feces/microbiology , Environmental Monitoring/methods
7.
J Immunother Cancer ; 11(5)2023 05.
Article in English | MEDLINE | ID: mdl-37217248

ABSTRACT

BACKGROUND: Type I interferons (IFN-Is), secreted by hematopoietic cells, drive immune surveillance of solid tumors. However, the mechanisms of suppression of IFN-I-driven immune responses in hematopoietic malignancies including B-cell acute lymphoblastic leukemia (B-ALL) are unknown. METHODS: Using high-dimensional cytometry, we delineate the defects in IFN-I production and IFN-I-driven immune responses in high-grade primary human and mouse B-ALLs. We develop natural killer (NK) cells as therapies to counter the intrinsic suppression of IFN-I production in B-ALL. RESULTS: We find that high expression of IFN-I signaling genes predicts favorable clinical outcome in patients with B-ALL, underscoring the importance of the IFN-I pathway in this malignancy. We show that human and mouse B-ALL microenvironments harbor an intrinsic defect in paracrine (plasmacytoid dendritic cell) and/or autocrine (B-cell) IFN-I production and IFN-I-driven immune responses. Reduced IFN-I production is sufficient for suppressing the immune system and promoting leukemia development in mice prone to MYC-driven B-ALL. Among anti-leukemia immune subsets, suppression of IFN-I production most markedly lowers the transcription of IL-15 and reduces NK-cell number and effector maturation in B-ALL microenvironments. Adoptive transfer of healthy NK cells significantly prolongs survival of overt ALL-bearing transgenic mice. Administration of IFN-Is to B-ALL-prone mice reduces leukemia progression and increases the frequencies of total NK and NK-cell effectors in circulation. Ex vivo treatment of malignant and non-malignant immune cells in primary mouse B-ALL microenvironments with IFN-Is fully restores proximal IFN-I signaling and partially restores IL-15 production. In B-ALL patients, the suppression of IL-15 is the most severe in difficult-to-treat subtypes with MYC overexpression. MYC overexpression promotes sensitivity of B-ALL to NK cell-mediated killing. To counter the suppressed IFN-I-induced IL-15 production in MYChigh human B-ALL, we CRISPRa-engineered a novel human NK-cell line that secretes IL-15. CRISPRa IL-15-secreting human NK cells kill high-grade human B-ALL in vitro and block leukemia progression in vivo more effectively than NK cells that do not produce IL-15. CONCLUSION: We find that restoration of the intrinsically suppressed IFN-I production in B-ALL underlies the therapeutic efficacy of IL-15-producing NK cells and that such NK cells represent an attractive therapeutic solution for the problem of drugging MYC in high-grade B-ALL.


Subject(s)
Burkitt Lymphoma , Interferon Type I , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Mice , Animals , Interferon-gamma/metabolism , Interleukin-15/metabolism , Killer Cells, Natural , Burkitt Lymphoma/pathology , Mice, Transgenic , Interferon Type I/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Microenvironment
8.
J Immunother Cancer ; 11(2)2023 02.
Article in English | MEDLINE | ID: mdl-36849202

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy is an effective salvage therapy for pediatric relapsed B-cell acute lymphoblastic leukemia (B-ALL), yet is challenged by high rates of post-CAR relapse. Literature describing specific relapse patterns and extramedullary (EM) sites of involvement in the post-CAR setting remains limited, and a clinical standard for post-CAR disease surveillance has yet to be established. We highlight the importance of integrating peripheral blood minimal residual disease (MRD) testing and radiologic imaging into surveillance strategies, to effectively characterize and capture post-CAR relapse. MAIN BODY: Here, we describe the case of a child with multiply relapsed B-ALL who relapsed in the post-CAR setting with gross non-contiguous medullary and EM disease. Interestingly, her relapse was identified first from peripheral blood flow cytometry MRD surveillance, in context of a negative bone marrow aspirate (MRD <0.01%). Positron emission tomography with 18F-fluorodeoxyglucose revealed diffuse leukemia with innumerable bone and lymph node lesions, interestingly sparing her sacrum, the site of her bone marrow aspirate sampling. CONCLUSIONS: We highlight this case as both peripheral blood MRD and 18F-fluorodeoxyglucose positron emission tomography imaging were more sensitive than standard bone marrow aspirate testing in detecting this patient's post-CAR relapse. Clinical/Biologic Insight: In the multiply relapsed B-ALL setting, where relapse patterns may include patchy medullary and/or EM disease, peripheral blood MRD and/or whole body imaging, may carry increased sensitivity at detecting relapse in patient subsets, as compared with standard bone marrow sampling.


Subject(s)
Burkitt Lymphoma , Leukemia , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Female , Fluorodeoxyglucose F18 , Bone Marrow/diagnostic imaging , Neoplasm, Residual , Positron-Emission Tomography , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnostic imaging , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy
9.
bioRxiv ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36712100

ABSTRACT

Microbial source tracking (MST) identifies sources of fecal contamination in the environment using fecal host-associated markers. While there are numerous bacterial MST markers, there are few viral markers. Here we design and test novel viral MST markers based on tomato brown rugose fruit virus (ToBRFV) genomes. We assembled eight nearly complete genomes of ToBRFV from wastewater and stool samples from the San Francisco Bay Area in the United States of America. Next, we developed two novel probe-based RT-PCR assays based on conserved regions of the ToBRFV genome, and tested the markers’ sensitivities and specificities using human and non-human animal stool as well as wastewater. TheToBRFV markers are sensitive and specific; in human stool and wastewater, they are more prevalent and abundant than a currently used marker, the pepper mild mottle virus (PMMoV) coat protein (CP) gene. We applied the assays to detect fecal contamination in urban stormwater samples and found that the ToBRFV markers matched cross-assembly phage (crAssphage), an established viral MST marker, in prevalence across samples. Taken together, ToBRFV is a promising viral human-associated MST marker. Importance: Human exposure to fecal contamination in the environment can cause transmission of infectious diseases. Microbial source tracking (MST) can identify sources of fecal contamination so that contamination can be remediated and human exposures can be reduced. MST requires the use of fecal host-associated MST markers. Here we design and test novel MST markers from genomes of tomato brown rugose fruit virus (ToBRFV). The markers are sensitive and specific to human stool, and highly abundant in human stool and wastewater samples.

10.
Nat Commun ; 13(1): 934, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177627

ABSTRACT

The increasing use of mass cytometry for analyzing clinical samples offers the possibility to perform comparative analyses across public datasets. However, challenges in batch normalization and data integration limit the comparison of datasets not intended to be analyzed together. Here, we present a data integration strategy, CytofIn, using generalized anchors to integrate mass cytometry datasets from the public domain. We show that low-variance controls, such as healthy samples and stable channels, are inherently homogeneous, robust against stimulation, and can serve as generalized anchors for batch correction. Single-cell quantification comparing mass cytometry data from 989 leukemia files pre- and post normalization with CytofIn demonstrates effective batch correction while recapitulating the gold-standard bead normalization. CytofIn integration of public cancer datasets enabled the comparison of immune features across histologies and treatments. We demonstrate the ability to integrate public datasets without necessitating identical control samples or bead standards for fast and robust analysis using CytofIn.


Subject(s)
Algorithms , Datasets as Topic , Flow Cytometry/methods , Melanoma/drug therapy , Computational Biology/methods , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , Melanoma/pathology , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Single-Cell Analysis , Skin Neoplasms/drug therapy , Skin Neoplasms/immunology , Skin Neoplasms/pathology
11.
Cancer Cell ; 40(1): 53-69.e9, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34971569

ABSTRACT

Pediatric cancers often mimic fetal tissues and express proteins normally silenced postnatally that could serve as immune targets. We developed T cells expressing chimeric antigen receptors (CARs) targeting glypican-2 (GPC2), a fetal antigen expressed on neuroblastoma (NB) and several other solid tumors. CARs engineered using standard designs control NBs with transgenic GPC2 overexpression, but not those expressing clinically relevant GPC2 site density (∼5,000 molecules/cell, range 1-6 × 103). Iterative engineering of transmembrane (TM) and co-stimulatory domains plus overexpression of c-Jun lowered the GPC2-CAR antigen density threshold, enabling potent and durable eradication of NBs expressing clinically relevant GPC2 antigen density, without toxicity. These studies highlight the critical interplay between CAR design and antigen density threshold, demonstrate potent efficacy and safety of a lead GPC2-CAR candidate suitable for clinical testing, and credential oncofetal antigens as a promising class of targets for CAR T cell therapy of solid tumors.


Subject(s)
Glypicans/immunology , Immunotherapy, Adoptive , Neuroblastoma/drug therapy , Receptors, Antigen, T-Cell/metabolism , Animals , Cell Line, Tumor , Glypicans/metabolism , Humans , Immunotherapy/methods , Neuroblastoma/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays/methods
12.
Cancers (Basel) ; 13(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34944883

ABSTRACT

Children with chronic myeloid leukemia (CML) tend to present with higher white blood counts and larger spleens than adults with CML, suggesting that the biology of pediatric and adult CML may differ. To investigate whether pediatric and adult CML have unique molecular characteristics, we studied the transcriptomic signature of pediatric and adult CML CD34+ cells and healthy pediatric and adult CD34+ control cells. Using high-throughput RNA sequencing, we found 567 genes (207 up- and 360 downregulated) differentially expressed in pediatric CML CD34+ cells compared to pediatric healthy CD34+ cells. Directly comparing pediatric and adult CML CD34+ cells, 398 genes (258 up- and 140 downregulated), including many in the Rho pathway, were differentially expressed in pediatric CML CD34+ cells. Using RT-qPCR to verify differentially expressed genes, VAV2 and ARHGAP27 were significantly upregulated in adult CML CD34+ cells compared to pediatric CML CD34+ cells. NCF1, CYBB, and S100A8 were upregulated in adult CML CD34+ cells but not in pediatric CML CD34+ cells, compared to healthy controls. In contrast, DLC1 was significantly upregulated in pediatric CML CD34+ cells but not in adult CML CD34+ cells, compared to healthy controls. These results demonstrate unique molecular characteristics of pediatric CML, such as dysregulation of the Rho pathway, which may contribute to clinical differences between pediatric and adult patients.

13.
Hum Vaccin Immunother ; 17(12): 5558-5562, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34844524

ABSTRACT

There is experimental and clinical data to indicate the contribution of immune-escape mechanisms in relapsed/refractory pediatric leukemia. Studies have shown the accumulation of mutations that translate to peptides containing tumor-specific epitopes (neoantigens). The effectiveness of neoantigen-based vaccines has been shown in several clinical trials in adults. Though the initial results are encouraging, this knowledge must be developed to account for the uniqueness of pediatric cancer biology. We have completed the initial proof-of-concept analysis on a high-risk pediatric leukemia specimen and identified usable neoantigen sequences. We describe this approach, including the bioinformatics method and experimental model to verify their function that can be further broadened for personalized neoantigen prediction and testing for the generation of anticancer vaccines against high-risk pediatric leukemias.


Subject(s)
Cancer Vaccines , Leukemia , Neoplasms , Adult , Antigens, Neoplasm , Child , Humans , Immunotherapy/methods , Leukemia/therapy
14.
Mol Cancer Ther ; 20(10): 2016-2025, 2021 10.
Article in English | MEDLINE | ID: mdl-34353895

ABSTRACT

Most circulating tumor DNA (ctDNA) assays are designed to detect recurrent mutations. Pediatric sarcomas share few recurrent mutations but rather are characterized by translocations and copy-number changes. We applied Cancer Personalized Profiling by deep Sequencing (CAPP-Seq) for detection of translocations found in the most common pediatric sarcomas. We also applied ichorCNA to the combined off-target reads from our hybrid capture to simultaneously detect copy-number alterations (CNA). We analyzed 64 prospectively collected plasma samples from 17 patients with pediatric sarcoma. Translocations were detected in the pretreatment plasma of 13 patients and were confirmed by tumor sequencing in 12 patients. Two of these patients had evidence of complex chromosomal rearrangements in their ctDNA. We also detected copy-number changes in the pretreatment plasma of 7 patients. We found that ctDNA levels correlated with metastatic status and clinical response. Furthermore, we detected rising ctDNA levels before relapse was clinically apparent, demonstrating the high sensitivity of our assay. This assay can be utilized for simultaneous detection of translocations and CNAs in the plasma of patients with pediatric sarcoma. While we describe our experience in pediatric sarcomas, this approach can be applied to other tumors that are driven by structural variants.


Subject(s)
Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , DNA Copy Number Variations , DNA, Neoplasm/genetics , Neoplasm Recurrence, Local/diagnosis , Sarcoma/diagnosis , Translocation, Genetic , Biomarkers, Tumor/blood , Child , Circulating Tumor DNA/blood , DNA, Neoplasm/blood , Follow-Up Studies , High-Throughput Nucleotide Sequencing , Humans , Longitudinal Studies , Mutation , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Prognosis , Prospective Studies , Sarcoma/genetics , Sarcoma/metabolism
15.
Blood ; 138(16): 1465-1480, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34077953

ABSTRACT

B- and T-cell acute lymphoblastic leukemia (B/T-ALL) may be refractory or recur after therapy by suppressing host anticancer immune surveillance mediated specifically by natural killer (NK) cells. We delineated the phenotypic and functional defects in NK cells from high-risk patients with B/T-ALL using mass cytometry, flow cytometry, and in silico cytometry, with the goal of further elucidating the role of NK cells in sustaining acute lymphoblastic leukemia (ALL) regression. We found that, compared with their normal counterparts, NK cells from patients with B/T-ALL are less cytotoxic but exhibit an activated signature that is characterized by high CD56, high CD69, production of activated NK cell-origin cytokines, and calcium (Ca2+) signaling. We demonstrated that defective maturation of NK cells into cytotoxic effectors prevents NK cells from ALL from lysing NK cell-sensitive targets as efficiently as do normal NK cells. Additionally, we showed that NK cells in ALL are exhausted, which is likely caused by their chronic activation. We found that increased frequencies of activated cytokine-producing NK cells are associated with increased disease severity and independently predict poor clinical outcome in patients with ALL. Our studies highlight the benefits of developing NK cell profiling as a diagnostic tool to predict clinical outcome in patients with ALL and underscore the clinical potential of allogeneic NK cell infusions to prevent ALL recurrence.


Subject(s)
Killer Cells, Natural/immunology , Lymphocyte Activation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , CD56 Antigen/immunology , Cells, Cultured , Cytokines/immunology , Cytotoxicity, Immunologic , Humans , Lectins, C-Type/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Prognosis
16.
Cancer Discov ; 11(6): 1440-1453, 2021 06.
Article in English | MEDLINE | ID: mdl-33593877

ABSTRACT

Combining venetoclax, a selective BCL2 inhibitor, with low-dose navitoclax, a BCL-XL/BCL2 inhibitor, may allow targeting of both BCL2 and BCL-XL without dose-limiting thrombocytopenia associated with navitoclax monotherapy. The safety and preliminary efficacy of venetoclax with low-dose navitoclax and chemotherapy was assessed in this phase I dose-escalation study (NCT03181126) in pediatric and adult patients with relapsed/refractory (R/R) acute lymphoblastic leukemia or lymphoblastic lymphoma. Forty-seven patients received treatment. A recommended phase II dose of 50 mg navitoclax for adults and 25 mg for patients <45 kg with 400 mg adult-equivalent venetoclax was identified. Delayed hematopoietic recovery was the primary safety finding. The complete remission rate was 60%, including responses in patients who had previously received hematopoietic cell transplantation or immunotherapy. Thirteen patients (28%) proceeded to transplantation or CAR T-cell therapy on study. Venetoclax with navitoclax and chemotherapy was well tolerated and had promising efficacy in this heavily pretreated patient population. SIGNIFICANCE: In this phase I study, venetoclax with low-dose navitoclax and chemotherapy was well tolerated and had promising efficacy in patients with relapsed/refractory acute lymphoblastic leukemia or lymphoblastic lymphoma. Responses were observed in patients across histologic and genomic subtypes and in those who failed available therapies including stem cell transplant.See related commentary by Larkin and Byrd, p. 1324.This article is highlighted in the In This Issue feature, p. 1307.


Subject(s)
Aniline Compounds/therapeutic use , Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Sulfonamides/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Aniline Compounds/administration & dosage , Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Child , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Remission Induction , Sulfonamides/administration & dosage , Treatment Outcome , Young Adult
17.
Haematologica ; 106(10): 2588-2597, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33054128

ABSTRACT

Type 1 regulatory (Tr1) T cells induced by enforced expression of IL-10 (LV-10) are being developed as a novel treatment for chemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft vs host disease while mediating graft vs leukemia (GvL) effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature. Overlaying the signatures of sensitive and resistant pAML onto the public NCI TARGET pAML dataset revealed that sensitive pAML clustered with M5 monocytic pAML and pAML with MLL rearrangement. Resistant pAML clustered with myelomonocytic leukemias and those bearing the core binding factor translocations inv(16) or t(8;21)(RUNX1-RUNX1T1). Furthermore, resistant pAML upregulated the membrane glycoprotein CD200, which binds to the inhibitory receptor CD200R1 on LV-10 cells. To examine if CD200 expression on target cells can impair LV-10 cell function, we overexpressed CD200 in myeloid leukemia cell lines ordinarily sensitive to LV-10 killing. Indeed, LV-10 cells degranulated less and killed fewer CD200-overexpressing cells compared to controls, indicating that pAML can utilize CD200 expression for immune evasion. Altogether, the majority of pAML are killed by LV-10 cells in vitro, supporting further LV-10 cell development as an innovative cell therapy for pAML.


Subject(s)
Leukemia, Myeloid, Acute , T-Lymphocytes, Regulatory , Adult , CD4-Positive T-Lymphocytes , Child , Graft vs Leukemia Effect , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Translocation, Genetic
18.
Cancer ; 126(21): 4800-4805, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32809242

ABSTRACT

BACKGROUND: Novel therapies are urgently needed for pediatric patients with relapsed acute myeloid leukemia (AML). METHODS: To determine whether the histone deacetylase inhibitor panobinostat could be safely given in combination with intensive chemotherapy, a phase 1 trial was performed in which 17 pediatric patients with relapsed or refractory AML received panobinostat (10, 15, or 20 mg/m2 ) before and in combination with fludarabine and cytarabine. RESULTS: All dose levels were tolerated, with no dose-limiting toxicities observed at any dose level. Pharmacokinetic studies demonstrated that exposure to panobinostat was proportional to the dose given, with no associations between pharmacokinetic parameters and age, weight, or body surface area. Among the 9 patients who had sufficient (>2%) circulating blasts on which histone acetylation studies could be performed, 7 demonstrated at least 1.5-fold increases in acetylation. Although no patients had a decrease in circulating blasts after single-agent panobinostat, 8 of the 17 patients (47%), including 5 of the 6 patients treated at dose level 3, achieved complete remission. Among the 8 complete responders, 6 (75%) attained negative minimal residual disease status. CONCLUSIONS: Panobinostat can be safely administered with chemotherapy and results in increased blast histone acetylation. This suggests that it should be further studied in AML.


Subject(s)
Panobinostat/pharmacology , Panobinostat/pharmacokinetics , Panobinostat/therapeutic use , Adolescent , Adult , Child , Female , Humans , Leukemia, Myeloid, Acute , Male , Neoplasm Recurrence, Local , Young Adult
19.
Oncotarget ; 11(25): 2387-2403, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32637030

ABSTRACT

The 90 kDa Ribosomal S6 Kinase (RSK) drives cell proliferation and survival in cancers, although its oncogenic mechanism has not been well characterized. Phosphorylated level of RSK (T573) was increased in acute myeloid leukemia (AML) patients and associated with poor survival. To examine the role of RSK in AML, we analyzed apoptosis and the cell cycle profile following treatment with BI-D1870, a potent inhibitor of RSK. BI-D1870 treatment increased the G2/M population and induced apoptosis in AML cell lines and patient AML cells. Characterization of mitotic phases showed that the metaphase/anaphase transition was significantly inhibited by BI-D1870. BI-D1870 treatment impeded the association of activator CDC20 with APC/C, but increased binding of inhibitor MAD2 to CDC20, preventing mitotic exit. Moreover, the inactivation of spindle assembly checkpoint or MAD2 knockdown released cells from BI-D1870-induced metaphase arrest. Therefore, we investigated whether BI-D1870 potentiates the anti-leukemic activity of vincristine by targeting mitotic exit. Combination treatment of BI-D1870 and vincristine synergistically increased mitotic arrest and apoptosis in acute leukemia cells. These data show that BI-D1870 induces apoptosis of AML cells alone and in combination with vincristine through blocking mitotic exit, providing a novel approach to overcoming vincristine resistance in AML cells.

SELECTION OF CITATIONS
SEARCH DETAIL