Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Lancet Respir Med ; 12(3): 195-206, 2024 Mar.
Article En | MEDLINE | ID: mdl-38065200

BACKGROUND: It is uncertain whether individualisation of the perioperative open-lung approach (OLA) to ventilation reduces postoperative pulmonary complications in patients undergoing lung resection. We compared a perioperative individualised OLA (iOLA) ventilation strategy with standard lung-protective ventilation in patients undergoing thoracic surgery with one-lung ventilation. METHODS: This multicentre, randomised controlled trial enrolled patients scheduled for open or video-assisted thoracic surgery using one-lung ventilation in 25 participating hospitals in Spain, Italy, Turkey, Egypt, and Ecuador. Eligible adult patients (age ≥18 years) were randomly assigned to receive iOLA or standard lung-protective ventilation. Eligible patients (stratified by centre) were randomly assigned online by local principal investigators, with an allocation ratio of 1:1. Treatment with iOLA included an alveolar recruitment manoeuvre to 40 cm H2O of end-inspiratory pressure followed by individualised positive end-expiratory pressure (PEEP) titrated to best respiratory system compliance, and individualised postoperative respiratory support with high-flow oxygen therapy. Participants allocated to standard lung-protective ventilation received combined intraoperative 4 cm H2O of PEEP and postoperative conventional oxygen therapy. The primary outcome was a composite of severe postoperative pulmonary complications within the first 7 postoperative days, including atelectasis requiring bronchoscopy, severe respiratory failure, contralateral pneumothorax, early extubation failure (rescue with continuous positive airway pressure, non-invasive ventilation, invasive mechanical ventilation, or reintubation), acute respiratory distress syndrome, pulmonary infection, bronchopleural fistula, and pleural empyema. Due to trial setting, data obtained in the operating and postoperative rooms for routine monitoring were not blinded. At 24 h, data were acquired by an investigator blinded to group allocation. All analyses were performed on an intention-to-treat basis. This trial is registered with ClinicalTrials.gov, NCT03182062, and is complete. FINDINGS: Between Sept 11, 2018, and June 14, 2022, we enrolled 1380 patients, of whom 1308 eligible patients (670 [434 male, 233 female, and three with missing data] assigned to iOLA and 638 [395 male, 237 female, and six with missing data] to standard lung-protective ventilation) were included in the final analysis. The proportion of patients with the composite outcome of severe postoperative pulmonary complications within the first 7 postoperative days was lower in the iOLA group compared with the standard lung-protective ventilation group (40 [6%] vs 97 [15%], relative risk 0·39 [95% CI 0·28 to 0·56]), with an absolute risk difference of -9·23 (95% CI -12·55 to -5·92). Recruitment manoeuvre-related adverse events were reported in five patients. INTERPRETATION: Among patients subjected to lung resection under one-lung ventilation, iOLA was associated with a reduced risk of severe postoperative pulmonary complications when compared with conventional lung-protective ventilation. FUNDING: Instituto de Salud Carlos III and the European Regional Development Funds.


One-Lung Ventilation , Adult , Humans , Female , Male , Adolescent , Respiration , Continuous Positive Airway Pressure , Lung/surgery , Oxygen
2.
J Clin Med ; 12(23)2023 Dec 01.
Article En | MEDLINE | ID: mdl-38068519

BACKGROUND: Both general anesthesia and pneumoperitoneum insufflation during abdominal laparoscopic surgery can lead to atelectasis and impairment in oxygenation. Setting an appropriate level of external PEEP could reduce the occurrence of atelectasis and induce an improvement in gas exchange. However, in clinical practice, it is common to use a fixed PEEP level (i.e., 5 cmH2O), irrespective of the dynamic respiratory mechanics. We hypothesized setting a PEEP level guided by EIT in order to obtain an improvement in oxygenation and respiratory system compliance in lung-healthy patients than can benefit a personalized approach. METHODS: Twelve consecutive patients scheduled for abdominal laparoscopic surgery were enrolled in this prospective study. The EIT Timpel Enlight 1800 was applied to each patient and a dedicated pneumotachograph and a spirometer flow sensor, integrated with EIT, constantly recorded respiratory mechanics. Gas exchange, respiratory mechanics and hemodynamics were recorded at five time points: T0, baseline; T1, after induction; T2, after pneumoperitoneum insufflation; T3, after a recruitment maneuver; and T4, at the end of surgery after desufflation. RESULTS: A titrated mean PEEP of 8 cmH2O applied after a recruitment maneuver was successfully associated with the "best" compliance (58.4 ± 5.43 mL/cmH2O), with a low percentage of collapse (10%), an acceptable level of hyperdistention (0.02%). Pneumoperitoneum insufflation worsened respiratory system compliance, plateau pressure, and driving pressure, which significantly improved after the application of the recruitment maneuver and appropriate PEEP. PaO2 increased from 78.1 ± 9.49 mmHg at T0 to 188 ± 66.7 mmHg at T4 (p < 0.01). Other respiratory parameters remained stable after abdominal desufflation. Hemodynamic parameters remained unchanged throughout the study. CONCLUSIONS: EIT, used as a non-invasive intra-operative monitor, enables the rapid assessment of lung volume and regional ventilation changes in patients undergoing laparoscopic surgery and helps to identify the "optimal" PEEP level in the operating theatre, improving ventilation strategies.

3.
Front Physiol ; 12: 728243, 2021.
Article En | MEDLINE | ID: mdl-34566690

Background: Different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia phenotypes were described that match with different lung compliance and level of oxygenation, thus requiring a personalized ventilator setting. The burden of so many patients and the lack of intensive care unit (ICU) beds often force physicians to choose non-invasive ventilation (NIV) as the first approach, even if no consent has still been reached to discriminate whether it is safer to choose straightforward intubation, paralysis, and protective ventilation. Under such conditions, electrical impedance tomography (EIT), a non-invasive bedside tool to monitor lung ventilation and perfusion defects, could be useful to assess the response of patients to NIV and choose rapidly the right ventilatory strategy. Objective: The rationale behind this study is that derecruitment is a more efficient measure of positive end expiratory pressure (PEEP)-dependency of patients than recruitment. We hypothesized that patients who derecruit significantly when PEEP is reduced are the ones that do not need early intubation while small end-expiratory lung volume (ΔEELV) variations after a single step of PEEP de-escalation could be predictive of NIV failure. Materials and Methods: Consecutive patients admitted to ICU with confirmed SARS-CoV-2 pneumonia ventilated in NIV were enrolled. Exclusion criteria were former intubation or NIV lasting > 72 h. A trial of continuos positive airway pressure (CPAP) 12 was applied in every patient for at least 15 min, followed by the second period of CPAP 6, either in the supine or prone position. Besides standard monitoring, ventilation of patients was assessed by EIT, and end-expiratory lung impedance (ΔEELI) (%) was calculated as the difference in EELI between CPAP12 and CPAP6. Tidal volume (Vt), Ve, respiratory rate (RR), and FiO2 were recorded, and ABGs were measured. Data were analyzed offline using the dedicated software. The decision to intubate or continue NIV was in charge of treating physicians, independently from study results. Outcomes of patients in terms of intubation rate and ICU mortality were recorded. Results: We enrolled 10 male patients, with a mean age of 67 years. Six patients (60%) were successfully treated by NIV until ICU discharge (Group S), and four patients failed NIV and were intubated and switched to MV (Group F). All these patients died in ICU. During the supine CPAP decremental trial, all patients experienced an increase in RR and Ve. ΔEELI was < 40% in Group F and > 50% in Group S. In the prone trial, ΔEELI was > 50% in all patients, while RR decreased in Group S and remained unchanged in Group F. Conclusion: ΔEELI < 40% after a single PEEP de-escalation step in supine position seems to be a good predictor of poor recruitment and CPAP failure.

...