Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37446169

ABSTRACT

Abnormal depolarization of neuronal membranes called paroxysmal depolarization shift (PDS) represents a cellular correlate of interictal spikes. The mechanisms underlying the generation of PDSs or PDS clusters remain obscure. This study aimed to investigate the role of ionotropic glutamate receptors (iGluRs) in the generation of PDS and dependence of the PDS pattern on neuronal membrane potential. We have shown that significant depolarization or hyperpolarization (by more than ±50 mV) of a single neuron does not change the number of individual PDSs in the cluster, indicating the involvement of an external stimulus in PDS induction. Based on this data, we have suggested reliable protocols for stimulating single PDS or PDS clusters. Furthermore, we have found that AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors are necessary for PDS generation since AMPAR antagonist NBQX completely suppresses bicuculline-induced paroxysmal activity. In turn, antagonists of NMDA (N-methyl-D-aspartate) and kainate receptors (D-AP5 and UBP310, respectively) caused a decrease in the amplitude of the first action potential in PDSs and in the amplitude of the oscillations of intracellular Ca2+ concentration occurring alongside the PDS cluster generation. The effects of the NMDAR (NMDA receptor) and KAR (kainate receptor) antagonists indicate that these receptors are involved only in the modulation of paroxysmal activity. We have also shown that agonists of some Gi-coupled receptors, such as A1 adenosine (A1Rs) or cannabinoid receptors (CBRs) (N6-cyclohexyladenosine and WIN 55,212-2, respectively), completely suppressed PDS generation, while the A1R agonist even prevented it. We hypothesized that the dynamics of extracellular glutamate concentration govern paroxysmal activity. Fine-tuning of neuronal activity via action on Gi-coupled receptors or iGluRs paves the way for the development of new approaches for epilepsy pharmacotherapy.


Subject(s)
Hippocampus , Receptors, N-Methyl-D-Aspartate , Rats , Animals , Bicuculline/pharmacology , Neurons , Action Potentials , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
2.
J Neurochem ; 164(5): 583-597, 2023 03.
Article in English | MEDLINE | ID: mdl-36415923

ABSTRACT

Calcium-permeable AMPA receptors (CP-AMPARs) play a pivotal role in brain functioning in health and disease. They are involved in synaptic plasticity, synaptogenesis, and neuronal circuits development. However, the functions of neurons expressing CP-AMPARs and their role in the modulation of network activity remain elusive since reliable and accurate visualization methods are absent. Here we developed an approach allowing the vital identification of neurons containing CP-AMPARs. The proposed method relies on evaluating Ca2+ influx in neurons during activation of AMPARs in the presence of NMDAR and KAR antagonists, and blockers of voltage-gated Ca2+ channels. Using this method, we studied the properties of CP-AMPARs-containing neurons. We showed that the overwhelming majority of neurons containing CP-AMPARs are GABAergic, and they are distinguished by higher amplitudes of the calcium responses to applications of the agonists. Furthermore, about 30% of CP-AMPARs-containing neurons demonstrate the presence of GluK1-containing KARs. Although CP-AMPARs-containing neurons are characterized by more significant Ca2+ influx during the activation of AMPARs than other neurons, AMPAR-mediated Na+ influx is similar in these two groups. We revealed that neurons containing CP-AMPARs demonstrate weak GABA(A)R-mediated inhibition because of the low percentage of GABAergic synapses on the soma of these cells. However, our data show that weak GABA(A)R-mediated inhibition is inherent to all GABAergic neurons in the culture and cannot be considered a unique feature of CP-AMPARs-containing neurons. We believe that the suggested approach will help to understand the role of CP-AMPARs in the mammalian nervous system in more detail.


Subject(s)
Calcium , Receptors, AMPA , Animals , Receptors, AMPA/physiology , Calcium/metabolism , Neurons/metabolism , Synapses/metabolism , gamma-Aminobutyric Acid , Mammals/metabolism
3.
Int J Mol Sci ; 22(19)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34638683

ABSTRACT

Epileptic discharges manifest in individual neurons as abnormal membrane potential fluctuations called paroxysmal depolarization shift (PDS). PDSs can combine into clusters that are accompanied by synchronous oscillations of the intracellular Ca2+ concentration ([Ca2+]i) in neurons. Here, we investigate the contribution of L-type voltage-gated calcium channels (VGCC) to epileptiform activity induced in cultured hippocampal neurons by GABA(A)R antagonist, bicuculline. Using KCl-induced depolarization, we determined the optimal effective doses of the blockers. Dihydropyridines (nifedipine and isradipine) at concentrations ≤ 10 µM demonstrate greater selectivity than the blockers from other groups (phenylalkylamines and benzothiazepines). However, high doses of dihydropyridines evoke an irreversible increase in [Ca2+]i in neurons and astrocytes. In turn, verapamil and diltiazem selectively block L-type VGCC in the range of 1-10 µM, whereas high doses of these drugs block other types of VGCC. We show that L-type VGCC blockade decreases the half-width and amplitude of bicuculline-induced [Ca2+]i oscillations. We also observe a decrease in the number of PDSs in a cluster and cluster duration. However, the pattern of individual PDSs and the frequency of the cluster occurrence change insignificantly. Thus, our results demonstrate that L-type VGCC contributes to maintaining the required [Ca2+]i level during oscillations, which appears to determine the number of PDSs in the cluster.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium/metabolism , Neurons/metabolism , Animals , Calcium Channel Blockers/pharmacology , Calcium Signaling/drug effects , Cells, Cultured , Diltiazem/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Membrane Potentials/drug effects , Neurons/drug effects , Rats , Rats, Sprague-Dawley , Verapamil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...