Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Microbiol ; 7(11): 1817-1833, 2022 11.
Article in English | MEDLINE | ID: mdl-36266335

ABSTRACT

Chemical signalling in the plant microbiome can have drastic effects on microbial community structure, and on host growth and development. Previously, we demonstrated that the auxin metabolic signal interference performed by the bacterial genus Variovorax via an auxin degradation locus was essential for maintaining stereotypic root development in an ecologically relevant bacterial synthetic community. Here, we dissect the Variovorax auxin degradation locus to define the genes iadDE as necessary and sufficient for indole-3-acetic acid (IAA) degradation and signal interference. We determine the crystal structures and binding properties of the operon's MarR-family repressor with IAA and other auxins. Auxin degradation operons were identified across the bacterial tree of life and we define two distinct types on the basis of gene content and metabolic products: iac-like and iad-like. The structures of MarRs from representatives of each auxin degradation operon type establish that each has distinct IAA-binding pockets. Comparison of representative IAA-degrading strains from diverse bacterial genera colonizing Arabidopsis plants show that while all degrade IAA, only strains containing iad-like auxin-degrading operons interfere with auxin signalling in a complex synthetic community context. This suggests that iad-like operon-containing bacterial strains, including Variovorax species, play a key ecological role in modulating auxins in the plant microbiome.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Microbiota , Plant Growth Regulators/metabolism , Indoleacetic Acids/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Plants/metabolism
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33879573

ABSTRACT

Plants have an innate immune system to fight off potential invaders that is based on the perception of nonself or modified-self molecules. Microbe-associated molecular patterns (MAMPs) are evolutionarily conserved microbial molecules whose extracellular detection by specific cell surface receptors initiates an array of biochemical responses collectively known as MAMP-triggered immunity (MTI). Well-characterized MAMPs include chitin, peptidoglycan, and flg22, a 22-amino acid epitope found in the major building block of the bacterial flagellum, FliC. The importance of MAMP detection by the plant immune system is underscored by the large diversity of strategies used by pathogens to interfere with MTI and that failure to do so is often associated with loss of virulence. Yet, whether or how MTI functions beyond pathogenic interactions is not well understood. Here we demonstrate that a community of root commensal bacteria modulates a specific and evolutionarily conserved sector of the Arabidopsis immune system. We identify a set of robust, taxonomically diverse MTI suppressor strains that are efficient root colonizers and, notably, can enhance the colonization capacity of other tested commensal bacteria. We highlight the importance of extracellular strategies for MTI suppression by showing that the type 2, not the type 3, secretion system is required for the immunomodulatory activity of one robust MTI suppressor. Our findings reveal that root colonization by commensals is controlled by MTI, which, in turn, can be selectively modulated by specific members of a representative bacterial root microbiota.


Subject(s)
Microbiota/physiology , Plant Immunity/immunology , Plant Roots/microbiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Bacteria/metabolism , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Immunity , Microbiota/immunology , Plant Diseases/microbiology , Plant Roots/immunology , Plants/microbiology , Soil Microbiology , Symbiosis/immunology , Virulence
3.
Cell Host Microbe ; 29(4): 635-649.e9, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33713602

ABSTRACT

Immune systems restrict microbial pathogens by identifying "non-self" molecules called microbe-associated molecular patterns (MAMPs). It is unclear how immune responses are tuned to or by MAMP diversity present in commensal microbiota. We systematically studied the variability of commensal peptide derivatives of flagellin (flg22), a MAMP detected by plants. We define substantial functional diversity. Most flg22 peptides evade recognition, while others contribute to evasion by manipulating immunity through antagonism and signal modulation. We establish a paradigm of signal integration, wherein the sequential signaling outputs of the flagellin receptor are separable and allow for reprogramming by commensal-derived flg22 epitope variants. Plant-associated communities are enriched for immune evading flg22 epitopes, but upon physiological stress that represses the immune system, immune-activating flg22 epitopes become enriched. The existence of immune-manipulating epitopes suggests that they evolved to either communicate or utilize the immune system for host colonization and thus can influence commensal microbiota community composition.


Subject(s)
Epitopes/immunology , Flagellin/immunology , Host Microbial Interactions/immunology , Plant Immunity , Bacteria/genetics , Immunity , Microbiota , Peptides , Ralstonia , Symbiosis
4.
Nature ; 587(7832): 103-108, 2020 11.
Article in English | MEDLINE | ID: mdl-32999461

ABSTRACT

Plants grow within a complex web of species that interact with each other and with the plant1-10. These interactions are governed by a wide repertoire of chemical signals, and the resulting chemical landscape of the rhizosphere can strongly affect root health and development7-9,11-18. Here, to understand how interactions between microorganisms influence root growth in Arabidopsis, we established a model system for interactions between plants, microorganisms and the environment. We inoculated seedlings with a 185-member bacterial synthetic community, manipulated the abiotic environment and measured bacterial colonization of the plant. This enabled us to classify the synthetic community into four modules of co-occurring strains. We deconstructed the synthetic community on the basis of these modules, and identified interactions between microorganisms that determine root phenotype. These interactions primarily involve a single bacterial genus (Variovorax), which completely reverses the severe inhibition of root growth that is induced by a wide diversity of bacterial strains as well as by the entire 185-member community. We demonstrate that Variovorax manipulates plant hormone levels to balance the effects of our ecologically realistic synthetic root community on root growth. We identify an auxin-degradation operon that is conserved in all available genomes of Variovorax and is necessary and sufficient for the reversion of root growth inhibition. Therefore, metabolic signal interference shapes bacteria-plant communication networks and is essential for maintaining the stereotypic developmental programme of the root. Optimizing the feedbacks that shape chemical interaction networks in the rhizosphere provides a promising ecological strategy for developing more resilient and productive crops.


Subject(s)
Arabidopsis/microbiology , Comamonadaceae/classification , Comamonadaceae/physiology , Microbiota/physiology , Plant Roots/growth & development , Plant Roots/microbiology , Arabidopsis/genetics , Arabidopsis/growth & development , Comamonadaceae/genetics , Ethylenes/metabolism , Indoleacetic Acids/metabolism , Microbiota/genetics , Operon/genetics , Plant Growth Regulators/metabolism , Plant Roots/genetics , Rhizosphere , Signal Transduction
5.
PLoS Biol ; 17(11): e3000534, 2019 11.
Article in English | MEDLINE | ID: mdl-31721759

ABSTRACT

Phosphate starvation response (PSR) in nonmycorrhizal plants comprises transcriptional reprogramming resulting in severe physiological changes to the roots and shoots and repression of plant immunity. Thus, plant-colonizing microorganisms-the plant microbiota-are exposed to direct influence by the soil's phosphorus (P) content itself as well as to the indirect effects of soil P on the microbial niches shaped by the plant. The individual contribution of these factors to plant microbiota assembly remains unknown. To disentangle these direct and indirect effects, we planted PSR-deficient Arabidopsis mutants in a long-term managed soil P gradient and compared the composition of their shoot and root microbiota to wild-type plants across different P concentrations. PSR-deficiency had a larger effect on the composition of both bacterial and fungal plant-associated microbiota than soil P concentrations in both roots and shoots. To dissect plant-microbe interactions under variable P conditions, we conducted a microbiota reconstitution experiment. Using a 185-member bacterial synthetic community (SynCom) across a wide P concentration gradient in an agar matrix, we demonstrated a shift in the effect of bacteria on the plant from a neutral or positive interaction to a negative one, as measured by rosette size. This phenotypic shift was accompanied by changes in microbiota composition: the genus Burkholderia was specifically enriched in plant tissue under P starvation. Through a community drop-out experiment, we demonstrated that in the absence of Burkholderia from the SynCom, plant shoots accumulated higher ortophosphate (Pi) levels than shoots colonized with the full SynCom but only under Pi starvation conditions. Therefore, Pi-stressed plants are susceptible to colonization by latent opportunistic competitors found within their microbiome, thus exacerbating the plant's Pi starvation.


Subject(s)
Arabidopsis/microbiology , Phosphorus/analysis , Soil/chemistry , Arabidopsis/metabolism , Burkholderia/physiology , Microbiota , Phosphorus/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Plant Shoots/metabolism , Plant Shoots/microbiology , Stress, Physiological
6.
PLoS Biol ; 16(2): e2003962, 2018 02.
Article in English | MEDLINE | ID: mdl-29462153

ABSTRACT

Specific members of complex microbiota can influence host phenotypes, depending on both the abiotic environment and the presence of other microorganisms. Therefore, it is challenging to define bacterial combinations that have predictable host phenotypic outputs. We demonstrate that plant-bacterium binary-association assays inform the design of small synthetic communities with predictable phenotypes in the host. Specifically, we constructed synthetic communities that modified phosphate accumulation in the shoot and induced phosphate starvation-responsive genes in a predictable fashion. We found that bacterial colonization of the plant is not a predictor of the plant phenotypes we analyzed. Finally, we demonstrated that characterizing a subset of all possible bacterial synthetic communities is sufficient to predict the outcome of untested bacterial consortia. Our results demonstrate that it is possible to infer causal relationships between microbiota membership and host phenotypes and to use these inferences to rationally design novel communities.


Subject(s)
Bacteria/isolation & purification , Brassicaceae/microbiology , Host Microbial Interactions , Microbial Consortia , Bacteria/genetics , Brassicaceae/genetics , Brassicaceae/metabolism , Genes, Bacterial , Genes, Plant , Phosphates/metabolism , Plant Roots/microbiology , Plant Shoots/metabolism , RNA, Ribosomal, 16S/genetics , Symbiosis
7.
Nature ; 543(7646): 513-518, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28297714

ABSTRACT

Plants live in biogeochemically diverse soils with diverse microbiota. Plant organs associate intimately with a subset of these microbes, and the structure of the microbial community can be altered by soil nutrient content. Plant-associated microbes can compete with the plant and with each other for nutrients, but may also carry traits that increase the productivity of the plant. It is unknown how the plant immune system coordinates microbial recognition with nutritional cues during microbiome assembly. Here we establish that a genetic network controlling the phosphate stress response influences the structure of the root microbiome community, even under non-stress phosphate conditions. We define a molecular mechanism regulating coordination between nutrition and defence in the presence of a synthetic bacterial community. We further demonstrate that the master transcriptional regulators of phosphate stress response in Arabidopsis thaliana also directly repress defence, consistent with plant prioritization of nutritional stress over defence. Our work will further efforts to define and deploy useful microbes to enhance plant performance.


Subject(s)
Arabidopsis/immunology , Arabidopsis/microbiology , Microbiota/physiology , Phosphates/metabolism , Plant Immunity , Plant Roots/metabolism , Plant Roots/microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Microbiota/immunology , Mutation , Plant Immunity/genetics , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Genetics ; 204(1): 337-53, 2016 09.
Article in English | MEDLINE | ID: mdl-27412712

ABSTRACT

We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.


Subject(s)
Arabidopsis/genetics , Arabidopsis/immunology , Quantitative Trait Loci/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Genes, Plant , Genome-Wide Association Study , Phenotype , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Pseudomonas syringae/genetics , Pseudomonas syringae/immunology , Virulence Factors/metabolism
9.
PLoS One ; 2(2): e219, 2007 Feb 14.
Article in English | MEDLINE | ID: mdl-17299599

ABSTRACT

In plants, microRNAs (miRNAs) comprise one of two classes of small RNAs that function primarily as negative regulators at the posttranscriptional level. Several MIRNA genes in the plant kingdom are ancient, with conservation extending between angiosperms and the mosses, whereas many others are more recently evolved. Here, we use deep sequencing and computational methods to identify, profile and analyze non-conserved MIRNA genes in Arabidopsis thaliana. 48 non-conserved MIRNA families, nearly all of which were represented by single genes, were identified. Sequence similarity analyses of miRNA precursor foldback arms revealed evidence for recent evolutionary origin of 16 MIRNA loci through inverted duplication events from protein-coding gene sequences. Interestingly, these recently evolved MIRNA genes have taken distinct paths. Whereas some non-conserved miRNAs interact with and regulate target transcripts from gene families that donated parental sequences, others have drifted to the point of non-interaction with parental gene family transcripts. Some young MIRNA loci clearly originated from one gene family but form miRNAs that target transcripts in another family. We suggest that MIRNA genes are undergoing relatively frequent birth and death, with only a subset being stabilized by integration into regulatory networks.


Subject(s)
Arabidopsis/genetics , Genes, Plant , High-Throughput Screening Assays , MicroRNAs/genetics , RNA, Plant/genetics , Base Sequence , Conserved Sequence , MicroRNAs/analysis , Molecular Sequence Data , RNA, Plant/analysis , Sequence Alignment , Sequence Analysis, RNA , Sequence Homology, Nucleic Acid
10.
Am J Bot ; 89(6): 1014-20, 2002 Jun.
Article in English | MEDLINE | ID: mdl-21665701

ABSTRACT

Sex expression in the dioecious plant white campion (Silene latifolia Poiret subsp. alba) appears to be insensitive to exogenous applications of auxins, cytokinins, gibberellic acid, and ethylene; however, silver thiosulfate (Ag(2)S(2)O(3)), an ethylene inhibitor, enhanced stamen development in female white campion. In wild-type females, stamen development is arrested before the microspore mother cells are formed. In contrast, stamens of Ag(2)S(2)O(3)-treated females completed meiosis and produced microspores. Stamen development for these females was incomplete, however, and pollen did not mature. Ag(2)S(2)O(3) stimulated stamen development to the same extent in asexual white campion mutants that retained a Y chromosome but had lost Y-linked genes needed for early stages of stamen development. Although Ag(2)S(2)O(3) can inhibit ethylene signaling, the enhancement of stamen development in female white campion cannot be explained as a loss of ethylene response because no other ethylene inhibitor tested (1-methylcyclopropene, trans-cyclooctene, aminoethoxyvinylglycine, and cobalt chloride) caused stamens to develop in female plants. In addition, application of other metal ions could not enhance stamen development. Therefore, the effect we observed on female white campion was specifically caused by silver ions but not by their action on ethylene signaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...