Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Cells ; 13(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38891107

ABSTRACT

Over the past few decades, the worldwide incidence of cutaneous melanoma, a malignant neoplasm arising from melanocytes, has been increasing markedly, leading to the highest rate of skin cancer-related deaths. While localized tumors are easily removed by excision surgery, late-stage metastatic melanomas are refractory to treatment and exhibit a poor prognosis. Consequently, unraveling the molecular mechanisms underlying melanoma tumorigenesis and metastasis is crucial for developing novel targeted therapies. We found that the multiple endocrine neoplasia type 1 (MEN1) gene product Menin is required for the transforming growth factor beta (TGFß) signaling pathway to induce cell growth arrest and apoptosis in vitro and prevent tumorigenesis in vivo in preclinical xenograft models of melanoma. We further identified point mutations in two MEN1 family members affected by melanoma that led to proteasomal degradation of the MEN1 gene product and to a loss of TGFß signaling. Interestingly, blocking the proteasome degradation pathway using an FDA-approved drug and RNAi targeting could efficiently restore MEN1 expression and TGFß transcriptional responses. Together, these results provide new potential therapeutic strategies and patient stratification for the treatment of cutaneous melanoma.


Subject(s)
Melanoma , Signal Transduction , Transforming Growth Factor beta , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Humans , Transforming Growth Factor beta/metabolism , Animals , Cell Line, Tumor , Mice , Neoplasm Metastasis , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Apoptosis/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Proteasome Endopeptidase Complex/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
2.
Mol Cancer ; 23(1): 118, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831405

ABSTRACT

Triple negative breast cancer (TNBC) remains exceptionally challenging to treat. While CDK4/6 inhibitors have revolutionized HR + breast cancer therapy, there is limited understanding of their efficacy in TNBC and meaningful predictors of response and resistance to these drugs remain scarce. We conducted an in vivo genome-wide CRISPR screen using palbociclib as a selection pressure in TNBC. Hits were prioritized using microarray data from a large panel of breast cancer cell lines to identify top palbociclib sensitizers. Our study defines TGFß3 as an actionable determinant of palbociclib sensitivity that potentiates its anti-tumor effects. Mechanistically, we show that chronic palbociclib exposure depletes p21 levels, contributing to acquired resistance, and that TGFß3 treatment can overcome this. This study defines TGFß3 as an actionable biomarker that can be used to improve patient stratification for palbociclib treatment and exploits the synergistic interaction between CDK4/6 and TGFß3 to propose a new combinatorial treatment for TNBC.


Subject(s)
Biomarkers, Tumor , Drug Resistance, Neoplasm , Piperazines , Pyridines , Transforming Growth Factor beta3 , Triple Negative Breast Neoplasms , Humans , Piperazines/pharmacology , Piperazines/therapeutic use , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Pyridines/pharmacology , Pyridines/therapeutic use , Drug Resistance, Neoplasm/genetics , Female , Biomarkers, Tumor/genetics , Cell Line, Tumor , Mice , Animals , Transforming Growth Factor beta3/genetics , Transforming Growth Factor beta3/metabolism , CRISPR-Cas Systems , Xenograft Model Antitumor Assays , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Expression Regulation, Neoplastic/drug effects
3.
NPJ Precis Oncol ; 8(1): 128, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839871

ABSTRACT

Metastatic cancer remains incurable as patients eventually loose sensitivity to targeted therapies and chemotherapies, further leading to poor clinical outcome. Thus, there is a clear medical gap and urgent need to develop efficient and improved targeted therapies for cancer patients. In this study, we investigated the role of DYRK1A kinase in regulating cancer progression and evaluated the therapeutic potential of DYRK1A inhibition in invasive solid tumors, including colon and triple-negative breast cancers. We uncovered new roles played by the DYRK1A kinase. We found that blocking DYRK1A gene expression or pharmacological inhibition of its kinase activity via harmine efficiently blocked primary tumor formation and the metastatic tumor spread in preclinical models of breast and colon cancers. Further assessing the underlying molecular mechanisms, we found that DYRK1A inhibition resulted in increased expression of the G1/S cell cycle regulators while decreasing expression of the G2/M regulators. Combined, these effects release cancer cells from quiescence, leading to their accumulation in G1/S and further delaying/preventing their progression toward G2/M, ultimately leading to growth arrest and tumor growth inhibition. Furthermore, we show that accumulation of cancer cells in G1/S upon DYRK1A inhibition led to significant potentiation of G1/S targeting chemotherapy drug responses in vitro and in vivo. This study underscores the potential for developing novel DYRK1A-targeting therapies in colon and breast cancers and, at the same time, further defines DYRK1A pharmacological inhibition as a viable and powerful combinatorial treatment approach for improving G1/S targeting chemotherapy drugs treatments in solid tumors.

4.
Cancers (Basel) ; 16(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38201651

ABSTRACT

The secreted protein transforming growth factor-beta (TGFß) plays essential roles, ranging from cell growth regulation and cell differentiation in both normal and cancer cells. In melanoma, TGFß acts as a potent tumor suppressor in melanoma by blocking cell cycle progression and inducing apoptosis. In the present study, we found TGFß to regulate cancer stemness in melanoma through the Smad signaling pathway. We discovered that TGFß/Smad signaling inhibits melanosphere formation in multiple melanoma cell lines and reduces expression of the CD133+ cancer stem cell subpopulation in a Smad3-dependent manner. Using preclinical models of melanoma, we further showed that preventing Smad3/4 signaling, by means of CRISPR knockouts, promoted both tumorigenesis and lung metastasis in vivo. Collectively, our results define new functions for the TGFß/Smad signaling axis in melanoma stem-cell maintenance and open avenues for new therapeutic approaches to this disease.

5.
Oncogenesis ; 12(1): 51, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932309

ABSTRACT

Triple negative breast cancer (TNBC) is defined as lacking the expressions of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC patients exhibit relatively poor clinical outcomes due to lack of molecular markers for targeted therapies. As such chemotherapy often remains the only systemic treatment option for these patients. While chemotherapy can initially help shrink TNBC tumor size, patients eventually develop resistance to drug, leading to tumor recurrence. We report a combined in vitro/in vivo genome-wide CRISPR synthetic lethality screening approach in a relevant TNBC cell line model to identify several targets responsible for the chemotherapy drug, paclitaxel resistance. Computational analysis integrating in vitro and in vivo data identified a set of genes, for which specific loss-of-function deletion enhanced paclitaxel resistance in TNBC. We found that several of these genes (ATP8B3, FOXR2, FRG2, HIST1H4A) act as cancer stemness negative regulators. Finally, using in vivo orthotopic transplantation TNBC models we showed that FRG2 gene deletion reduced paclitaxel efficacy and promoted tumor metastasis, while increasing FRG2 expression by means of CRISPR activation efficiently sensitized TNBC tumors to paclitaxel treatment and inhibited their metastatic abilities. In summary, the combined in vitro/in vivo genome-wide CRISPR screening approach proved effective as a tool to identify novel regulators of paclitaxel resistance/sensitivity and highlight the FRG2 gene as a potential therapeutical target overcoming paclitaxel resistance in TNBC.

7.
J Biol Chem ; 299(11): 105295, 2023 11.
Article in English | MEDLINE | ID: mdl-37774976

ABSTRACT

Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor complex. Twelve of these 28 interactions are supported by prior reports, and we have directly validated novel interactions with SEC22A, TMCO4, and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites, interactors included groups of microtubule/membrane-remodeling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase, and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We found that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Furthermore, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated or in which ORP2 expression is disrupted. Our data demonstrate that guanine nucleotide exchange factor-dependent Rab interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.


Subject(s)
Biotinylation , Sterols , rab GTP-Binding Proteins , Humans , Cholesterol/biosynthesis , Cholesterol/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , HeLa Cells , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab3 GTP-Binding Proteins/metabolism , Sterols/biosynthesis , Sterols/metabolism , Cells, Cultured , Gene Knockdown Techniques , Protein Transport/genetics
9.
Front Endocrinol (Lausanne) ; 13: 993570, 2022.
Article in English | MEDLINE | ID: mdl-36157462

ABSTRACT

Breast cancer is a major disease affecting women worldwide. A woman has 1 in 8 lifetime risk of developing breast cancer, and morbidity and mortality due to this disease are expected to continue to rise globally. Breast cancer remains a challenging disease due to its heterogeneity, propensity for recurrence and metastasis to distant vital organs including bones, lungs, liver and brain ultimately leading to patient death. Despite the development of various therapeutic strategies to treat breast cancer, still there are no effective treatments once metastasis has occurred. Loss of differentiation and increased cellular plasticity and stemness are being recognized molecularly and clinically as major derivers of heterogeneity, tumor evolution, relapse, metastasis, and therapeutic failure. In solid tumors, breast cancer is one of the leading cancer types in which tumor differentiation state has long been known to influence cancer behavior. Reprograming and/or restoring differentiation of cancer cells has been proposed to provide a viable approach to reverse the cancer through differentiation and terminal maturation. The hormone prolactin (PRL) is known to play a critical role in mammary gland lobuloalveolar development/remodeling and the terminal differentiation of the mammary epithelial cells promoting milk proteins gene expression and lactation. Here, we will highlight recent discoveries supporting an anti-tumorigenic role for PRL in breast cancer as a "pro/forward-differentiation" pathway restricting plasticity, stemness and tumorigenesis.


Subject(s)
Breast Neoplasms , Prolactin , Breast Neoplasms/metabolism , Carcinogenesis , Female , Humans , Milk Proteins , Neoplasm Recurrence, Local , Prolactin/metabolism , Prolactin/pharmacology
10.
Cancers (Basel) ; 14(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35454940

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer worldwide and has an increasing incidence in younger populations. The dual-specificity tyrosine-regulated kinase (DYRK) family has been implicated in various diseases, including cancer. However, the role and contribution of the distinct family members in regulating CRC tumorigenesis has not been addressed yet. Herein, we used publicly available CRC patient datasets (TCGA RNA sequence) and several bioinformatics webtools to perform in silico analysis (GTEx, GENT2, GEPIA2, cBioPortal, GSCALite, TIMER2, and UALCAN). We aimed to investigate the DYRK family member expression pattern, prognostic value, and oncological roles in CRC. This study shed light on the role of distinct DYRK family members in CRC and their potential outcome predictive value. Based on mRNA level, DYRK1A is upregulated in late tumor stages, with lymph node and distant metastasis. All DYRKs were found to be implicated in cancer-associated pathways, indicating their key role in CRC pathogenesis. No significant DYRK mutations were identified, suggesting that DYRK expression variation in normal vs. tumor samples is likely linked to epigenetic regulation. The expression of DYRK1A and DYRK3 expression correlated with immune-infiltrating cells in the tumor microenvironment and was upregulated in MSI subtypes, pointing to their potential role as biomarkers for immunotherapy. This comprehensive bioinformatics analysis will set directions for future biological studies to further exploit the molecular basis of these findings and explore the potential of DYRK1A modulation as a novel targeted therapy for CRC.

11.
Nat Commun ; 12(1): 3055, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031411

ABSTRACT

Triple negative breast cancer (TNBC) patients exhibit poor survival outcomes and lack effective targeted therapies. Using unbiased in vivo genome-wide CRISPR screening, we interrogated cancer vulnerabilities in TNBC and identified an interplay between oncogenic and tumor suppressor pathways. This study reveals tumor regulatory functions for essential components of the mTOR and Hippo pathways in TNBC. Using in vitro drug matrix synergy models and in vivo patient-derived xenografts, we further establish the therapeutic relevance of our findings and show that pharmacological inhibition of mTORC1/2 and oncoprotein YAP efficiently reduces tumorigenesis in TNBC. At the molecular level, we find that while verteporfin-induced YAP inhibition leads to apoptosis, torin1-mediated mTORC1/2 inhibition promotes macropinocytosis. Torin1-induced macropinocytosis further facilitates verteporfin uptake, thereby greatly enhancing its pro-apoptotic effects in cancer cells. Overall, our study underscores the power and robustness of in vivo CRISPR genome-wide screens in identifying clinically relevant and innovative therapeutic modalities in cancer.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Combined Modality Therapy/methods , Protein Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/genetics , Triple Negative Breast Neoplasms/genetics , Animals , CRISPR-Cas Systems , Carcinogenesis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockout Techniques , HEK293 Cells , Hippo Signaling Pathway , Humans , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice , Verteporfin , Xenograft Model Antitumor Assays
12.
Oncogenesis ; 10(3): 21, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33649296

ABSTRACT

Basal-like triple-negative breast cancers (TNBCs) display poor prognosis, have a high risk of tumor recurrence, and exhibit high resistance to drug treatments. The TNBC aggressive features are largely due to the high proportion of cancer stem cells present within these tumors. In this study, we investigated the interplay and networking pathways occurring between TGFß family ligands in regulating stemness in TNBCs. We found that TGFß stimulation of TNBCs resulted in enhanced tumorsphere formation efficiency and an increased proportion of the highly tumorigenic CD44high/CD24low cancer stem cell population. Analysis of the TGFß transcriptome in TNBC cells revealed bone morphogenetic protein4 (BMP4) as a main TGFß-repressed target in these tumor cells. We further found that BMP4 opposed TGFß effects on stemness and potently decreased cancer stem cell numbers, thereby acting as a differentiation factor in TNBC. At the molecular level, we found that TGFß inhibition of BMP4 gene expression is mediated through the Smad pathway and cyclin D1. In addition, we also found BMP4 to act as a pro-differentiation factor in normal mammary epithelial cells and promote mammary acinar formation in 3D cell culture assays. Finally, and consistent with our in vitro results, in silico patient data analysis defined BMP4 as a potential valuable prognosis marker for TNBC patients.

13.
Breast Cancer Res ; 23(1): 23, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33588911

ABSTRACT

BACKGROUND: Cyclooxygenase 2 (COX-2) promotes stemness in triple negative breast cancer (TNBC), highlighting COX-2 as a promising therapeutic target in these tumors. However, to date, clinical trials using COX-2 inhibitors in breast cancer only showed variable patient responses with no clear significant clinical benefits, suggesting underlying molecular mechanisms contributing to resistance to COX-2 inhibitors. METHODS: By combining in silico analysis of human breast cancer RNA-seq data with interrogation of public patient databases and their associated transcriptomic, genomic, and clinical profiles, we identified COX-2 associated genes whose expression correlate with aggressive TNBC features and resistance to COX-2 inhibitors. We then assessed their individual contributions to TNBC metastasis and resistance to COX-2 inhibitors, using CRISPR gene knockout approaches in both in vitro and in vivo preclinical models of TNBC. RESULTS: We identified multiple COX-2 associated genes (TPM4, RGS2, LAMC2, SERPINB5, KLK7, MFGE8, KLK5, ID4, RBP1, SLC2A1) that regulate tumor lung colonization in TNBC. Furthermore, we found that silencing MFGE8 and KLK5/7 gene expression in TNBC cells markedly restored sensitivity to COX-2 selective inhibitor both in vitro and in vivo. CONCLUSIONS: Together, our study supports the establishment and use of novel COX-2 inhibitor-based combination therapies as future strategies for TNBC treatment.


Subject(s)
Antigens, Surface/genetics , Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Cyclooxygenase 2/metabolism , Kallikreins/genetics , Kallikreins/metabolism , Milk Proteins/genetics , Animals , Antigens, Surface/metabolism , Biomarkers, Tumor , Breast Neoplasms/pathology , Cell Line, Tumor , Computational Biology/methods , Cyclooxygenase 2/genetics , Cyclooxygenase 2 Inhibitors/pharmacology , Databases, Genetic , Disease Models, Animal , Disease Susceptibility , Drug Resistance/genetics , Female , Gene Editing , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mice , Milk Proteins/metabolism , Triple Negative Breast Neoplasms/etiology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
14.
Oncogenesis ; 10(1): 10, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33446633

ABSTRACT

Dedifferentiation increased cellular plasticity and stemness are established derivers of tumor heterogeneity, metastasis and therapeutic failure resulting in incurable cancers. Therefore, it is essential to decipher pro/forward-differentiation mechanisms in cancer that may serve as therapeutic targets. We found that interfering with expression of the receptor for the lactogenic hormone prolactin (PRLR) in breast cancer cells representative of the luminal and epithelial breast cancer subtypes (hormone receptor positive (HR+) and HER2-enriched (HER2-E) resulted in loss of their differentiation state, enriched for stem-like cell subpopulations, and increased their tumorigenic capacity in a subtype-specific manner. Loss of PRLR expression in HR+ breast cancer cells caused their dedifferentiation generating a mesenchymal-basal-like phenotype enriched in CD44+ breast cancer stem-like cells (BCSCs) showing high tumorigenic and metastatic capacities and resistance to anti-hormonal therapy. Whereas loss of PRLR expression in HER2-E breast cancer cells resulted in loss of their luminal differentiation yet enriched for epithelial ALDH+ BCSC population showing elevated HER2-driven tumorigenic, multi-organ metastatic spread, and resistance to anti-HER2 therapy. Collectively, this study defines PRLR as a driver of precise luminal and epithelial differentiation limiting cellular plasticity, stemness, and tumorigenesis and emphasizing the function of pro/forward-differentiation pathways as a foundation for the discovery of anti-cancer therapeutic targets.

15.
Cancer Res ; 81(5): 1332-1346, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33372040

ABSTRACT

Although the cyclin-dependent kinases CDK4 and CDK6 play fundamental roles in cancer, the specific pathways and downstream targets by which they exert their tumorigenic effects remain elusive. In this study, we uncover distinct and novel functions for these kinases in regulating tumor formation and metastatic colonization in various solid tumors, including those of the breast, prostate, and pancreas. Combining in vivo CRISPR-based CDK4 and CDK6 gene editing with pharmacologic inhibition approaches in orthotopic transplantation and patient-derived xenograft preclinical models, we defined clear functions for CDK4 and CDK6 in facilitating tumor growth and progression in metastatic cancers. Transcriptomic profiling of CDK4/6 CRISPR knockouts in breast cancer revealed these two kinases to regulate cancer progression through distinct mechanisms. CDK4 regulated prometastatic inflammatory cytokine signaling, whereas CDK6 mainly controlled DNA replication and repair processes. Inhibition of CDK6 but not CDK4 resulted in defective DNA repair and increased DNA damage. Multiple CDK6 DNA replication/repair genes were not only associated with cancer subtype, grades, and poor clinical outcomes, but also facilitated primary tumor growth and metastasis in vivo. CRISPR-based genomic deletion of CDK6 efficiently blocked tumor formation and progression in preestablished cell- and patient-derived xenograft preclinical models of breast cancer, providing a potential novel targeted therapy for these deadly tumors. SIGNIFICANCE: In-depth transcriptomic analysis identifies cyclin-dependent kinases CDK4 and CDK6 as regulators of metastasis through distinct signaling pathways and reveals the DNA replication/repair pathway as central in promoting these effects.


Subject(s)
Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , DNA Repair/physiology , DNA Replication/physiology , Neoplasms/pathology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Female , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Humans , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Male , Mice, SCID , Neoplasms/genetics , RNA, Guide, Kinetoplastida/administration & dosage , RNA, Guide, Kinetoplastida/pharmacology , Xenograft Model Antitumor Assays
16.
Stem Cell Res ; 40: 101538, 2019 10.
Article in English | MEDLINE | ID: mdl-31450192

ABSTRACT

BACKGROUND: Breast cancers characterized by HER2 overexpression, belong to HER-2 enriched or luminal B subtypes, are frequently associated with higher incidence of tumor recurrence and therapeutic failure. These aggressive features have been attributed to the presence of cancer stem-like cell subpopulations known to have high tumor initiation, self -renewal capacities and high metastatic potential. Depleting these stem-like cells in these tumors therefore might help in improving therapeutic response and patient outcome. METHODS: Here we used human breast cancer cells representative of HER2- enriched and luminal B subtypes as well as purified ALDH-positive stem-like cell subpopulation for in vitro cell viability, proliferation, tumorshpere formation analyses and gene expression studies. In addition, we used a pre-clinical xenograft HER2 mouse model (NOD/SCID mice) for in vivo tumorigenesis assessment. Furthermore, patient survival outcomes were evaluated using in silico bioinformatics analyses of publicly available datasets. RESULTS: Our results indicate that prolactin (PRL) exerts anti-tumorigenic effects in HER-2 positive breast cancer cells. Importantly, PRL caused a significant reduction in ALDHhi stem-like subpopulation, as well as their viability and tumorsphere formation capacity. Molecularly we found PRL to suppress gene expression of markers involved in stemness, tumor initiation, drug resistance and poor patient outcome found to be enriched in the ALDHhi stem-like subpopulation. Furthermore, we show PRL to impede tumor growth of HER-2 xenografts and to suppress expression of Ki67 proliferative marker. Finally, we found PRL pathway gene signature to correlate with favorable patient outcomes in HER-2 and luminal B breast cancer patients. CONCLUSION: Together these results emphasize an anti-tumorigenic role with a potential therapeutic value for PRL in HER-2 and luminal B breast cancer subtypes targeting the cancer stem-like cells.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression/drug effects , Prolactin/pharmacology , Receptor, ErbB-2/metabolism , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Kaplan-Meier Estimate , Mice , Mice, Inbred NOD , Mice, SCID , Prolactin/therapeutic use , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, ErbB-2/genetics , Transplantation, Heterologous
17.
EBioMedicine ; 45: 92-107, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31204277

ABSTRACT

BACKGROUND: Epithelial mesenchymal plasticity (EMP) is deemed vital in breast cancer progression, metastasis, stemness and resistance to therapy. Therefore, characterizing molecular mechanisms contributing to EMP are in need enabling the development of more advanced therapeutics against breast cancer. While kinesin superfamily proteins (KIFs) are well known for their role in intracellular cargo movement, our knowledge of their function in breast tumorigenesis is still limited. METHODS: Various breast cancer cell lines representing different molecular subtypes were used to determine the role of kinesine-1 subunits KIF5B/KLC1 in regulation of EMP. FINDINGS: In breast cancer, we show that kinesin family member 5B (KIF5B) and its partner protein kinesin light chain 1 (KLC1), subunits of kinesin-1, to play differential roles in regulating EMP and tumorigenesis. Indeed, we found KIF5B to be expressed in triple negative (TN)-basal-like/claudin low breast cancer subtype and to be an inducer of epithelial-mesenchymal transition (EMT), stemness, invasiveness, tumor formation and metastatic colonization. Whereas, we found KLC1 to be expressed in epithelial/luminal breast cancer subtypes and to be a suppressor of EMT, invasion, metastasis and stem cell markers expression as well as to be an inducer of epithelial/luminal phenotype. Interestingly, in TN-basal-like/claudin low cells we found a novel nuclear accumulation of KIF5B and its interaction with the EMT transcriptional regulator Snail1 independent of KLC1. In addition, TGF-ß mediated pro-invasive activity was found to be dependent on KIF5B expression. In contrast, the epithelial differentiation factor and EMT suppressor prolactin (PRL) was found to repress KIF5B gene expression and KIF5B-Snail1 nuclear accumulation, but enhanced KLC1 gene expression and KIF5B-KLC1 interaction. INTERPRETATION: Together, these results highlight a new paradigm for kinesin-1 function in breast tumorigenesis by regulating EMP programing and aggressiveness. FUND: This work was supported by the Canadian Institutes of Health Research (operating grants #233437 and 233438) granted to Suhad Ali.


Subject(s)
Breast Neoplasms/genetics , Carcinogenesis/genetics , Epithelial-Mesenchymal Transition/genetics , Kinesins/genetics , Microtubule-Associated Proteins/genetics , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Humans , Mice , Prolactin/genetics , Transforming Growth Factor beta/genetics
18.
Int J Mol Sci ; 20(7)2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30987013

ABSTRACT

The epithelial-mesenchymal transition (EMT) process is known to play an essential role in tumor progression, metastasis and resistance to therapy. This report evaluated the prognostic value of co-expression of the receptor for prolactin (PRLR), a suppressor of EMT, and the receptors for transforming growth factor ß (TGFßRI and TGFßRII), an inducer of EMT, in association with different clinicopathological parameters using TMA of 102 breast cancer patients and publicly available data on breast cancer patients. Interestingly, the results revealed that malignant tissues had significantly lower levels of concomitant protein expression of these receptors in comparison to normal/benign breast tissue. In addition, a higher level of concomitant expression was also observed in less aggressive breast cancer phenotypes, including low grade tumors, luminal breast cancer subtype, and less advanced stages of the disease (lymph node negative and early stages). Moreover, the results also showed that the expression of a gene signature composed of PRLR/TGFßRI/TGFßRII correlates more with differentiated grade I tumors, and identified a subset of patients showing better survival outcomes evident in luminal B and HER-2 enriched molecular subtypes. Together, these results indicate that loss of the co-expression of PRLR, TGFßRI and TGFßRII is indicative of aggressiveness and poor patient survival outcomes in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Receptors, Prolactin/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Breast Neoplasms/genetics , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Neoplasm Grading , Neoplasm Invasiveness , Phenotype , Receptors, Prolactin/genetics , Receptors, Transforming Growth Factor beta/genetics , Survival Analysis , Treatment Outcome
19.
Endocr Relat Cancer ; 26(3): 321-337, 2019 03.
Article in English | MEDLINE | ID: mdl-30640712

ABSTRACT

Triple-negative breast cancer (TNBC) accounts for ~20% of all breast cancer cases. The management of TNBC represents a challenge due to its aggressive phenotype, heterogeneity and lack of targeted therapy. Loss of cell differentiation and enrichment with breast cancer stem-like cells (BCSC) are features of TNBC contributing to its aggressive nature. Here, we found that treatment of TNBC cells with PRL significantly depletes the highly tumorigenic BCSC subpopulations CD44+/CD24- and ALDH+ and differentiates them to the least tumorigenic CD44-/CD24- and ALDH- phenotype with limited tumorsphere formation and self-renewal capacities. Importantly, we found PRL to induce a heterochromatin phenotype marked by histone H3 lysine 9 trimethylation (H3K9me3) and accompanied by ultra-structural cellular architecture associated with differentiation and senescence rendering the cells refractory to growth signals. Crucially, we found PRL to mediate these effects in vivo in a pre-clinical animal xenograft of TNBC controlling tumor growth. These results reveal that the lactogenic hormone PRL may exert its anti-tumorigenic effects on TNBC through cellular reprogramming indicative of differentiation resulting in the depletion of BCSCs and restricting tumorigenesis.


Subject(s)
Prolactin/metabolism , Triple Negative Breast Neoplasms/blood , Animals , Biomarkers, Tumor , Carcinogenesis/pathology , Cell Culture Techniques , Cell Differentiation , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred NOD , Phenotype , Triple Negative Breast Neoplasms/pathology
20.
Br J Cancer ; 119(12): 1495-1507, 2018 12.
Article in English | MEDLINE | ID: mdl-30482914

ABSTRACT

BACKGROUND: Patients with triple negative breast cancer (TNBC) exhibit poor prognosis and are at high risk of tumour relapse, due to the resistance to chemotherapy. These aggressive phenotypes are in part attributed to the presence of breast cancer stem cells (BCSCs). Therefore, targeting BCSCs is a priority to overcoming chemotherapy failure in TNBCs. METHODS: We generated paclitaxel (pac)-resistant TNBC cells which displayed higher sphere forming potential and percentage of BCSC subpopulations compared to the parental cells. A screen with various kinase inhibitors revealed dasatinib, a Src kinase family inhibitor, as a potent suppressor of BCSC expansion/sphere formation in pac-resistant TNBC cells. RESULTS: We found dasatinib to block pac-induced BCSC enrichment and Src activation in both parental and pac-resistant TNBC cells. Interestingly, dasatinib induced an epithelial differentiation of the pac-resistant mesenchymal cells, resulting in their enhanced sensitivity to paclitaxel. The combination treatment of dasatinib and paclitaxel not only decreased the BCSCs numbers and their sphere forming capacity but also synergistically reduced cell viability of pac-resistant cells. Preclinical models of breast cancer further demonstrated the efficiency of the dasatinib/paclitaxel combination treatment in inhibiting tumour growth. CONCLUSIONS: Dasatinib is a promising anti-BCSC drug that could be used in combination with paclitaxel to overcome chemoresistance in TNBC.


Subject(s)
Dasatinib/pharmacology , Neoplastic Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/drug therapy , src-Family Kinases/antagonists & inhibitors , Animals , Cell Differentiation/drug effects , Cell Line, Tumor , Dasatinib/therapeutic use , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , Mice , Paclitaxel/pharmacology , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...