Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biofilm ; 8: 100218, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39175909

ABSTRACT

Effective management of microbial biofilms holds significance within food and medical environments. Candida albicans, an opportunistic fungus, forms mucosal biofilms closely linked to candidiasis and drug-resistant infections due to their drug tolerance. Morphologic change from yeast to filamentous cells is a key virulence factor and a prerequisite for biofilm development. This study investigated the anti-fungal and antibiofilm activities of 20 flavonoids against C. albicans. With their known antioxidant capabilities, flavonoids hold promise in combating infections associated with biofilms. Among them, flavone and its derivatives exhibited moderate antifungal activity, 3,2'-dihydroxyflavone (3,2'-DHF) at 1 µg/mL exhibited strong antibiofilm activity (MIC 50 µg/mL). In addition, 3,2'-DHF dramatically inhibited cell aggregation and germ tube/hyphae formation. Transcriptomic analyses revealed that flavone and 3,2'-DHF behaved differently, as 3,2'-DHF downregulated the expressions of germ tube/hyphae-forming and biofilm-related genes (ECE1, HWP1, TEC1, and UME6) but upregulated the biofilm/hyphal regulators (CHK1, IFD6, UCF1, and YWP1). Tests evaluating toxicity with plant and nematode models revealed that flavone and 3,2'-DHF exhibited mild toxicity. Current results indicate that hydroxylated flavone derivatives can enhance anti-fungal and antibiofilm activities and provide a source of potential anti-fungal agents against drug-resistant C. albicans.

2.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125628

ABSTRACT

Staphylococcus aureus, particularly drug-resistant strains, poses significant challenges in healthcare due to its ability to form biofilms, which confer increased resistance to antibiotics and immune responses. Building on previous knowledge that several flavonoids exhibit antibiofilm activity, this study sought to identify a novel flavonoid capable of effectively inhibiting biofilm formation and virulence factor production in S. aureus strains including MRSA. Among the 19 flavonoid-like compounds tested, 3,2'-dihydroxyflavone (3,2'-DHF) was identified for the first time as inhibiting biofilm formation and virulence factors in S. aureus with an MIC 75 µg/mL. The antibiofilm activity was further confirmed by microscopic methods. Notably, 3,2'-DHF at 5 µg/mL was effective in inhibiting both mono- and polymicrobial biofilms involving S. aureus and Candida albicans, a common co-pathogen. 3,2'-DHF reduces hemolytic activity, slime production, and the expression of key virulence factors such as hemolysin gene hla and nuclease gene nuc1 in S. aureus. These findings highlight the potential of 3,2'-DHF as a novel antibiofilm and antivirulence agent against both bacterial and fungal biofilms, offering a promising alternative to traditional antibiotics in the treatment of biofilm-associated infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Staphylococcus aureus , Virulence Factors , Biofilms/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Candida albicans/drug effects , Candida albicans/pathogenicity , Flavones/pharmacology , Flavonoids/pharmacology , Virulence/drug effects , Humans
3.
Front Cell Infect Microbiol ; 14: 1414618, 2024.
Article in English | MEDLINE | ID: mdl-38903941

ABSTRACT

Candida species comprise a ubiquitous pathogenic fungal genus responsible for causing candidiasis. They are one of the primary causatives of several mucosal and systemic infections in humans and can survive in various environments. In this study, we investigated the antifungal, anti-biofilm, and anti-hyphal effects of six N-substituted phthalimides against three Candida species. Of the derivatives, N-butylphthalimide (NBP) was the most potent, with a minimum inhibitory concentration (MIC) of 100 µg/ml and which dose-dependently inhibited biofilm at sub-inhibitory concentrations (10-50 µg/ml) in both the fluconazole-resistant and fluconazole-sensitive Candida albicans and Candida parapsilosis. NBP also effectively inhibited biofilm formation in other pathogens including uropathogenic Escherichia coli, Staphylococcus epidermidis, Staphylococcus aureus, and Vibrio parahaemolyticus, along with the polymicrobial biofilms of S. epidermidis and C. albicans. NBP markedly inhibited the hyphal formation and cell aggregation of C. albicans and altered its colony morphology in a dose-dependent manner. Gene expression analysis showed that NBP significantly downregulated the expression of important hyphal- and biofilm-associated genes, i.e., ECE1, HWP1, and UME6, upon treatment. NBP also exhibited mild toxicity at concentrations ranging from 2 to 20 µg/ml in a nematode model. Therefore, this study suggests that NBP has anti-biofilm and antifungal potential against various Candida strains.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Hyphae , Microbial Sensitivity Tests , Phthalimides , Biofilms/drug effects , Biofilms/growth & development , Antifungal Agents/pharmacology , Phthalimides/pharmacology , Candida albicans/drug effects , Hyphae/drug effects , Hyphae/growth & development , Candida/drug effects , Candidiasis/microbiology , Candidiasis/drug therapy , Animals , Humans , Candida parapsilosis/drug effects , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fluconazole/pharmacology
5.
Front Cell Infect Microbiol ; 14: 1404960, 2024.
Article in English | MEDLINE | ID: mdl-38803574

ABSTRACT

Staphylococcus aureus and Staphylococcus epidermidis stand as notorious threats to human beings owing to the myriad of infections they cause. The bacteria readily form biofilms that help in withstanding the effects of antibiotics and the immune system. Intending to combat the biofilm formation and reduce the virulence of the pathogens, we investigated the effects of carotenoids, crocetin, and crocin, on four Staphylococcal strains. Crocetin was found to be the most effective as it diminished the biofilm formation of S. aureus ATCC 6538 significantly at 50 µg/mL without exhibiting bactericidal effect (MIC >800 µg/mL) and also inhibited the formation of biofilm by MSSA 25923 and S. epidermidis at a concentration as low as 2 µg/mL, and that by methicillin-resistant S. aureus MW2 at 100 µg/mL. It displayed minimal to no antibiofilm efficacy on the Gram-negative strains Escherichia coli O157:H7 and Pseudomonas aeruginosa as well as a fungal strain of Candida albicans. It could also curb the formation of fibrils, which partly contributes to the biofilm formation in S. epidermidis. Additionally, the ADME analysis of crocetin proclaims how relatively non-toxic the chemical is. Also, crocetin displayed synergistic antibiofilm characteristics in combination with tobramycin. The presence of a polyene chain with carboxylic acid groups at its ends is hypothesized to contribute to the strong antibiofilm characteristics of crocetin. These findings suggest that using apocarotenoids, particularly crocetin might help curb the biofilm formation by S. aureus and S. epidermidis.


Subject(s)
Anti-Bacterial Agents , Biofilms , Carotenoids , Microbial Sensitivity Tests , Staphylococcus epidermidis , Vitamin A , Biofilms/drug effects , Carotenoids/pharmacology , Vitamin A/analogs & derivatives , Vitamin A/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus epidermidis/drug effects , Candida albicans/drug effects , Staphylococcus aureus/drug effects , Humans , Pseudomonas aeruginosa/drug effects , Staphylococcus/drug effects
6.
Sci Rep ; 14(1): 9160, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38644387

ABSTRACT

Food-related illnesses have become a growing public concern due to their considerable socioeconomic and medical impacts. Vibrio parahaemolyticus and Staphylococcus aureus have been implicated as causative organisms of food-related infections and poisoning, and both can form biofilms which confer antibiotic resistance. Hence, the need for continuous search for compounds with antibiofilm and antivirulence properties. In this study, 22 iodinated hydrocarbons were screened for their antibiofilm activity, and of these, iodopropynyl butylcarbamate (IPBC) was found to effectively control biofilm formation of both pathogens with a MIC of 50 µg/mL which was bactericidal to V. parahaemolyticus and S. aureus. Microscopic studies confirmed IPBC inhibits biofilm formation of both bacteria and also disrupted their mixed biofilm formation. Furthermore, IPBC suppressed virulence activities such as motility and hemolytic activity of V. parahaemolyticus and the cell surface hydrophobicity of S. aureus. It exhibited a preservative potential against both pathogens in a shrimp model. IPBC disrupted the cell membrane of S. aureus and V. parahaemolyticus and differentially affected gene expressions related to biofilm formation and virulence. Additionally, it displayed broad-spectrum antibiofilm activities against other clinically relevant pathogens. These findings indicate IPBC offers a potential means of controlling infections mediated by Vibrio and Staphylococcus biofilms.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Staphylococcus aureus , Vibrio parahaemolyticus , Biofilms/drug effects , Vibrio parahaemolyticus/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Virulence/drug effects
7.
Front Cell Infect Microbiol ; 14: 1340910, 2024.
Article in English | MEDLINE | ID: mdl-38606300

ABSTRACT

Vibrios are associated with live seafood because they are part of the indigenous marine microflora. In Asia, foodborne infections caused by Vibrio spp. are common. In recent years, V. parahaemolyticus has become the leading cause of all reported food poisoning outbreaks. Therefore, the halogenated acid and its 33 derivatives were investigated for their antibacterial efficacy against V. parahaemolyticus. The compounds 3,5-diiodo-2-methoxyphenylboronic acid (DIMPBA) and 2-fluoro-5-iodophenylboronic acid (FIPBA) exhibited antibacterial and antibiofilm activity. DIMPBA and FIPBA had minimum inhibitory concentrations of 100 µg/mL for the planktonic cell growth and prevented biofilm formation in a dose-dependent manner. Both iodo-boric acids could diminish the several virulence factors influencing the motility, agglutination of fimbria, hydrophobicity, and indole synthesis. Consequently, these two active halogenated acids hampered the proliferation of the planktonic and biofilm cells. Moreover, these compounds have the potential to effectively inhibit the presence of biofilm formation on the surface of both squid and shrimp models.


Subject(s)
Boronic Acids , Vibrio parahaemolyticus , Vibrio , Biofilms , Virulence Factors/pharmacology , Anti-Bacterial Agents/pharmacology
8.
JAMA Netw Open ; 7(2): e240209, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38376839

ABSTRACT

Importance: Transportation barriers have long been associated with poorer health outcomes; this burden is especially acute for individuals with opioid use disorder (OUD), a chronic disease often associated with low socioeconomic status. Conventional travel time analyses may not fully account for experiential components of travel, thereby understating the true travel burden and overstating treatment accessibility to opioid treatment programs (OTPs). Objective: To develop a metric of feels-like accessibility for those using public transit to access OTPs that accounts for the realistic travel burden on individuals with OUD. Design, Setting, and Participants: This cross-sectional study integrated high-resolution transit schedules and operating hours of OTPs to measure feels-like accessibility. Feels-like accessibility considers the differential outcomes of out-of-vehicle travel components and more realistically reflects individuals' transportation burden than conventional accessibility measures. Gini indices and spatial regression models were used to investigate inequities in accessibility. Geocoded data for residential addresses of 1018 overdose fatalities in Connecticut in 2019 were used as a proxy for the treatment needs of individuals with OUD. Data were analyzed between May and August 2023. Main Outcomes and Measures: Conventional and feels-like accessibility scores. Exposures: Fluctuations in public transit frequencies over the course of the day and the limited operating hours of the OTPs. Results: Of the 1018 individuals in the study, the mean (SD) age at death was 43.7 (12.6) years, 784 individuals (77%) were men, 111 (11%) were African American, and 889 (87%) were White, with other racial and ethnic categories including 18 individuals (2%). A total of 264 individuals in the sample (26%) could not access an OTP within 180 minutes. For those who could access these facilities, the average 1-way travel time was 45.6 minutes, with individuals spending approximately 70% of their trip duration on out-of-vehicle travel components. The conventional accessibility metric underestimates individuals' travel burden to OTPs as well as the inequity in accessibility compared with the feels-like accessibility metric. For example, the median (range) conventional accessibility score, defined as the number of OTPs within 120 minutes of transit travel time, was 5.0 (0.0-17.0); the median (range) feels-like accessibility score, defined as the number of OTPs within 120 minutes of transit travel time weighted to account for in- and out-of-vehicle segments, was 1.0 (0.0-10.0). There is a considerable temporal variation in travel time and accessibility depending on the departure times. Conclusions and Relevance: In this cross-sectional study of travel burdens, the calculated feels-like accessibility scores, which consider the differential outcomes of out-of-vehicle travel components (eg, walking and waiting), could better and more realistically reflect passengers' transportation burden. Policy recommendations derived from the conventional accessibility metric could be misleading, and decision-makers should use feels-like accessibility metrics that adequately capture individuals' travel burdens. In the context of access to OTPs, the findings from this study suggest that opening new OTP sites to address gaps in access due to distance to services or extending hours of operation at existing sites may ameliorate the travel burden for individuals.


Subject(s)
Analgesics, Opioid , Opioid-Related Disorders , Male , Humans , Female , Analgesics, Opioid/therapeutic use , Cross-Sectional Studies , Travel , Transportation , Opioid-Related Disorders/epidemiology
9.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397101

ABSTRACT

Skin microbiota, such as acne-related Cutibacterium acnes, Staphylococcus aureus, and fungal Candida albicans, can form polymicrobial biofilms with greater antimicrobial tolerance to traditional antimicrobial agents and host immune systems. In this study, the phytopigment shikonin was investigated against single-species and multispecies biofilms under aerobic and anaerobic conditions. Minimum inhibitory concentrations of shikonin were 10 µg/mL against C. acnes, S. aureus, and C. albicans, and at 1-5 µg/mL, shikonin efficiently inhibited single biofilm formation and multispecies biofilm development by these three microbes. Shikonin increased porphyrin production in C. acnes, inhibited cell aggregation and hyphal formation by C. albicans, decreased lipase production, and increased hydrophilicity in S. aureus. In addition, shikonin at 5 or 10 µg/mL repressed the transcription of various biofilm-related genes and virulence-related genes in C. acnes and downregulated the gene expression levels of the quorum-sensing agrA and RNAIII, α-hemolysin hla, and nuclease nuc1 in S. aureus, supporting biofilm inhibition. In addition, shikonin prevented multispecies biofilm development on porcine skin, and the antimicrobial efficacy of shikonin was recapitulated in a mouse infection model, in which it promoted skin regeneration. The study shows that shikonin inhibits multispecies biofilm development by acne-related skin microbes and might be useful for controlling bacterial infections.


Subject(s)
Acne Vulgaris , Anti-Infective Agents , Naphthoquinones , Staphylococcal Infections , Animals , Mice , Candida albicans/genetics , Staphylococcus aureus , Biofilms , Anti-Infective Agents/pharmacology
10.
bioRxiv ; 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38328235

ABSTRACT

Despite the development of various drug delivery technologies, there remains a significant need for vehicles that can improve targeting and biodistribution in "hard-to-penetrate" tissues. Some solid tumors, for example, are particularly challenging to penetrate due to their dense extracellular matrix (ECM). In this study, we have formulated a new family of rod-shaped delivery vehicles named Janus base nanopieces (Rod JBNps), which are more slender than conventional spherical nanoparticles, such as lipid nanoparticles (LNPs). These JBNp nanorods are formed by bundles of DNA-inspired Janus base nanotubes (JBNts) with intercalated delivery cargoes. To develop this novel family of delivery vehicles, we employed a computation-aided design (CAD) methodology that includes molecular dynamics and response surface methodology. This approach precisely and efficiently guides experimental designs. Using an ovarian cancer model, we demonstrated that JBNps markedly improve penetration into the dense ECM of solid tumors, leading to better treatment outcomes compared to FDA-approved spherical LNP delivery. This study not only successfully developed a rod-shaped delivery vehicle for improved tissue penetration but also established a CAD methodology to effectively guide material design.

11.
Phytomedicine ; 124: 155306, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176270

ABSTRACT

BACKGROUND: Most bacteria and fungi form biofilms that attach to living or abiotic surfaces. These biofilms diminish the efficacy of antimicrobial agents and contribute to chronic infections. Furthermore, multispecies biofilms composed of bacteria and fungi are often found at chronic infection sites. PURPOSE: In this study, lawsone (2­hydroxy-1,4-naphthoquinone) and its parent 1,4-naphthoquinone were studied for antimicrobial and antibiofilm activities against single-species and multispecies biofilms of enterohemorrhagic Escherichia coli O157:H7 (EHEC) and Candida albicans. METHODS: Biofilm formation assays, biofilm eradication assays, antimicrobial assays, live cell imaging microscopy, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), extracellular polymeric substances and indole production, cell surface hydrophilicity assay, cell motility, cell aggregation, hyphal growth, dual species biofilm formation, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and toxicity assays on plant seed germination and nematode model were utilized to investigate how lawsone affect biofilm development. RESULTS: Sub-inhibitory concentrations of lawsone (35 µg/ml) significantly inhibited single-and multispecies biofilm development. Lawsone reduced the production of curli and indole, and the swarming motility of EHEC, efficiently inhibited C. albicans cell aggregation and hyphal formation, and increased the cell surface hydrophilicity of C. albicans. Transcriptomic analysis showed that lawsone suppressed the expression of the curli-related genes csgA and csgB in EHEC, and the expression of several hypha- and biofilm-related genes (ALS3, ECE1, HWP1, and UME6) in C. albicans. In addition, lawsone up to 100 µg/ml was nontoxic to the nematode Caenorhabditis elegans and to the seed growth of Brassica rapa and Triticum aestivum. CONCLUSION: These results show that lawsone inhibits dual biofilm development and suggest that it might be useful for controlling bacterial or fungal infections and multispecies biofilms.


Subject(s)
Anti-Infective Agents , Escherichia coli O157 , Naphthoquinones , Candida albicans , Biofilms , Indoles/pharmacology
12.
Asia Pac J Public Health ; 36(1): 59-68, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38099448

ABSTRACT

Despite the increasing economic burden of people with disabilities (PWDs) over time, the impact of physical activity on PWDs in the Republic of Korea (ROK) remains relatively unexplored. Thus, we examined the association between physical activity and disease risk, health care utilization, and expenditures for PWDs in the ROK. We considered gender differences across eight diseases using the National Health Insurance (NHI) panel data from 2013 to 2019. The sample consisted of PWDs who underwent regular medical check-ups and were aged 40 years and above, aligning with the NHI's health screening program targeting beneficiaries in this age range. The final sample included 281 142 healthy PWDs. Among them, 44.1% (n = 124 061) engaged in physical activity, while the remaining 45.9% (n = 157 081) did not participate in any physical activity. The results show a negative association between physical activity and the incidence of various diseases among both genders. Health care utilization exhibited gender and disease-based variations, with men and women demonstrating higher utilization rates in the absence of physical activity. Health care expenditures also differed based on gender and disease, as men and women displayed higher costs in the absence of physical activity. Consequently, public policymakers should establish tailored activity programs for PWDs, adhering to activity guidelines designed for this population.


Subject(s)
Delivery of Health Care , Disabled Persons , Humans , Male , Female , Health Expenditures , Exercise , Risk Management
SELECTION OF CITATIONS
SEARCH DETAIL