Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Sex Transm Dis ; 50(8): 536-542, 2023 08 01.
Article En | MEDLINE | ID: mdl-37213194

BACKGROUND: Shifts in public health infrastructure to respond to one emerging health threat may have unanticipated consequences for preexisting diseases. Previous research evaluating the impact of COVID-19 on sexually transmitted infections (STIs) has been conducted nationally, with little exploration of the impact on a granular geospatial level. This ecological study seeks to quantify the association between COVID-19 cases or deaths and chlamydia, gonorrhea, and syphilis cases for all US counties in 2020. METHODS: Separate, adjusted multivariable quasi-Poisson models with robust standard errors modeled the county-level association between 2020 COVID-19 cases and deaths per 100,000 and 2020 chlamydia, gonorrhea, or syphilis cases per 100,000. Models were adjusted for sociodemographic characteristics. RESULTS: Every 1000 additional COVID-19 cases per 100,000 was associated with a 1.80% increase in the average number of chlamydia cases ( P < 0.001) and a 5.00% increase in the average number of gonorrhea cases ( P < 0.001). Every 1000 additional COVID-19 deaths per 100,000 was associated with a 57.9% increase in the average number gonorrhea cases ( P < 0.001) and a 74.2% decrease in the average number of syphilis cases ( P = 0.004). CONCLUSIONS: Higher rates of COVID-19 cases and deaths were associated with increased rates of some STIs at the US county level. The underlying reasons for these associations could not be established by this study. The emergency response to an emerging threat may have unanticipated influence on preexisting diseases that varies by level of governance.


COVID-19 , Chlamydia Infections , Gonorrhea , HIV Infections , Sexually Transmitted Diseases , Syphilis , United States/epidemiology , Humans , Gonorrhea/epidemiology , Syphilis/epidemiology , Chlamydia Infections/epidemiology , COVID-19/epidemiology , Sexually Transmitted Diseases/epidemiology
2.
Front Public Health ; 10: 871114, 2022.
Article En | MEDLINE | ID: mdl-35462851

The increasing threat of emerging and re-emerging pathogens calls for a shared vision toward developing and maintaining global surveillance mechanisms to enable rapid characterization of pathogens, a foundational requirement for effective outbreak response. Efforts establishing new surveillance programs in low- and middle-income countries (LMICs) have repeatedly led to siloed systems that prove unsustainable or ineffective due to narrowly focused approaches, competing priorities, or lack of resourcing. Barriers inherent to LMICs, such as resource limitations, workforce strain, unreliable supply chains, and lack of enduring champions exacerbate implementation and sustainability challenges. In order to improve adoption and endurance of new surveillance programs, more effective design and implementation of programs is needed to adequately reflect stakeholder needs and simultaneously support population-level disease monitoring and clinical decision-making across a range of chronic and acute health issues. At the heart of this cross-sectorial integration between clinical care and public health initiatives are emerging technologies and data modalities, including sequencing data. In this prospective, we propose an implementation strategy for genomics-based surveillance initiatives in LMICs founded on the use of a target operating model. Adoption of a target operating model for the design and implementation of genomic surveillance programs will ensure programs are agile, relevant, and unified across diverse stakeholder communities, thereby increasing their overall impact and sustainability.


Public Health , Prospective Studies
4.
Nature ; 587(7834): 466-471, 2020 11.
Article En | MEDLINE | ID: mdl-33116313

Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes-in particular the ECM protease ADAMTS4-and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.


ADAMTS4 Protein/metabolism , Fibroblasts/enzymology , Fibroblasts/pathology , Influenza A virus/pathogenicity , Lung/pathology , Lung/physiopathology , ADAMTS4 Protein/antagonists & inhibitors , Animals , Birds/virology , Extracellular Matrix/enzymology , Gene Expression Profiling , Humans , Influenza in Birds/virology , Influenza, Human/pathology , Influenza, Human/therapy , Influenza, Human/virology , Interferons/immunology , Interferons/metabolism , Leukocyte Common Antigens/metabolism , Lung/enzymology , Lung/virology , Mice , Respiratory Distress Syndrome/enzymology , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , Seasons , Single-Cell Analysis , Stromal Cells/metabolism
5.
Cell Rep ; 20(2): 370-383, 2017 07 11.
Article En | MEDLINE | ID: mdl-28700939

Denudation of the ependyma due to loss of cell adhesion mediated by cadherin-based adherens junctions is a common feature of perinatal hydrocephalus. Junctional stability depends on the interaction between cadherins and the actin cytoskeleton. However, the molecular mechanism responsible for recruiting the actin nucleation machinery to the ependymal junction is unknown. Here, we reveal that loss of the netrin/RGM receptor, Neogenin, leads to severe hydrocephalus. We show that Neogenin plays a critical role in actin nucleation in the ependyma by anchoring the WAVE regulatory complex (WRC) and Arp2/3 to the cadherin complex. Blocking Neogenin binding to the Cyfip1/Abi WRC subunit results in actin depolymerization, junctional collapse, and denudation of the postnatal ventricular zone. In the embryonic cortex, this leads to loss of radial progenitor adhesion, aberrant neuronal migration, and neuronal heterotopias. Therefore, Neogenin-WRC interactions play a fundamental role in ensuring the fidelity of the embryonic ventricular zone and maturing ependyma.


Adherens Junctions/metabolism , Ependyma/metabolism , Hydrocephalus/metabolism , Membrane Proteins/metabolism , Multiprotein Complexes/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism , Actins/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL , Netrin Receptors/metabolism , Pregnancy
6.
Nat Commun ; 7: 11082, 2016 Mar 31.
Article En | MEDLINE | ID: mdl-27029596

To maintain tissue integrity during epithelial morphogenesis, adherens junctions (AJs) must resist the mechanical stresses exerted by dynamic tissue movements. Junctional stability is dependent on actomyosin contractility within the actin ring. Here we describe a novel function for the axon guidance receptor, Neogenin, as a key component of the actin nucleation machinery governing junctional stability. Loss of Neogenin perturbs AJs and attenuates junctional tension. Neogenin promotes actin nucleation at AJs by recruiting the Wave regulatory complex (WRC) and Arp2/3. A direct interaction between the Neogenin WIRS domain and the WRC is crucial for the spatially restricted recruitment of the WRC to the junction. Thus, we provide the first example of a functional WIRS-WRC interaction in epithelia. We further show that Neogenin regulates cadherin recycling at the AJ. In summary, we identify Neogenin as a pivotal component of the AJ, where it influences both cadherin dynamics and junctional tension.


Adherens Junctions/metabolism , Membrane Proteins/physiology , Wiskott-Aldrich Syndrome Protein Family/metabolism , Actins/metabolism , Actins/physiology , Caco-2 Cells , Cadherins/analysis , Cadherins/genetics , Cadherins/metabolism , GPI-Linked Proteins/metabolism , Gene Knockdown Techniques , Humans , Membrane Proteins/analysis , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Wiskott-Aldrich Syndrome Protein Family/genetics , Wiskott-Aldrich Syndrome Protein Family/physiology , rac GTP-Binding Proteins/metabolism
...