Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Life Sci ; 304: 120721, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35716735

ABSTRACT

AIMS: Litter size reduction on the first days of life results in increased body weight and adiposity, with higher levels of circulating glucocorticoids. Obese rodents are more sensitive to the anabolic effects of glucocorticoids and less responsive to glucocorticoids feedback on hypothalamic-pituitary-adrenal (HPA) axis. This study aimed to evaluate effects of the treatment with corticosterone on metabolic responses and HPA axis in adult male rats reared in small litters. MAIN METHODS: From postnatal day (PND) 60 to 88, adult male rats of normal (NL- 10 pups/dam) and small (SL- 3 pups/dam) litters received oral treatment with Corticosterone (CORT-15 mg/L) in the drinking water or no treatment, composing the four experimental groups (NL-water; NL-CORT; SL-water and SL-CORT), for the evaluation of energy homeostasis and HPA axis. KEY FINDINGS: Male rats of SL-water group presented on PND88: glucose intolerance, higher adiposity, plasma triglycerides, free fatty acids, total and low-density lipoprotein (LDL) cholesterol and corticosterone. SL-water animals showed increased mRNA of corticotrophin-releasing hormone (CRH) in the hypothalamic paraventricular nucleus (PVN) and proopiomelanocortin (POMC) in the pituitary, with decreased mRNA expression of PVN mineralocorticoid receptor. NL-CORT animals presented glucose intolerance, increased body weight, food intake, total and LDL cholesterol. Glucocorticoid treatment reduced corticosterone levels and adrenal cortex thickness in NL group, associated with increased mRNA of PVN CRH and pituitary POMC, without effects on SL animals. SIGNIFICANCE: Lactation overnutrition promotes hyperreactivity of HPA axis and reduces the responsiveness to glucocorticoids effects on energy balance and negative feedback of HPA axis in adult male rats.


Subject(s)
Glucose Intolerance , Overnutrition , Animals , Corticosterone , Corticotropin-Releasing Hormone/metabolism , Female , Glucocorticoids/pharmacology , Glucose Intolerance/metabolism , Homeostasis , Hypothalamo-Hypophyseal System/metabolism , Lactation , Male , Obesity/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary-Adrenal System/metabolism , Pro-Opiomelanocortin/metabolism , RNA, Messenger/metabolism , Rats , Water/metabolism
2.
Neurochem Int ; 155: 105300, 2022 05.
Article in English | MEDLINE | ID: mdl-35151771

ABSTRACT

The arcuate nucleus of hypothalamus (ARC) integrates circulating factors that signal energy status. The vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are widely distributed in the periphery and central nervous systems (CNS) and play important roles on energy balance. The present study aimed to investigate the responses of microinjection of VIP and PACAP in the ARC on metabolic changes and food intake. In addition, the activity of neurons in the ARC following intracerebroventricular (ICV) microinjection of these peptides was also evaluated. Microinjection of VIP or PACAP in the ARC decreased fasting-induced hyperphagia and food intake, decreased total lipids, and increased free fatty acids plasma concentrations. VIP microinjection in the ARC induced hyperglycemia and decreased total cholesterol level; and PACAP reduced triglycerides concentration. ICV microinjection of VIP and PACAP enhanced neuronal activation in the ARC, associated with lower fasting-induced hyperphagia and plasma metabolic changes (only VIP). These results suggest that VIP and PACAP play important roles in ARC, inducing hypophagia and peripheral metabolic changes, as hyperglycemia, increased free fatty acids and decreased total lipids plasma levels.


Subject(s)
Arcuate Nucleus of Hypothalamus , Pituitary Adenylate Cyclase-Activating Polypeptide , Vasoactive Intestinal Peptide , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Feeding Behavior , Hypothalamus/metabolism , Lipids/blood , Neurons/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Vasoactive Intestinal Peptide/metabolism , Vasoactive Intestinal Peptide/pharmacology
3.
Front Endocrinol (Lausanne) ; 12: 652733, 2021.
Article in English | MEDLINE | ID: mdl-34504470

ABSTRACT

The important involvement of the suprachiasmatic nucleus (SCN) and the activity of vasopressinergic neurons in maintaining the rhythmicity of the female reproductive system depends on the mRNA transcription-translation feedback loops. Therefore, circadian clock function, like most physiological processes, is involved in the events that determine reproductive aging. This study describes the change of mRNA expression of clock genes, Per2, Bmal1, and Rev-erbα, in the hypothalamus-pituitary-gonadal axis (HPG) of female rats with regular cycle (RC) and irregular cycle (IC), and the vasopressinergic neurons activity in the SCN and kisspeptin neurons in the arcuate nucleus (ARC) of these animals. Results for gonadotropins and the cFos/AVP-ir neurons in the SCN of IC were higher, but kisspeptin-ir was minor. Change in the temporal synchrony of the clock system in the HPG axis, during the period prior to the cessation of ovulatory cycles, was identified. The analysis of mRNA for Per2, Bmal1, and Rev-erbα in the reproductive axis of adult female rodents shows that the regularity of the estrous cycle is guaranteed by alternation in the amount of expression of Bmal1 and Per2, and Rev-erbα and Bmal1 between light and dark phases, which ceases to occur and contributes to determining reproductive senescence. These results showed that the desynchronization between the central and peripheral circadian clocks contributes to the irregularity of reproductive events. We suggest that the feedback loops of clock genes on the HPG axis modulate the spontaneous transition from regular to irregular cycle and to acyclicity in female rodents.


Subject(s)
Aging , Circadian Rhythm , Gonads/metabolism , Hypothalamo-Hypophyseal System/metabolism , RNA, Messenger/metabolism , Suprachiasmatic Nucleus/metabolism , Vasopressins/pharmacology , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , Circadian Clocks , Female , Gonads/drug effects , Hypothalamo-Hypophyseal System/drug effects , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , RNA, Messenger/genetics , Rats , Rats, Wistar , Suprachiasmatic Nucleus/drug effects
4.
Mol Cell Endocrinol ; 524: 111147, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33388353

ABSTRACT

This work evaluated the effects of neonatal overfeeding, induced by litter size reduction, on fertility and the noradrenaline-kisspeptin-gonadotrophin releasing hormone (GnRH) pathway in adult female rats. The litter size was adjusted to 3 pups with each mother in the small litters (SL) and 10 pups with each mother in the normal litters (NL). SL females exhibited metabolic changes associated with reproductive dysfunctions, shown by earlier vaginal opening and first estrus, later regular cyclicity onset, and lower and higher occurrences of estrus and diestrus phases, respectively, as well as reduced fertility, estradiol plasma levels, and mRNA expressions of tyrosine hydroxylase in the locus coeruleus, kisspeptin, and GnRH in the preoptic area in adult females in the afternoon of proestrus. These results suggest that neonatal overfeeding in female rats promotes reproductive dysfunctions in adulthood, such as lower estradiol plasma levels associated with impairments in fertility and noradrenaline-kisspeptin-GnRH pathway during positive feedback.


Subject(s)
Aging/physiology , Estradiol/blood , Fertility/physiology , Gonadotropin-Releasing Hormone/metabolism , Kisspeptins/metabolism , Norepinephrine/metabolism , Overnutrition/blood , Overnutrition/metabolism , Animals , Animals, Newborn , Blood Glucose/metabolism , Brain Stem/pathology , Estrous Cycle , Female , Gonadotropin-Releasing Hormone/genetics , Gonads/pathology , Hypothalamus/pathology , Lipids/blood , Litter Size , Male , Pituitary Gland/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Sexual Maturation , Weight Gain
5.
Endocrine ; 65(3): 675-682, 2019 09.
Article in English | MEDLINE | ID: mdl-31325084

ABSTRACT

PURPOSE: The aim of this study is to evaluate the effects of adrenalectomy (ADX) and glucocorticoid in the changes induced by intracerebroventricular (ICV) administration of vasoactive intestinal peptide (VIP) on food intake and plasma parameters, as well as VIP receptor subtype 2 (VPAC2) mRNA expression in different hypothalamic nuclei of male rats. METHODS: Male Wistar rats (260-280 g) were subjected to ADX or sham surgery, 7 days before the experiments. Half of ADX animals received corticosterone (ADX + CORT) in the drinking water. Animals with 16 h of fasting received ICV microinjection of VIP or saline (0.9% NaCl). After 15 min: (1) animals were fed, and the amount of food ingested was quantified for 120 min; or (2) animals were euthanized and blood was collected for biochemical measurements. Determination of VPAC2 mRNA levels in LHA, ARC, and PVN was performed from animals with microinjection of saline. RESULTS: VIP treatment promoted the anorexigenic effect, which was not observed in ADX animals. Microinjection of VIP also induced an increase in blood plasma glucose and corticosterone levels, and a reduction in free fatty acid plasma levels, but adrenalectomy abolished these effects. In addition, adrenalectomy reduced mRNA expression of VPAC2 in the lateral hypothalamic area and arcuate nucleus, but not in the paraventricular nucleus. CONCLUSIONS: These results suggest that adrenal glands are required for VIP-induced changes in food intake and plasma parameters, and these responses are associated with reduction in the expression of VPAC2 in the hypothalamus after adrenalectomy.


Subject(s)
Adrenalectomy/adverse effects , Eating/drug effects , Vasoactive Intestinal Peptide/pharmacology , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Blood Glucose/analysis , Corticosterone/blood , Corticosterone/pharmacology , Fatty Acids, Nonesterified/blood , Hypothalamic Area, Lateral/metabolism , Male , Microinjections , Paraventricular Hypothalamic Nucleus/metabolism , Rats , Rats, Wistar , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
6.
Physiol Behav ; 209: 112587, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31247241

ABSTRACT

Glucocorticoids (GC) increase food intake and body weight in humans and rodents and chronic stress and GC treatment-induced enhancement of the plasma concentration of GC lead to obesity and metabolic changes. In response to hypercaloric treatment, males were shown to be more susceptible to obesity than females, demonstrating that sex differences may affect energy homeostasis. The objective of the current study was to evaluate the effects of prolonged (28 days) treatment with dexamethasone or corticosterone on food intake and body weight gain in intact rats, both male and female. Also examined were Lee index, weights and area of adipocytes of retroperitoneal and perigonadal+perirenal adipose tissues, glucose tolerance test (GTT) and plasma concentrations of free fatty acids, cholesterol and triglycerides. Treatment with dexamethasone was able to increase body weight, food intake, area of adipocytes and weight of retroperitoneal adipose tissue in males. Prolonged treatment with corticosterone also stimulated body weight gain and food intake in males. In addition, it induced an increase in the area of adipocytes and weight of perirenal+perigonadal adipose tissue and higher glycemia after GTT in these animals, without changes on Lee index and plasma parameters after both GC treatments. No parameter was changed by dexamethasone or corticosterone treatment in female rats. Thus, it can be concluded that male rats are more susceptible to the anabolic effects of glucocorticoids than female rats, and these responses can be due to the protective effects of circulating estrogens in females, and/or the difference between males and females in the expression/activity of corticosteroids receptors.


Subject(s)
Anabolic Agents/pharmacology , Glucocorticoids/pharmacology , Adipocytes/drug effects , Adipose Tissue/drug effects , Adipose Tissue, White/drug effects , Animals , Corticosterone/pharmacology , Dexamethasone/pharmacology , Eating/drug effects , Female , Glucose Tolerance Test , Lipids/blood , Male , Rats , Rats, Wistar , Sex Characteristics , Weight Gain/drug effects
7.
Life Sci ; 218: 185-196, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30594666

ABSTRACT

Glucocorticoids increase appetite and body weight gain in rats and ovariectomy (OVX) induces obesity, while estrogen (E) replacement attenuates OVX-induced changes. It is known that animals with obesity are more responsive to glucocorticoids anabolic effects than lean ones. This study aimed to evaluate the effects of ovariectomy and the protective role of estradiol on the responses induced by prolonged treatment with corticosterone or dexamethasone on energy homeostasis. For this, female Wistar rats subjected to SHAM or OVX surgery, composing the SHAM, OVX, and OVX + E groups, received water/ETOH or corticosterone (15 mg/l) and water or dexamethasone (0.5 µg/l) as drinking fluid for 28 days. The OVX + E group, since the first day, was daily treated with estradiol (10 µg/0.2 ml/rat SC). OVX induced enhancement of body weight gain, food intake, area of the adipocytes and weight of retroperitoneal adipose tissue, plasma cholesterol and glucose intolerance, with reduction on uterus weight. In OVX animals, treatment with glucocorticoids induced increases on body weight gain, food intake, weight of retroperitoneal adipose tissue, area of adipocytes of retroperitoneal and perigonadal + perirenal fat depots, plasma triglycerides (corticosterone), and glycemic response after GTT (dexamethasone), with minor effects on SHAM group. Estradiol treatment to OVX rats prevented these effects induced by glucocorticoids, in addition to decrease body weight gain, fat accumulation and glucose intolerance, and to increase weight of uterus, triglycerides and free fatty acids plasma levels. These data demonstrate that protection against glucocorticoids-induced anabolic responses in females is eliminated by ovariectomy and estradiol can prevent these responses.


Subject(s)
Anabolic Agents/toxicity , Estrogens/pharmacology , Glucocorticoids/toxicity , Glucose Intolerance/prevention & control , Obesity/prevention & control , Ovariectomy/adverse effects , Protective Agents/pharmacology , Animals , Body Weight , Female , Glucose Intolerance/etiology , Glucose Intolerance/pathology , Obesity/etiology , Obesity/pathology , Rats , Rats, Wistar , Weight Gain/drug effects
8.
Horm Behav ; 105: 138-145, 2018 09.
Article in English | MEDLINE | ID: mdl-30138609

ABSTRACT

Vasoactive intestinal peptide (VIP) and corticotrophin-releasing factor (CRF) are anorexigenic neuropeptides that act in the hypothalamus to regulate food intake. Intracerebroventricular (ICV) microinjection of VIP promotes increased plasma adrenocorticotrophic hormone (ACTH) and corticosterone, indicating that VIP activates hypothalamic-pituitary-adrenal axis. The aim of this study was to evaluate the interaction between VIP and CRF, by verifying the effects of ICV administration of VIP on the activity of neurons and CRF mRNA expression in paraventricular nucleus of hypothalamus (PVN). In addition, it was evaluated the effects of pretreatment with CRF type 1 receptor (CRFR1) antagonist (Antalarmin, ANT) or CRF type 2 receptor (CRFR2) antagonist (Antisauvagine-30, AS30) on VIP-induced changes on food intake and plasma parameters of male rats. Compared to Saline group, VIP increased not only the number of Fos-related antigens (FRA)-immunoreactive neurons in the PVN but also CRF mRNA levels in this nucleus. Both ANT and AS30 treatment attenuated the inhibition of food intake promoted by VIP, ANT showing a more pronounced effect. Both antagonists also attenuated VIP-induced reduction and enhancement of free fatty acids and corticosterone plasma levels, respectively, and only AS30 was able to attenuate the hyperglycemia. These results suggest that CRF is an important mediador of VIP effects on energy balance, and CRFR1 and CRFR2 are involved in these responses.


Subject(s)
Corticotropin-Releasing Hormone/physiology , Feeding and Eating Disorders/blood , Feeding and Eating Disorders/chemically induced , Vasoactive Intestinal Peptide/adverse effects , Adrenocorticotropic Hormone/blood , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Corticosterone/blood , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Eating/drug effects , Eating/physiology , Fatty Acids/blood , Feeding and Eating Disorders/genetics , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Hypothalamus/metabolism , Male , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Rats , Rats, Wistar , Vasoactive Intestinal Peptide/metabolism
9.
eNeuro ; 5(1)2018.
Article in English | MEDLINE | ID: mdl-29362726

ABSTRACT

Chronic exposure to 4-vinylcycloxene diepoxide (VCD) in rodents accelerates the natural process of ovarian follicular atresia modelling perimenopause in women. We investigated why estrogen therapy is beneficial for symptomatic women despite normal or high estrogen levels during perimenopause. Female rats (28 d) were injected daily with VCD or oil for 15 d; 55-65 d after the first injection, pellets of 17ß-estradiol or oil were inserted subcutaneously. Around 20 d after, the rats were euthanized (control rats on diestrus and estradiol-treated 21 d after pellets implants). Blood was collected for hormone measurement, the brains were removed and dorsal raphe nucleus (DRN), hippocampus (HPC), and amygdala (AMY) punched out for serotonin (5-HT), estrogen receptor ß (ERß), and progesterone receptor (PR) mRNA level measurements. Another set of rats was perfused for tryptophan hydroxylase (TPH) immunohistochemistry in the DRN. Periestropausal rats exhibited estradiol levels similar to controls and a lower progesterone level, which was restored by estradiol. The DRN of periestropausal rats exhibited lower expression of PR and ERß mRNA and a lower number of TPH cells. Estradiol restored the ERß mRNA levels and number of serotonergic cells in the DRN caudal subregion. The 5-HT levels were lower in the AMY and HPC in peristropausal rats, and estradiol treatment increased the 5-HT levels in the HPC and also increased ERß expression in this area. In conclusion, estradiol may improve perimenopause symptoms by increasing progesterone and boosting serotonin pathway from the caudal DRN to the dorsal HPC potentially through an increment in ERß expression in the DRN.


Subject(s)
Brain/drug effects , Estradiol/pharmacology , Estrogens/pharmacology , Hormone Replacement Therapy , Perimenopause/drug effects , Serotonin/metabolism , Animals , Brain/cytology , Brain/metabolism , Cyclohexenes , Estradiol/metabolism , Estrogen Receptor beta/metabolism , Estrogens/metabolism , Female , Models, Animal , Perimenopause/metabolism , RNA, Messenger/metabolism , Rats, Wistar , Receptors, Progesterone/metabolism , Tryptophan Hydroxylase/metabolism , Vinyl Compounds
10.
Exp Gerontol ; 81: 19-27, 2016 08.
Article in English | MEDLINE | ID: mdl-27108180

ABSTRACT

During the course of life, cyclic females face a state of midlife transition that occurs in a fully functioning neurological system, and results in reproductive senescence. The authors' hypothesis was that changes in the activity noradrenergic neurons may be one of the factors involved in this phenomenon. The aim of this study was to investigate the activity of the neurons in the anteroventral periventricular nucleus (AVPV) and locus coeruleus (LC), to analyze their role in determining reproductive senescence. Adult female Wistar rats in the diestrus phase (4months/cyclic) and old females (18-20months/acyclic) in persistent diestrus, were decapitated or perfused at three different time intervals (10, 14 and 18h) throughout the day. In acyclic rats, the gonadotropin-releasing hormone (GnRH) and noradrenaline (NE) content were reduced; Fos-related antigen (FRA) in AVPV and Fos-related antigen/Tyrosine hydroxylase (FRA/TH) in LC showed immunolabeling of a higher number of neurons in these animals. The 3-methoxy-4-hydroxyphenylglycol/noradrenaline (MHPG/NE) ratio was higher and plasma LH was lower in the acyclic rats. Furthermore, the estradiol level was higher, and the progesterone level was lower after 14h of persistent diestrus. These findings suggested that during the periestropause, there was a higher level of POA/AVPV and NE neuronal activity in the LC of acyclic rats, associated with a lower capacity of synthesis and storage of neurotransmitters and neurohormones contributed to changes in the temporal pattern of neuroendocrine signaling, thereby compromising the accuracy of inhibitory and stimulatory effects, causing irregularity in the estrous cycle and determining reproductive senescence.


Subject(s)
Aging/physiology , Locus Coeruleus/physiopathology , Neurons/metabolism , Norepinephrine/blood , Preoptic Area/physiopathology , Reproduction , Animals , Estradiol/blood , Estrous Cycle , Female , Gonadotropin-Releasing Hormone/blood , Luteinizing Hormone/blood , Rats , Rats, Wistar
11.
Pflugers Arch ; 464(2): 145-53, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22585210

ABSTRACT

Previous studies showed that leptin-deficient (ob/ob) mice develop obesity and impaired ventilatory responses to CO(2) (V(E) - CO(2)). In this study, we examined if leptin replacement improves chemorespiratory responses to hypercapnia (7 % CO(2)) in ob/ob mice and if these effects were due to changes in body weight or to the direct effects of leptin in the central nervous system (CNS). V(E) - CO(2) was measured via plethysmography in obese leptin-deficient- (ob/ob) and wild-type- (WT) mice before and after leptin (10 µg/2 µl day) or vehicle (phosphate buffer solution) were microinjected into the fourth ventricle for four consecutive days. Although baseline V(E) was similar between groups, obese ob/ob mice exhibited attenuated V(E) - CO(2) compared to WT mice (134 ± 9 versus 196 ± 10 ml min(-1)). Fourth ventricle leptin treatment in obese ob/ob mice significantly improved V(E) - CO(2) (from 131 ± 15 to 197 ± 10 ml min(-1)) by increasing tidal volume (from 0.38 ± 0.03 to 0.55 ± 0.02 ml, vehicle and leptin, respectively). Subcutaneous leptin administration at the same dose administered centrally did not change V(E) - CO(2) in ob/ob mice. Central leptin treatment in WT had no effect on V(E) - CO(2). Since the fourth ventricle leptin treatment decreased body weight in ob/ob mice, we also examined V(E) - CO(2) in lean pair-weighted ob/ob mice and found it to be impaired compared to WT mice. Thus, leptin deficiency, rather than obesity, is the main cause of impaired V(E) - CO(2) in ob/ob mice and leptin appears to play an important role in regulating chemorespiratory response by its direct actions on the CNS.


Subject(s)
Hypercapnia/physiopathology , Leptin/pharmacology , Pulmonary Ventilation/drug effects , Animals , Brain Stem/cytology , Brain Stem/metabolism , Carbon Dioxide/blood , Carbon Dioxide/pharmacology , Homozygote , Injections, Intraventricular , Leptin/deficiency , Leptin/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/physiopathology
12.
Femina ; 37(5): 288-291, maio 2009.
Article in Portuguese | LILACS | ID: lil-539348

ABSTRACT

A síndrome do ovário policístico é a endocrinopatia ginecológica mais frequente das mulheres em idade reprodutiva, clinicamente caracterizada pela presença de anovulação crônica hiperandrogênica, hirsutismo e infertilidade. Além das alterações reprodutivas, uma proporção considerável das portadoras da síndrome apresenta anormalidades metabólicas como: resistência à insulina e obesidade, com aumento significativo do risco para o desenvolvimento de intolerância à glicose; diabetes mellitus e doença cardiovascular. No entanto, os mecanismos fisiopatológicos que vinculam a obesidade, a resistência à insulina e os demais distúrbios metabólicos presentes na síndrome do ovário policístico ainda não estão completamente esclarecidos. Estudos recentes sugerem que a adiponectina, uma proteína secretada especificamente pelo tecido adiposo, que apresenta propriedades antiaterogênicas, anti-inflamatórias e sensibilizadora à ação da insulina, poderia apresentar um importante papel integrador na patogênese desses distúrbios metabólicos.


Polycystic ovary syndrome is the most common gynecologic endocrinopathy of reproductive age women. It is clinically characterized by hyperandrogenic chronic anovulation, hisrutism and infertility. In addition to reproductive alterations, a significant proportion of polycystic ovary syndrome women display metabolic abnormalities such as insulin resistance and adiposity, predisposing to greater risk of developing glucose intolerance; diabetes mellitus and cardiovascular disease. However, the physiopathologic mechanisms linking obesity, insulin resistance and the other polycystic ovary syndrome metabolic disturbances are not completely understood. Recent studies suggest that adiponectin, a protein specifically secreted by adipose tissue and which has antiatherogenic, anti-inflammatory and insulin-sensitizing properties, could play an important and integrative role in the pathogenesis of these metabolic disturbances.


Subject(s)
Female , Adiponectin/blood , Adiponectin/therapeutic use , Metabolic Diseases/physiopathology , Insulin Resistance , Obesity/metabolism , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/blood , Adipose Tissue/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL