Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Dev Comp Immunol ; 159: 105222, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38964676

ABSTRACT

Invertebrate lectins exhibit structural diversity and play crucial roles in the innate immune responses by recognizing and eliminating pathogens. In the present study, a novel lectin containing a Gal_Lectin, a CUB and a transmembrane domain was identified from the Pacific oyster Crassostrea gigas (defined as CgGal-CUB). CgGal-CUB mRNA was detectable in all the examined tissues with the highest expression in adductor muscle (11.00-fold of that in haemocytes, p < 0.05). The expression level of CgGal-CUB mRNA in haemocytes was significantly up-regulated at 3, 24, 48 and 72 h (8.37-fold, 12.13-fold, 4.28-fold and 10.14-fold of that in the control group, respectively) after Vibrio splendidus stimulation. The recombinant CgGal-CUB (rCgGal-CUB) displayed binding capability to Mannan (MAN), peptidoglycan (PGN), D-(+)-Galactose and L-Rhamnose monohydrate, as well as Gram-negative bacteria (Escherichia coli, V. splendidus and Vibrio anguillarum), Gram-positive bacteria (Micrococcus luteus, Staphylococcus aureus, and Bacillus sybtilis) and fungus (Pichia pastoris). rCgGal-CUB was also able to agglutinate V. splendidus, and inhibit V. splendidus growth. Furthermore, rCgGal-CUB exhibited the activities of enhancing the haemocyte phagocytosis towards V. splendidus, and the phagocytosis rate of haemocytes was descended in blockage assay with CgGal-CUB antibody. These results suggested that CgGal-CUB served as a pattern recognition receptor to bind various PAMPs and bacteria, and enhanced the haemocyte phagocytosis towards V. splendidus.


Subject(s)
Crassostrea , Hemocytes , Immunity, Innate , Lectins , Phagocytosis , Vibrio , Animals , Hemocytes/immunology , Hemocytes/metabolism , Crassostrea/immunology , Vibrio/immunology , Vibrio/physiology , Lectins/metabolism , Lectins/genetics , Lectins/immunology , Mannans/metabolism , Mannans/immunology , Protein Domains/genetics , Peptidoglycan/immunology , Peptidoglycan/metabolism , Galactose/metabolism , Galactose/immunology , Vibrio Infections/immunology
2.
Fish Shellfish Immunol ; 131: 757-765, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36280129

ABSTRACT

Cysteinyl aspartate specific proteinase-3 (Caspase-3) is an important protein involved in the apoptosis and gasdermin E (GSDME)-mediated cell pyroptosis pathways in vertebrates. A Caspase-3 homologue (designated as CgCaspase-3) was previously identified as an immune receptor specific for lipopolysaccharide (LPS) to regulate apoptosis in the Pacific oyster Crassostrea gigas. In the present study, the binding activity of CgCaspase-3 to different pathogen associated molecular patterns (PAMPs) and its effects on CgGSDME translocation in haemocytes were further investigated in C. gigas. The mRNA expression of CgCaspase-3 could be detected in all the tested tissues, including hepatopancreas, labial palp, adductor muscle, gonad, gill, mantle and haemocytes, and it was highly expressed in labial palp, gonad, haemocytes, and adductor muscle. The mRNA expression of CgCaspase-3 in haemocytes increased significantly at 3, 24, 48 and 72 h after LPS stimulation, and it increased significantly at 6, 12, 24 and 48 h after Vibrio splendidus stimulation. The recombinant CgCaspase-3 displayed binding activity towards LPS, mannose (MAN), peptidoglycan (PGN), and polyinosinic-polycytidylic acid potassium salt (Poly (I:C)). The positive signals of CgGSDME on haemocyte membrane became stronger at 3 h after V. splendidus stimulation, compared with that of Seawater group, and the co-localization of CgCaspase-3 and CgGSDME was observed in the haemocyte membrane. After the injection of dsCgCaspase-3, the positive signals of CgGSDME on haemocyte membrane became weaker compared with that of EGFP-RNAi group at 24 h after V. splendidus stimulation. The results suggested that CgCaspase-3 was able to bind diverse PAMPs and activate the translocation of CgGSDME in haemocytes of oyster response against pathogen invasion.


Subject(s)
Crassostrea , Animals , Caspase 3/genetics , Caspase 3/metabolism , Lipopolysaccharides/pharmacology , Pathogen-Associated Molecular Pattern Molecules , Immunity, Innate/genetics , Hemocytes , RNA, Messenger/genetics
3.
Front Cell Dev Biol ; 10: 885478, 2022.
Article in English | MEDLINE | ID: mdl-35669507

ABSTRACT

Mitochondrial selective autophagy, known as mitophagy, surveils the mitochondrial population by eliminating superfluous and/or impaired organelles to mediate cellular survival and viability in response to injury/trauma and infection. In this study, the components of the mitophagy pathway in the Pacific oyster Crassostrea gigas were screened from NCBI with reference to the protein sequences of the human mitophagy process. A total of 10 mitophagy process-related genes were identified from C. gigas, including NIX, FUNDC1, PHB2, Cardiolipin, P62, VDAC2, MFN2, PARL, MPP, and OPTN. They shared high similarities with their homologs in the human mitophagy pathway and were expressed in various tissues of C. gigas. After CCCP exposure, the fluorescence intensity of the mitochondrial probe JC-1 monomers increased significantly in hemocytes, while the fluorescence intensity of JC-1 aggregates decreased significantly. Meanwhile, the fluorescence of lysosomes was found to be co-localized with that of CgLC3 and mitochondria in CCCP-treated hemocytes. Double- and single-membrane-bound vacuoles resembling autophagic structures were observed in the hemocytes after CCCP exposure. The fluorescence intensity of JC-1 monomers and the abundance of CgLC3Ⅱ in hemocytes both increased after Vibrio splendidus exposure. At the same time, the green signals of CgLC3 were co-localized with red signals of the mitochondria, and the fluorescence intensity of autophagy increased significantly in hemocytes after V. splendidus exposure. The results confirmed the existence of a complete mitophagy pathway in mollusks for the first time, which was helpful for further study on the function of mitochondrial autophagy in mollusks.

4.
Dev Comp Immunol ; 127: 104263, 2022 02.
Article in English | MEDLINE | ID: mdl-34563588

ABSTRACT

Interleukin-17 (IL-17) is a classic pro-inflammatory cytokine that plays an important role in the immune and inflammatory response. In the present study, the sequence feature of CgIL17-5 and its function as a pro-inflammatory factor in inducing the mRNA expressions of downstream immune effectors were investigated in oyster Crassostrea gigas. There were two tightly folded alpha helixes and two pairs of antiparallel beta-pleated sheet in the amino acid sequence of CgIL17-5. The mRNA transcripts of CgIL17-5 were constitutively distributed in all the tested tissues, with the highest level in haemocytes. The mRNA expression level of CgIL17-5 in haemocytes increased significantly at 24 h after Vibrio splendidus stimulation. CgIL17-5 protein was mainly detected in granulocytes which were the main immunocompetent haemocytes in C. gigas. The phosphorylation of mitogen-activated protein kinases (CgJNK, CgERK and CgP38) and nuclear translocation of the transcription factors (CgRel and CgAP-1) in haemocytes were induced after the oysters received an injection of recombinant CgIL17-5 for 2 h. The mRNA expression levels of CgIL-17s, CgTNF-1, Cgdefh1 and Cgdefh2 increased significantly in haemocytes. At the same time, obvious branchial swelling and cilium shedding in gills were observed at 24 h after the oysters received an injection of rCgIL17-5. All the results collectively suggested that CgIL17-5 promoted the activation of CgMAPKs and the nuclear translocation of CgRel and CgAP-1 to promote the mRNA expressions of cytokines and antibacterial peptides.


Subject(s)
Crassostrea , Animals , Crassostrea/genetics , Gene Expression Regulation , Hemocytes , Immunity, Innate/genetics , Phosphorylation , RNA, Messenger/genetics
5.
J Immunol ; 207(12): 3060-3069, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34799429

ABSTRACT

The Stat signaling pathway plays important roles in mediating the secretions of a large number of cytokines and growth factors in vertebrates, which is generally triggered by the growth factor receptor, cytokine receptor, G protein coupled receptor, and receptor protein tyrosine kinase. In the current study, a platelet-derived growth factor receptor (defined as CgPDGFRß) was identified from the Pacific oyster Crassostrea gigas, with a signal peptide, three Ig domains, a transmembrane domain, and an intracellular Ser/Thr/Tyr kinase domain. The two N-terminal Ig domains of CgPDGFRß showed relatively higher binding activity to Gram-negative bacteria and LPS compared with Gram-positive bacteria and peptidoglycan. Upon binding bacteria, CgPDGFRß in hemocytes formed a dimer and interacted with protein tyrosine kinase CgSrc to induce the phosphorylation of CgSrc at Tyr416. The activated CgSrc interacted with CgStat to induce the translocation of CgStat into the nucleus of hemocytes, which then promoted the expressions of Big defensin 1 (CgBigdef1), IL17-4 (CgIL17-4), and TNF (CgTNF1). These findings together demonstrated that the Src/Stat signaling was activated after the binding of CgPDGFRß with bacteria to induce the expressions of CgBigdef1, CgIL17-4, and CgTNF1.


Subject(s)
Crassostrea , Immunity, Innate , Animals , Bacteria , Cytokines , Hemocytes/microbiology
6.
Fish Shellfish Immunol ; 119: 145-153, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34600117

ABSTRACT

Caspase-8 has been reported to be involved not only in apoptosis, but also in many other important immune response processes, such as inflammation and autophagy. In the present study, the open reading frame of CgCaspase-8-2 was cloned from the Pacific oyster Crassostrea gigas, which was of 2160 bp encoding 737 amino acids. There were two death effector domains (DEDs) and a cysteine aspartase cysteine structural (CASc) domain in the deduced amino acid sequences of CgCaspase-8-2. The mRNA expressions of CgCaspase-8-2 in haemocytes and gills all increased significantly after Vibrio splendidus stimulation at 3 h, 6 h, and 24 h. The cleaved CgCaspase-8-2 protein was observed in haemocytes at 3 h after V. splendidus stimulation and the expression of CgCaspase-8-2 protein was relatively higher in granulocytes, compared with that in agranulocytes. In CgCaspase-8-2-RNAi oysters, the mRNA expressions of CgIL17s (CgIL17-1, -2, -3, -4, -6), CgTNF, CgIFNLP and CgBigDef1 all decreased significantly at 12 h after V. splendidus stimulation. Meanwhile, the mRNA expressions of CgATG5 and CgBeclin1 decreased significantly at 12 h after V. splendidus stimulation, while CgBcl2 increased significantly. These results indicated that CgCaspase-8-2 was involved in not only the regulation of cytokine and antibacterial peptide production, but also autophagy-related gene expressions.


Subject(s)
Crassostrea , Cytokines , Animals , Anti-Bacterial Agents , Autophagy , Crassostrea/genetics , Cysteine , Cytokines/genetics , Hemocytes , Immunity, Innate/genetics , RNA, Messenger/genetics
7.
Fish Shellfish Immunol ; 114: 161-170, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33957267

ABSTRACT

The family of fibrinogen-related proteins (FREPs) is a group of proteins with fibrinogen-like (FBG) domains, which play important roles as pattern recognition receptors (PRRs) in the innate immune responses. In the present study, a fibrinogen-like protein was identified from the oyster Crassostrea gigas (defined as CgFREP1). The open reading frame of CgFREP1 was of 966 bp that encoded a predicted polypeptide of 321 amino acids comprising a signal peptide and a fibrinogen-like domain. The mRNA expression of CgFREP1 was detected in all the examined tissues. The recombinant CgFREP1 (rCgFREP1) displayed binding activities to lipopolysaccharide (LPS), mannose (MAN), as well as Gram-positive bacteria (Micrococcus luteus and Staphylococcus aureus) and Gram-negative bacteria (Vibrio splendidus and Escherichia coli). The rCgFREP1 displayed the agglutinating activity towards M. luteus, V. splendidus and E. coli in the presence of Ca2+. rCgFREP1 was able to enhance the phagocytic activity of haemocytes towards V. splendidus, and exhibited binding activity to the CUB domain of CgMASPL-1. These results suggest that CgFREP1 not only serves as a PRR to recognize and agglutinate different bacteria but also mediates the haemocytes phagocytosis towards V. splendidus.


Subject(s)
Crassostrea/microbiology , Hemocytes/physiology , Phagocytosis/physiology , Proteins/metabolism , Vibrio/physiology , Animals , Crassostrea/immunology , Crassostrea/metabolism , Host-Pathogen Interactions , Micrococcus luteus/physiology , Proteins/immunology , Staphylococcus aureus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL