Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Science ; 383(6689): 1312-1317, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38513027

Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide range of therapeutically important but synthetically challenging natural products. Diversification of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding successes made with textbook cis-acyltransferase (cis-AT) PKSs, tailoring such large assembly lines remains challenging. Unlike textbook PKSs, trans-AT PKSs feature an extraordinary diversity of PKS modules and commonly evolve to form hybrid PKSs. In this study, we analyzed amino acid coevolution to identify a common module site that yields functional PKSs. We used this site to insert and delete diverse PKS parts and create 22 engineered trans-AT PKSs from various pathways and in two bacterial producers. The high success rates of our engineering approach highlight the broader applicability to generate complex designer polyketides.


Acyltransferases , Bacterial Proteins , Directed Molecular Evolution , Polyketide Synthases , Polyketides , Recombinant Fusion Proteins , Acyltransferases/genetics , Acyltransferases/chemistry , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Polyketides/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Serratia , Amino Acid Motifs , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics
2.
Nat Rev Drug Discov ; 22(11): 895-916, 2023 11.
Article En | MEDLINE | ID: mdl-37697042

Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature. We also discuss how to address key challenges in realizing the potential of these synergies, such as the need for high-quality datasets to train deep learning algorithms and appropriate strategies for algorithm validation.


Artificial Intelligence , Biological Products , Humans , Algorithms , Machine Learning , Drug Discovery , Drug Design , Biological Products/pharmacology
3.
Elife ; 122023 04 14.
Article En | MEDLINE | ID: mdl-37057993

Bacteria colonize specific niches in the animal gut. However, the genetic basis of these associations is often unclear. The proteobacterium Frischella perrara is a widely distributed gut symbiont of honey bees. It colonizes a specific niche in the hindgut and causes a characteristic melanization response. Genetic determinants required for the establishment of this association, or its relevance for the host, are unknown. Here, we independently isolated three point mutations in genes encoding the DNA-binding protein integration host factor (IHF) in F. perrara. These mutants abolished the production of an aryl polyene metabolite causing the yellow colony morphotype of F. perrara. Inoculation of microbiota-free bees with one of the mutants drastically decreased gut colonization of F. perrara. Using RNAseq, we found that IHF affects the expression of potential colonization factors, including genes for adhesion (type 4 pili), interbacterial competition (type 6 secretion systems), and secondary metabolite production (colibactin and aryl polyene biosynthesis). Gene deletions of these components revealed different colonization defects depending on the presence of other bee gut bacteria. Interestingly, one of the T6SS mutants did not induce the scab phenotype anymore despite colonizing at high levels, suggesting an unexpected role in bacteria-host interaction. IHF is conserved across many bacteria and may also regulate host colonization in other animal symbionts.


Gammaproteobacteria , Gastrointestinal Tract , Bees , Animals , Gastrointestinal Tract/microbiology , Integration Host Factors , Bacteria/genetics
4.
Nat Chem ; 14(10): 1193-1201, 2022 10.
Article En | MEDLINE | ID: mdl-36064972

Host-associated bacteria are increasingly being recognized as underexplored sources of bioactive natural products with unprecedented chemical scaffolds. A recently identified example is the plant-root-associated marine bacterium Gynuella sunshinyii of the chemically underexplored order Oceanospirillales. Its genome contains at least 22 biosynthetic gene clusters, suggesting a rich and mostly uncharacterized specialized metabolism. Here, in silico chemical prediction of a non-canonical polyketide synthase cluster has led to the discovery of janustatins, structurally unprecedented polyketide alkaloids with potent cytotoxicity that are produced in minute quantities. A combination of MS and two-dimensional NMR experiments, density functional theory calculations of 13C chemical shifts and semiquantitative interpretation of transverse rotating-frame Overhauser effect spectroscopy data were conducted to determine the relative configuration, which enabled the total synthesis of both enantiomers and assignment of the absolute configuration. Janustatins feature a previously unknown pyridodihydropyranone heterocycle and an unusual biological activity consisting of delayed, synchronized cell death at subnanomolar concentrations.


Biological Products , Polyketides , Bacteria/metabolism , Biological Products/chemistry , Cytotoxins/metabolism , Cytotoxins/pharmacology , Polyketide Synthases/metabolism , Polyketides/metabolism
5.
Nat Commun ; 12(1): 1422, 2021 03 03.
Article En | MEDLINE | ID: mdl-33658492

Trans-acyltransferase polyketide synthases (trans-AT PKSs) are bacterial multimodular enzymes that biosynthesize diverse pharmaceutically and ecologically important polyketides. A notable feature of this natural product class is the existence of chemical hybrids that combine core moieties from different polyketide structures. To understand the prevalence, biosynthetic basis, and evolutionary patterns of this phenomenon, we developed transPACT, a phylogenomic algorithm to automate global classification of trans-AT PKS modules across bacteria and applied it to 1782 trans-AT PKS gene clusters. These analyses reveal widespread exchange patterns suggesting recombination of extended PKS module series as an important mechanism for metabolic diversification in this natural product class. For three plant-associated bacteria, i.e., the root colonizer Gynuella sunshinyii and the pathogens Xanthomonas cannabis and Pseudomonas syringae, we demonstrate the utility of this computational approach for uncovering cryptic relationships between polyketides, accelerating polyketide mining from fragmented genome sequences, and discovering polyketide variants with conserved moieties of interest. As natural combinatorial hybrids are rare among the more commonly studied cis-AT PKSs, this study paves the way towards evolutionarily informed, rational PKS engineering to produce chimeric trans-AT PKS-derived polyketides.


Acyltransferases/genetics , Bacterial Proteins/genetics , Phylogeny , Polyketide Synthases/genetics , Polyketides/metabolism , Acyltransferases/metabolism , Algorithms , Arabidopsis/microbiology , Bacterial Proteins/metabolism , Evolution, Molecular , Genome, Bacterial , HeLa Cells , Humans , Lactones/metabolism , Macrolides/metabolism , Multigene Family , Piperidones/chemistry , Plants/microbiology , Polyketide Synthases/metabolism , Polyketides/chemistry , Pseudomonas syringae/metabolism , Xanthomonas/metabolism , Xanthomonas/pathogenicity
6.
Environ Microbiol ; 23(5): 2509-2521, 2021 05.
Article En | MEDLINE | ID: mdl-33734547

Glutarimide-containing polyketides are known as potent antitumoral and antimetastatic agents. The associated gene clusters have only been identified in a few Streptomyces producers and Burkholderia gladioli symbiont. The new glutarimide-family polyketides, denominated sesbanimides D, E and F along with the previously known sesbanimide A and C, were isolated from two marine alphaproteobacteria Stappia indica PHM037 and Labrenzia aggregata PHM038. Structures of the isolated compounds were elucidated based on 1D and 2D homo and heteronuclear NMR analyses and ESI-MS spectrometry. All compounds exhibited strong antitumor activity in lung, breast and colorectal cancer cell lines. Subsequent whole genome sequencing and genome mining revealed the presence of the trans-AT PKS gene cluster responsible for the sesbanimide biosynthesis, described as sbn cluster. Strikingly, the modular architecture of downstream mixed type PKS/NRPS, SbnQ, revealed high similarity to PedH in pederin and Lab13 in labrenzin gene clusters, although those clusters are responsible for the production of structurally completely different molecules. The unexpected presence of SbnQ homologues in unrelated polyketide gene clusters across phylogenetically distant bacteria, raises intriguing questions about the evolutionary relationship between glutarimide-like and pederin-like pathways, as well as the functionality of their synthetic products.


Polyketides , Rhodobacteraceae , Multigene Family , Polyketide Synthases/genetics , Symbiosis
7.
Nat Chem ; 12(10): 968-972, 2020 10.
Article En | MEDLINE | ID: mdl-32778689

Class II terpene cyclases, such as oxidosqualene and squalene-hopene cyclases, catalyse some of the most complex polycyclization reactions. They minimally exhibit a ß,γ-didomain architecture that has been evolutionarily repurposed in a wide range of terpene-processing enzymes and likely resulted from a fusion of unidentified monodomain proteins. Although single domain class I terpene cyclases have already been identified, the corresponding class II counterparts have not been previously reported. Here we present high-resolution X-ray structures of a monodomain class II cyclase, merosterolic acid synthase (MstE). With a minimalistic ß-domain architecture, this cyanobacterial enzyme is able to construct four rings in cytotoxic meroterpenoids with a sterol-like topology. The structures with bound substrate, product, and inhibitor provide detailed snapshots of a cyclization mechanism largely governed by residues located in a noncanonical enzyme region. Our results complement the few known class II cyclase crystal structures, while also indicating that archaic monodomain cyclases might have already catalyzed complex reaction cascades.


Fatty Acid Synthases/chemistry , Terpenes/chemistry , Biocatalysis , Crystallography, X-Ray , Cyanobacteria/enzymology , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Models, Molecular , Molecular Structure , Terpenes/metabolism
...