Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 285
1.
Alzheimers Dement ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38713744

INTRODUCTION: Cerebrovascular dysfunction is a pathological hallmark of Alzheimer's disease (AD). Nevertheless, detecting cerebrovascular changes within bulk tissues has limited our ability to characterize proteomic alterations from less abundant cell types. METHODS: We conducted quantitative proteomics on bulk brain tissues and isolated cerebrovasculature from the same individuals, encompassing control (N = 28), progressive supranuclear palsy (PSP) (N = 18), and AD (N = 21) cases. RESULTS: Protein co-expression network analysis identified unique cerebrovascular modules significantly correlated with amyloid plaques, cerebrovascular amyloid angiopathy (CAA), and/or tau pathology. The protein products within AD genetic risk loci were concentrated within cerebrovascular modules. The overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with cerebrovascular network highlighted a significant increase of matrisome proteins, SMOC1 and SMOC2, in CSF, plasma, and brain. DISCUSSION: These findings enhance our understanding of cerebrovascular deficits in AD, shedding light on potential biomarkers associated with CAA and vascular dysfunction in neurodegenerative diseases.

2.
bioRxiv ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38712030

Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within the non-Hispanic White (NHW) population. Here we aimed to provide comprehensive insights into the proteomic landscape of AD across diverse racial and ethnic groups. Methods: Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. Sinai School of Medicine) and were harmonized through neuropathological evaluation, specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC tissue samples (998 unique individuals), 333 were from African American donors, 223 from Latino Americans, 529 from NHW donors, and the rest were from a mixed or unknown racial background. Among 280 STG tissue samples (244 unique individuals), 86 were African American, 76 Latino American, 116 NHW and the rest were mixed or unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem mass tag mass spectrometry (TMT-MS). Results: As a Quality control (QC) measure, proteins with more than 50% missing values were removed and iterative principal component analysis was conducted to remove outliers within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and STG proteome, respectively, of which approximately 9,000 proteins were shared between regions. Protein levels of microtubule-associated protein tau (MAPT) and amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues with a strong association with CERAD and Braak across racial groups. APOE4 protein levels in brain were highly concordant with APOE genotype of the individuals. Discussion: This comprehensive region resolved large-scale proteomic dataset provides a resource for the understanding of ethnoracial-specific protein differences in AD brain.

3.
bioRxiv ; 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38659743

INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked African Americans (AA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in AD (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from AA (n=306), LA (n=326), or AA and LA (n=4) brain donors plus Non-Hispanic White (n=252) and other (n=20) ethnic groups, to establish a foundational dataset enriched for AA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: Inclusion of traditionally underrepresented groups in multi-omics studies is essential to discover the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD.

4.
Environ Health Perspect ; 132(4): 47001, 2024 Apr.
Article En | MEDLINE | ID: mdl-38567968

BACKGROUND: Epidemiological evidence suggests air pollution adversely affects cognition and increases the risk of Alzheimer's disease (AD), but little is known about the biological effects of fine particulate matter (PM2.5, particulate matter with aerodynamic diameter ≤2.5µm) on early predictors of future disease risk. OBJECTIVES: We investigated the association between 1-, 3-, and 5-y exposure to ambient and traffic-related PM2.5 and cerebrospinal fluid (CSF) biomarkers of AD. METHODS: We conducted a cross-sectional analysis using data from 1,113 cognitively healthy adults (45-75 y of age) from the Emory Healthy Brain Study in Georgia in the United States. CSF biomarker concentrations of Aß42, tTau, and pTau, were collected at enrollment (2016-2020) and analyzed with the Roche Elecsys system. Annual ambient and traffic-related residential PM2.5 concentrations were estimated at a 1-km and 250-m resolution, respectively, and computed for each participant's geocoded address, using three exposure time periods based on specimen collection date. Associations between PM2.5 and CSF biomarker concentrations, considering continuous and dichotomous (dichotomized at clinical cutoffs) outcomes, were estimated with multiple linear/logistic regression, respectively, controlling for potential confounders (age, gender, race, ethnicity, body mass index, and neighborhood socioeconomic status). RESULTS: Interquartile range (IQR; IQR=0.845) increases in 1-y [ß:-0.101; 95% confidence interval (CI): -0.18, -0.02] and 3-y (ß:-0.078; 95% CI: -0.15, -0.00) ambient PM2.5 exposures were negatively associated with Aß42 CSF concentrations. Associations between ambient PM2.5 and Aß42 were similar for 5-y estimates (ß:-0.076; 95% CI: -0.160, 0.005). Dichotomized CSF variables revealed similar associations between ambient PM2.5 and Aß42. Associations with traffic-related PM2.5 were similar but not significant. Associations between PM2.5 exposures and tTau, pTau tTau/Aß42, or pTau/Aß42 levels were mainly null. CONCLUSION: In our study, consistent trends were found between 1-y PM2.5 exposure and decreased CSF Aß42, which suggests an accumulation of amyloid plaques in the brain and an increased risk of developing AD. https://doi.org/10.1289/EHP13503.


Air Pollutants , Air Pollution , Alzheimer Disease , Adult , Humans , United States , Particulate Matter/analysis , Air Pollutants/analysis , Alzheimer Disease/epidemiology , Cross-Sectional Studies , Environmental Exposure/analysis , Air Pollution/analysis , Biomarkers/analysis
5.
Res Sq ; 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38464223

Introduction: Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to ß-amyloid (Aß) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. Methods: We employed heparin affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to capture and enrich HBPs in plasma obtained from AD (n=62) and control (n=47) samples. These profiles were then correlated to a consensus AD brain proteome, as well as with Aß, tau and phosphorylated tau (pTau) CSF biomarkers from the same individuals. We then leveraged published human postmortem brain proteome datasets to assess the overlap with the heparin-enriched plasma proteome. Results: Heparin-enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundance proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude were detectable. Utilizing a consensus AD brain protein co-expression network, we observed that specific plasma HBPs exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes highlighting the complex interplay between the two compartments. Elevated HBPs in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate within Aß deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and APOE. Additionally, heparin enriched plasma proteins demonstrated significant correlations with conventional AD CSF biomarkers, including Aß, total tau, pTau, and plasma pTau from the same individuals. Conclusion: These findings support the utility of a heparin-affinity approach for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.

6.
Acta Neuropathol ; 147(1): 29, 2024 Feb 03.
Article En | MEDLINE | ID: mdl-38308693

The aggregation, mislocalization, and phosphorylation of TDP-43 are pathologic hallmarks of several neurodegenerative diseases and provide a defining criterion for the neuropathologic diagnosis of Limbic-predominant Age-related TDP-43 Encephalopathy (LATE). LATE neuropathologic changes (LATE-NC) are often comorbid with other neurodegenerative pathologies including Alzheimer's disease neuropathologic changes (ADNC). We examined whether TDP-43 regulated cryptic exons accumulate in the hippocampus of neuropathologically confirmed LATE-NC cases. We found that several cryptic RNAs are robustly expressed in LATE-NC cases with or without comorbid ADNC and correlate with pTDP-43 abundance; however, the accumulation of cryptic RNAs is more robust in LATE-NC with comorbid ADNC. Additionally, cryptic RNAs can robustly distinguish LATE-NC from healthy controls and AD cases. These findings expand our current understanding and provide novel potential biomarkers for LATE pathogenesis.


Alzheimer Disease , Dementia , TDP-43 Proteinopathies , Humans , Brain/pathology , TDP-43 Proteinopathies/pathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Aging/genetics , Aging/pathology , DNA-Binding Proteins/metabolism , Exons
7.
bioRxiv ; 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38328211

Lewy body dementia (LBD), a class of disorders comprising Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer's disease (AD). The identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkinson's disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network protein alterations in those with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those observed in network analyses of AD cases. The LBD network revealed numerous groups or "modules" of co-expressed proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. We also found that glial-associated matrisome signatures consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source of biomarkers that could enhance clinical recognition and management.

8.
Alzheimers Dement ; 20(4): 2538-2551, 2024 Apr.
Article En | MEDLINE | ID: mdl-38345197

INTRODUCTION: Growing evidence indicates that fine particulate matter (PM2.5) is a risk factor for Alzheimer's disease (AD), but the underlying mechanisms have been insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in brain tissue as a potential mediator of this association. METHODS: We assessed genome-wide DNAm (Illumina EPIC BeadChips) in prefrontal cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD, ABC score) for 159 donors, and estimated donors' residential traffic-related PM2.5 exposure 1, 3, and 5 years prior to death. We used a combination of the Meet-in-the-Middle approach, high-dimensional mediation analysis, and causal mediation analysis to identify potential mediating CpGs. RESULTS: PM2.5 was significantly associated with differential DNAm at cg25433380 and cg10495669. Twenty-four CpG sites were identified as mediators of the association between PM2.5 exposure and neuropathology markers, several located in genes related to neuroinflammation. DISCUSSION: Our findings suggest differential DNAm related to neuroinflammation mediates the association between traffic-related PM2.5 and AD. HIGHLIGHTS: First study to evaluate the potential mediation effect of DNA methylation for the association between PM2.5 exposure and neuropathological changes of Alzheimer's disease. Study was based on brain tissues rarely investigated in previous air pollution research. Cg10495669, assigned to RBCK1 gene playing a role in inflammation, was associated consistently with 1-year, 3-year, and 5-year traffic-related PM2.5 exposures prior to death. Meet-in-the-middle approach and high-dimensional mediation analysis were used simultaneously to increase the potential of identifying the differentially methylated CpGs. Differential DNAm related to neuroinflammation was found to mediate the association between traffic-related PM2.5 and Alzheimer's disease.


Alzheimer Disease , DNA Methylation , Humans , Alzheimer Disease/genetics , Neuroinflammatory Diseases , Particulate Matter/adverse effects , Brain
9.
Bioelectron Med ; 10(1): 4, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38321561

BACKGROUND: Seizure detection is challenging outside the clinical environment due to the lack of comfortable, reliable, and practical long-term neurophysiological monitoring devices. We developed a novel, discreet, unobstructive in-ear sensing system that enables long-term electroencephalography (EEG) recording. This is the first study we are aware of that systematically compares the seizure detection utility of in-ear EEG with that of simultaneously recorded intracranial EEG. In addition, we present a similar comparison between simultaneously recorded in-ear EEG and scalp EEG. METHODS: In this foundational research, we conducted a clinical feasibility study and validated the ability of the ear-EEG system to capture focal-onset seizures against 1255 hrs of simultaneous ear-EEG data along with scalp or intracranial EEG in 20 patients with refractory focal epilepsy (11 with scalp EEG, 8 with intracranial EEG, and 1 with both). RESULTS: In a blinded, independent review of the ear-EEG signals, two epileptologists were able to detect 86.4% of the seizures that were subsequently identified using the clinical gold standard EEG modalities, with a false detection rate of 0.1 per day, well below what has been reported for ambulatory monitoring. The few seizures not detected on the ear-EEG signals emanated from deep within the mesial temporal lobe or extra-temporally and remained very focal, without significant propagation. Following multiple sessions of recording for a median continuous wear time of 13 hrs, patients reported a high degree of tolerance for the device, with only minor adverse events reported by the scalp EEG cohort. CONCLUSIONS: These preliminary results demonstrate the potential of using ear-EEG to enable routine collection of complementary, prolonged, and remote neurophysiological evidence, which may permit real-time detection of paroxysmal events such as seizures and epileptiform discharges. This study suggests that the ear-EEG device may assist clinicians in making an epilepsy diagnosis, assessing treatment efficacy, and optimizing medication titration.

10.
Brain ; 147(5): 1622-1635, 2024 May 03.
Article En | MEDLINE | ID: mdl-38301270

Cholesterol homeostasis is impaired in Alzheimer's disease; however, attempts to modulate brain cholesterol biology have not translated into tangible clinical benefits for patients to date. Several recent milestone developments have substantially improved our understanding of how excess neuronal cholesterol contributes to the pathophysiology of Alzheimer's disease. Indeed, neuronal cholesterol was linked to the formation of amyloid-ß and neurofibrillary tangles through molecular pathways that were recently delineated in mechanistic studies. Furthermore, remarkable advances in translational molecular imaging have now made it possible to probe cholesterol metabolism in the living human brain with PET, which is an important prerequisite for future clinical trials that target the brain cholesterol machinery in Alzheimer's disease patients-with the ultimate aim being to develop disease-modifying treatments. This work summarizes current concepts of how the biosynthesis, transport and clearance of brain cholesterol are affected in Alzheimer's disease. Further, current strategies to reverse these alterations by pharmacotherapy are critically discussed in the wake of emerging translational research tools that support the assessment of brain cholesterol biology not only in animal models but also in patients with Alzheimer's disease.


Alzheimer Disease , Brain , Cholesterol , Drug Development , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Humans , Cholesterol/metabolism , Brain/metabolism , Animals , Drug Development/methods
11.
Neurology ; 102(5): e209162, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38382009

BACKGROUND AND OBJECTIVES: Fine particulate matter (PM2.5) exposure has been found to be associated with Alzheimer disease (AD) and is hypothesized to cause inflammation and oxidative stress in the brain, contributing to neuropathology. The APOE gene, a major genetic risk factor of AD, has been hypothesized to modify the association between PM2.5 and AD. However, little prior research exists to support these hypotheses. This study investigates the association between traffic-related PM2.5 and AD hallmark pathology, including effect modification by APOE genotype, in an autopsy cohort. METHODS: A cross-sectional study was conducted using brain tissue donors enrolled in the Emory Goizueta AD Research Center who died before 2020 (n = 224). Donors were assessed for AD pathology including the Braak stage, Consortium to Establish a Registry for AD (CERAD) score, and combined AD neuropathologic change (ABC) score. Traffic-related PM2.5 concentrations were modeled for the metro-Atlanta area during 2002-2019 with a spatial resolution of 200-250 m. One-year, 3-year, and 5-year average PM2.5 concentrations before death were matched to participants' home address. We assessed the association between traffic-related PM2.5 and AD hallmark pathology and effect modification by APOE genotype, using adjusted ordinal logistic regression models. RESULTS: Among the 224 participants, the mean age of death was 76 years, and 57% had at least 1 APOE ε4 copy. Traffic-related PM2.5 was significantly associated with the CERAD score for the 1-year exposure window (odds ratio [OR] 1.92; 95% CI 1.12-3.30) and the 3-year exposure window (OR 1.87; 95% CI 1.01-3.17). PM2.5 was also associated with higher Braak stage and ABC score albeit nonsignificantly. The strongest associations between PM2.5 and neuropathology markers were among those without APOE ε4 alleles (e.g., for the CERAD score and 1-year exposure window, OR 2.31; 95% CI 1.36-3.94), though interaction between PM2.5 and APOE genotype was not statistically significant. DISCUSSION: Our study found traffic-related PM2.5 exposure was associated with the CERAD score in an autopsy cohort, contributing to epidemiologic evidence that PM2.5 affects ß-amyloid deposition in the brain. This association was particularly strong among donors without APOE ε4 alleles. Future studies should further investigate the biological mechanisms behind this association.


Alzheimer Disease , Humans , Aged , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Cross-Sectional Studies , Genotype , Brain/pathology , Apolipoproteins E/genetics
12.
Article En | MEDLINE | ID: mdl-38406564

Social interaction behaviors change as a result of both physical and psychiatric problems, and it is important to identify subtle changes in group activity engagements for monitoring the mental health of patients in clinics. This work proposes a system to identify when and where group formations occur in an approximately 1700 m2 therapeutic built environment using a distributed edge-computing camera network. The proposed method can localize group formations when provided with noisy positions and orientations of individuals, estimated from sparsely distributed multiview cameras, which run a lightweight multiperson 2-D pose detection model. Our group identification method demonstrated an F1 score of up to 90% with a mean absolute error of 1.25 m for group localization on our benchmark dataset. The dataset consisted of seven subjects walking, sitting, and conversing for 35 min in groups of various sizes ranging from 2 to 7 subjects. The proposed system is low-cost and scalable to any ordinary building to transform the indoor space into a smart environment using edge computing systems. We expect the proposed system to enhance existing therapeutic units for passively monitoring the social behaviors of patients when implementing real-time interventions.

13.
Neurology ; 102(1): e207816, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38165375

BACKGROUND AND OBJECTIVES: Prior work suggests that cognitive resilience may contribute to the heterogeneity of cognitive decline. This study examined whether distinct cortical proteins provide resilience for different cognitive abilities. METHODS: Participants were from the Religious Orders Study or the Rush Memory and Aging Project who had undergone annual assessments of 5 cognitive abilities and postmortem assessment of 9 Alzheimer disease and related dementia (ADRD) pathologies. Proteome-wide examination of the dorsolateral prefrontal cortex using tandem mass tag and liquid chromatography-mass spectrometry yielded 8,425 high-abundance proteins. We applied linear mixed-effect models to quantify residual cognitive change (cognitive resilience) of 5 cognitive abilities by regressing out cognitive decline related to age, sex, education, and indices of ADRD pathologies. Then we added terms for each of the individual proteins to identify cognitive resilience proteins associated with the different cognitive abilities. RESULTS: We included 604 decedents (69% female; mean age at death = 89 years) with proteomic data. A total of 47 cortical proteins that provide cognitive resilience were identified: 22 were associated with specific cognitive abilities, and 25 were common to at least 2 cognitive abilities. NRN1 was the only protein that was associated with more than 2 cognitive abilities (semantic memory: estimate = 0.020, SE = 0.004, p = 2.2 × 10-6; episodic memory: estimate = 0.029, SE = 0.004, p = 5.8 × 10-1; and working memory: estimate = 0.021, SE = 0.004, p = 1.2 × 10-7). Exploratory gene ontology analysis suggested that among top molecular pathways, mitochondrial translation was a molecular mechanism providing resilience in episodic memory, while nuclear-transcribed messenger RNA catabolic processes provided resilience in working memory. DISCUSSION: This study identified cortical proteins associated with various cognitive abilities. Differential associations across abilities may reflect distinct underlying biological pathways. These data provide potential high-value targets for further mechanistic and drug discovery studies to develop targeted treatments to prevent loss of cognition.


Memory, Episodic , Neuropeptides , Resilience, Psychological , Female , Humans , Aged, 80 and over , Male , Proteome , Proteomics , Cognition , GPI-Linked Proteins
14.
medRxiv ; 2024 Jan 13.
Article En | MEDLINE | ID: mdl-38260583

Background: To date, there is no high throughput proteomic study in the context of Autosomal Dominant Alzheimer's disease (ADAD). Here, we aimed to characterize early CSF proteome changes in ADAD and leverage them as potential biomarkers for disease monitoring and therapeutic strategies. Methods: We utilized Somascan® 7K assay to quantify protein levels in the CSF from 291 mutation carriers (MCs) and 185 non-carriers (NCs). We employed a multi-layer regression model to identify proteins with different pseudo-trajectories between MCs and NCs. We replicated the results using publicly available ADAD datasets as well as proteomic data from sporadic Alzheimer's disease (sAD). To biologically contextualize the results, we performed network and pathway enrichment analyses. Machine learning was applied to create and validate predictive models. Findings: We identified 125 proteins with significantly different pseudo-trajectories between MCs and NCs. Twelve proteins showed changes even before the traditional AD biomarkers (Aß42, tau, ptau). These 125 proteins belong to three different modules that are associated with age at onset: 1) early stage module associated with stress response, glutamate metabolism, and mitochondria damage; 2) the middle stage module, enriched in neuronal death and apoptosis; and 3) the presymptomatic stage module was characterized by changes in microglia, and cell-to-cell communication processes, indicating an attempt of rebuilding and establishing new connections to maintain functionality. Machine learning identified a subset of nine proteins that can differentiate MCs from NCs better than traditional AD biomarkers (AUC>0.89). Interpretation: Our findings comprehensively described early proteomic changes associated with ADAD and captured specific biological processes that happen in the early phases of the disease, fifteen to five years before clinical onset. We identified a small subset of proteins with the potentials to become therapy-monitoring biomarkers of ADAD MCs. Funding: Proteomic data generation was supported by NIH: RF1AG044546.

15.
medRxiv ; 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38260316

Dysfunction of the neurovascular unit stands as a significant pathological hallmark of Alzheimer's disease (AD) and age-related neurodegenerative diseases. Nevertheless, detecting vascular changes in the brain within bulk tissues has proven challenging, limiting our ability to characterize proteomic alterations from less abundant cell types. To address this challenge, we conducted quantitative proteomic analyses on both bulk brain tissues and cerebrovascular-enriched fractions from the same individuals, encompassing cognitively unimpaired control, progressive supranuclear palsy (PSP), and AD cases. Protein co-expression network analysis identified modules unique to the cerebrovascular fractions, specifically enriched with pericytes, endothelial cells, and smooth muscle cells. Many of these modules also exhibited significant correlations with amyloid plaques, cerebral amyloid angiopathy (CAA), and/or tau pathology in the brain. Notably, the protein products within AD genetic risk loci were found concentrated within modules unique to the vascular fractions, consistent with a role of cerebrovascular deficits in the etiology of AD. To prioritize peripheral AD biomarkers associated with vascular dysfunction, we assessed the overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with a vascular-enriched network modules in the brain. This analysis highlighted matrisome proteins, SMOC1 and SMOC2, as being increased in CSF, plasma, and brain. Immunohistochemical analysis revealed SMOC1 deposition in both parenchymal plaques and CAA in the AD brain, whereas SMOC2 was predominantly localized to CAA. Collectively, these findings significantly enhance our understanding of the involvement of cerebrovascular abnormalities in AD, shedding light on potential biomarkers and molecular pathways associated with CAA and vascular dysfunction in neurodegenerative diseases.

16.
IEEE Trans Biomed Eng ; 71(4): 1197-1208, 2024 Apr.
Article En | MEDLINE | ID: mdl-37943643

OBJECTIVE: Individuals with cognitive impairment (CI) exhibit different oculomotor functions and viewing behaviors. In this work we aimed to quantify the differences in these functions with CI severity, and assess general CI and specific cognitive functions related to visual exploration behaviors. METHODS: A validated passive viewing memory test with eyetracking was administered to 348 healthy controls and CI individuals. Spatiotemporal properties of the scanpath, the semantic category of the viewed regions, and other composite features were extracted from the estimated eyegaze locations on the corresponding pictures displayed during the test. These features were then used to characterize viewing patterns, classify cognitive impairment, and estimate scores in various neuropsychological tests using machine learning. RESULTS: Statistically significant differences in spatial, spatiotemporal, and semantic features were found between healthy controls and individuals with CI. The CI group spent more time gazing at the center of the image, looked at more regions of interest (ROI), transitioned less often between ROI yet in a more unpredictable manner, and exhibited different semantic preferences. A combination of these features achieved an area under the receiver-operator curve of 0.78 in differentiating CI individuals from controls. Statistically significant correlations were identified between actual and estimated CI scores and other neuropsychological tests. CONCLUSION: Evaluating visual exploration behaviors provided quantitative and systematic evidence of differences in CI individuals, leading to an improved approach for passive cognitive impairment screening. SIGNIFICANCE: The proposed passive, accessible, and scalable approach could help with earlier detection and a better understanding of cognitive impairment.


Cognitive Dysfunction , Humans , Cognitive Dysfunction/diagnosis , Neuropsychological Tests , Cognition , Machine Learning
17.
Ann Neurol ; 95(3): 495-506, 2024 Mar.
Article En | MEDLINE | ID: mdl-38038976

OBJECTIVE: Biomarkers of Alzheimer disease vary between groups of self-identified Black and White individuals in some studies. This study examined whether the relationships between biomarkers or between biomarkers and cognitive measures varied by racialized groups. METHODS: Cerebrospinal fluid (CSF), amyloid positron emission tomography (PET), and magnetic resonance imaging measures were harmonized across four studies of memory and aging. Spearman correlations between biomarkers and between biomarkers and cognitive measures were calculated within each racialized group, then compared between groups by standard normal tests after Fisher's Z-transformations. RESULTS: The harmonized dataset included at least one biomarker measurement from 495 Black and 2,600 White participants. The mean age was similar between racialized groups. However, Black participants were less likely to have cognitive impairment (28% vs 36%) and had less abnormality of some CSF biomarkers including CSF Aß42/40, total tau, p-tau181, and neurofilament light. CSF Aß42/40 was negatively correlated with total tau and p-tau181 in both groups, but at a smaller magnitude in Black individuals. CSF Aß42/40, total tau, and p-tau181 had weaker correlations with cognitive measures, especially episodic memory, in Black than White participants. Correlations of amyloid measures between CSF (Aß42/40, Aß42) and PET imaging were also weaker in Black than White participants. Importantly, no differences based on race were found in correlations between different imaging biomarkers, or in correlations between imaging biomarkers and cognitive measures. INTERPRETATION: Relationships between CSF biomarkers but not imaging biomarkers varied by racialized groups. Imaging biomarkers performed more consistently across racialized groups in associations with cognitive measures. ANN NEUROL 2024;95:495-506.


Alzheimer Disease , Cognition , Cognitive Dysfunction , Humans , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Positron-Emission Tomography , tau Proteins/cerebrospinal fluid , Black or African American , White
19.
Sensors (Basel) ; 23(23)2023 Nov 30.
Article En | MEDLINE | ID: mdl-38067890

Spatial navigation patterns in indoor space usage can reveal important cues about the cognitive health of participants. In this work, we present a low-cost, scalable, open-source edge computing system using Bluetooth low energy (BLE) beacons for tracking indoor movements in a large, 1700 m2 facility used to carry out therapeutic activities for participants with mild cognitive impairment (MCI). The facility is instrumented with 39 edge computing systems, along with an on-premise fog server. The participants carry a BLE beacon, in which BLE signals are received and analyzed by the edge computing systems. Edge computing systems are sparsely distributed in the wide, complex indoor space, challenging the standard trilateration technique for localizing subjects, which assumes a dense installation of BLE beacons. We propose a graph trilateration approach that considers the temporal density of hits from the BLE beacon to surrounding edge devices to handle the inconsistent coverage of edge devices. This proposed method helps us tackle the varying signal strength, which leads to intermittent detection of beacons. The proposed method can pinpoint the positions of multiple participants with an average error of 4.4 m and over 85% accuracy in region-level localization across the entire study area. Our experimental results, evaluated in a clinical environment, suggest that an ordinary medical facility can be transformed into a smart space that enables automatic assessment of individuals' movements, which may reflect health status or response to treatment.


Cloud Computing , Spatial Navigation , Humans , Wireless Technology , Health Status , Movement , Spatial Navigation/physiology
20.
medRxiv ; 2023 Oct 30.
Article En | MEDLINE | ID: mdl-37961720

Alzheimer's disease (AD) is currently defined at the research level by the aggregation of amyloid-ß (Aß) and tau proteins in brain. While biofluid biomarkers are available to measure Aß and tau pathology, few biomarkers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here we describe the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals as assessed by two different proteomic technologies-tandem mass tag (TMT) mass spectrometry and SomaScan. Harmonization and integration of both data types allowed for generation of a robust protein co-expression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen associated protein kinase (MAPK) signaling, neddylation, and mitochondrial biology, and overlapped with a previously described lipoprotein module in serum. Neddylation and oxidant detoxification/MAPK signaling modules had a negative association with APOE ε4 whereas the mitochondrion module had a positive association with APOE ε4. The directions of association were consistent between CSF and blood in two independent longitudinal cohorts, and altered levels of all three modules in blood were associated with dementia over 20 years prior to diagnosis. Dual-proteomic platform analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Individuals who had more severe glycolytic changes at baseline responded better to ATX. Clustering of individuals based on their CSF proteomic network profiles revealed ten groups that did not cleanly stratify by Aß and tau status, underscoring the heterogeneity of pathological changes not fully reflected by Aß and tau. AD biofluid proteomics holds promise for the development of biomarkers that reflect diverse pathologies for use in clinical trials and precision medicine.

...