Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 339: 122250, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823917

ABSTRACT

Glycyrrhizae Radix et rhizome/licorice is a precious herb in traditional Chinese medicine (TCM). TCM's polysaccharides are medicinally active. But herbal polysaccharides pose some limitations for topical applications. Therefore, this study aimed to utilize licorice polysaccharide via mesoporous silica nanoparticles (MSN) for anti-acne efficacy in topical delivery. The polysaccharide (GGP) was extracted with a 10 % NaOH solution. Chemical characterization suggested that GGP possesses an Mw of 267.9 kDa, comprised primarily of Glc (54.1 %) and Ara (19.12 %), and probably 1,4-linked Glc as a backbone. Then, MSN and amino-functionalized MSN were synthesized, GGP entrapped, and coated with polydopamine (PDA) to produce nanoparticle cargo. The resulted product exhibited 76 % entrapment efficiency and an in vitro release of 89 % at pH 5, which is usually an acne-prone skin's pH. Moreover, it significantly increased Sebocytes' cellular uptake. GGP effectively acted as an anti-acne agent and preserved its efficacy in synthesized nanoparticles. In vivo, the results showed that a 20 % gel of MSN-NH2-GGP@PDA could mediate an inflammatory response via inhibiting pro-inflammatory cytokines and regulating anti-inflammatory cytokines. The MSN-NH2-GGP@PDA inhibited TLR2-activated-MAPK and NF-κB pathway triggered by heat-killed P. acnes. In conclusion, fabricated MSN entrapped GGP for biomimetic anti-acne efficacy in topical application.


Subject(s)
Acne Vulgaris , Glycyrrhiza , Nanoparticles , Polysaccharides , Silicon Dioxide , Glycyrrhiza/chemistry , Silicon Dioxide/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Nanoparticles/chemistry , Animals , Porosity , Acne Vulgaris/drug therapy , Mice , Administration, Topical , Humans , Drug Carriers/chemistry , Drug Liberation , Indoles , Polymers
2.
Chin J Nat Med ; 22(4): 365-374, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658099

ABSTRACT

Phorbol esters are recognized for their dual role as anti-HIV-1 agents and as activators of protein kinase C (PKC). The efficacy of phorbol esters in binding with PKC is attributed to the presence of oxygen groups at positions C20, C3/C4, and C9 of phorbol. Concurrently, the lipids located at positions C12/C13 are essential for both the anti-HIV-1 activity and the formation of the PKC-ligand complex. The influence of the cyclopropane ring at positions C13 and C14 in phorbol derivatives on their anti-HIV-1 activity requires further exploration. This research entailed the hydrolysis of phorbol, producing seco-cyclic phorbol derivatives. The anti-HIV-1 efficacy of these derivatives was assessed, and the affinity constant (Kd) for PKC-δ protein of selected seco-cyclic phorbol derivatives was determined through isothermal titration calorimetry. The findings suggest that the chemical modification of cyclopropanols could affect both the anti-HIV-1 activity and the PKC binding affinity. Remarkably, compound S11, with an EC50 of 0.27 µmol·L-1 and a CC50 of 153.92 µmol·L-1, demonstrated a potent inhibitory effect on the intermediate products of HIV-1 reverse transcription (ssDNA and 2LTR), likely acting at the viral entry stage, yet showed no affinity for the PKC-δ protein. These results position compound S11 as a potential candidate for further preclinical investigation and for studies aimed at elucidating the pharmacological mechanism underlying its anti-HIV-1 activity.


Subject(s)
Anti-HIV Agents , HIV-1 , HIV-1/drug effects , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Phorbol Esters/pharmacology , Phorbol Esters/chemistry , Molecular Structure , Protein Kinase C/metabolism , Protein Kinase C/chemistry , Structure-Activity Relationship
3.
Int J Biol Macromol ; 267(Pt 2): 131551, 2024 May.
Article in English | MEDLINE | ID: mdl-38621566

ABSTRACT

Gentiana dahurica Fisch. (G. dahurica) is one of the legitimate sources of Qinjiao in Traditional Chinese Medicine (TCM) and grows on high-altitude plateaus. Plants develop unique biochemical accumulations to resist plateau conditions, especially the strong UV irradiation. Thus, this study aimed to investigate the polysaccharide of G. dahurica (GDP), its structure and its activity against UVB irradiation. Four GDPs were isolated and two of them were subjected to structural elucidation. The results suggested that GDP-1 has 53.5 % Ara and 30.8 % GalA as its main monosaccharides, with a molecular weight (Mw) of 23 kDa; the GDP-2 has 33.9 % Ara and 48.5 % GalA, with a Mw of 82 kDa. Methylation and NMR spectroscopy analysis revealed that GDP-1 contains →5)-α-Araf-(1 â†’ 5)-α-Araf-(1 â†’ 3,5)-α-Araf-(1 â†’ 3,4)-α-GalpA-(6-OMe)-(1→ as the main chain, the branches of GalA (with esterification), and the terminal Ara; the GDP-2 contains →4)-α-GalpA-(1 â†’ 4)-α-GalpA-(6-OMe)-(1 â†’ 5)-α-Araf-(1 â†’ 3,5)-α-Araf-(1→ as the main chain, the branches of →5)-α-Araf-(1-5)-α-Araf, and the terminal GalA. Both GDP-1 and GDP-2 exhibited concentration-dependent antioxidant activity against DPPH, ABTS and hydroxyl radicals. Moreover, GDPs significantly attenuated the decreases in viability and proliferation of HaCaT cells after UVB irradiation. They can scavenge reactive oxygen species (ROS) and improve the activities of endogenous antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH). The potential mechanism explored by flow cytometry assays of cell apoptosis and cell cycle distribution suggested that GDPs exert protective effects against UVB irradiation by reducing ROS and attenuating S phase cell arrest. In brief, the GDP-1 and GDP-2 are α-1,3- and α-1,4- arabinogalacturonan, respectively. The high content of Ara could be attributed to biochemical accumulation in resisting to the plateau environment and to prevent UVB irradiation-related damage in cells. These findings provide insight into authentic medicinal herbs and the development of GDPs in the modern pharmaceutical and cosmetics industry.


Subject(s)
Antioxidants , Gentiana , Polysaccharides , Ultraviolet Rays , Polysaccharides/pharmacology , Polysaccharides/chemistry , Gentiana/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Monosaccharides/analysis , Molecular Weight , Methylation , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/chemistry , Radiation-Protective Agents/isolation & purification
4.
Int J Biol Macromol ; 266(Pt 1): 130725, 2024 May.
Article in English | MEDLINE | ID: mdl-38490394

ABSTRACT

Carrageenan (CGN) is a typical sulfated polysaccharide widely applied in the food and pharmaceutical industries. Its in vivo behavior plays vital roles in understanding structural and biological functional relationships. The lack of UV chromophores in highly sulfated polysaccharides presents a challenge for their in vivo behavior studies. Therefore, this study aimed to develop a fast and effective quantitative fluorescence method for investigating the pharmacokinetics and tissue distribution of CGN. Fluorescence isothiocyanate labeling of CGN (FCGN) and microplate reader-based measurements were developed and validated to study its pharmacokinetics. These results showed that the FCGN concentration peaked at 3 h, the mean residence time was 36.6 h, and the clearance rate was 0.1 L/h/kg. Most of the FCGN was excreted in the feces, while 9.2 % was excreted in the urine, suggesting absorption and metabolism. The pharmacokinetic parameters indicated that the FCGN was absorbed quickly, eliminated slowly, and could remain in the body for a sustained profile. Moreover, ex vivo imaging and quantification of FCGN in tissues revealed that FCGN accumulated in the liver and kidney. Furthermore, oral administration of CGN or KOs for 14 days led to changes in liver and kidney indices. Histological analysis of significant organs revealed hepatocyte necrosis in the liver, renal tubular vacuolization in the kidney, and incomplete colonic epithelial cells. The KOs had a more significant effect on inflammatory cell infiltration than did CGNs. These in vivo findings laid the foundation for the study and application of CGN in food and pharmaceutical applications.


Subject(s)
Carrageenan , Animals , Mice , Tissue Distribution , Administration, Oral , Male , Liver/metabolism , Liver/drug effects , Kidney/drug effects , Kidney/metabolism
5.
J Chromatogr A ; 1719: 464730, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38367394

ABSTRACT

Polysaccharides have unique physio-chemical properties and various biological functions and have rapidly expanded interest over the last two decades. The purification of polysaccharides and their degraded oligosaccharides is challenging because carbohydrates have no chromophore and need a proper detector to monitor the chromatographic elution process. This study proposed an active derivatization detection (ADD) method based on active splitting from post-column flow, a microchannel reactor for efficient derivatization of polysaccharide reducing sugars with p-hydroxybenzoic acid hydrazide, and in-line detection by the UV detector of liquid chromatography system. The method and device were validated by the use of 11 monosaccharides, sulfated oligosaccharides (from degraded carrageenan), and polysaccharides (from Zizania latifolia). It has shown much better performance than the traditional phenol-sulfuric acid method (gold standard). Moreover, the ADD module presumes an add-in to the original preparative LC system, independent of the scale of the purification process and type of system. The developed method is versatile for chromatographic separation of carbohydrates and lays the foundation for their subsequent studies.


Subject(s)
Carbohydrates , Oligosaccharides , Chromatography, High Pressure Liquid/methods , Carbohydrates/analysis , Chromatography, Liquid , Oligosaccharides/chemistry , Polysaccharides/chemistry
6.
Int J Biol Macromol ; 261(Pt 2): 129709, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286380

ABSTRACT

The dried root of Pueraria mirifica (P. mirifica) is an edible foodstuff widely used in Asian countries. P. mirifica is known for its high starch content. The isolation of polysaccharides from high-starch plant parts is challenging due to the interference of starch. Therefore, this study aimed to develop a technique for isolating and investigating the structure and activity of non-glucan polysaccharides from P. mirifica (PMP). An effective starch removal process was developed using α-amylase hydrolysis and thorough membrane dialysis. Four non-glucan polysaccharides were isolated, and PMP-2 was subjected to structural elucidation. The results indicated that PMP-2 has a molecular weight of 124.4 kDa and that arabinose and galactose are the main components, accounting for 27.8 % and 58.5 %, respectively. Methylation and NMR analysis suggested that PMP-2 is an Arabinogalactan composed of 1,6-linked Galp and 1,4-linked Galp as the main chain, with arabinan and rhamnose as side chains. Furthermore, PMP-C and PMP-2 exhibited concentration-dependent antioxidant activities against DPPH, ABTS, and hydroxyl radicals and certain immunomodulatory activities related to the release of NO, TNF-α and IL-6. These findings suggest that PMP-2 has potential therapeutically active ingredient in functional foods. The developed method successfully removed starch and isolated non-glucan polysaccharides from the high-starch content plant P. mirifica and can be applied to other high-starch plants.


Subject(s)
Pueraria , Pueraria/chemistry , Starch , Renal Dialysis , Plant Extracts , Antioxidants , Polysaccharides/pharmacology
7.
Int J Biol Macromol ; 258(Pt 1): 128878, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141709

ABSTRACT

Snail mucus had medical applications for wound healing as early as ancient Greece and the late Han Dynasty (China). A literature search found 165 modern research papers discussing the extraction methods, chemical compositions, pharmacological activities, and applications of snail mucus. Thus, this review summarized the research progress on the extraction, structure, pharmacological activities, and applications of polysaccharides and proteins isolated from snail mucus. The extraction methods of snail mucus include natural secretion and stimulation with blunt force, spray, electricity, un-shelling, ultrasonic-assisted, and ozone-assisted. As a natural product, snail mucus mainly comprises two polysaccharides (glycosaminoglycan, dextran), seven glycoproteins (mucin, lectin), various antibacterial peptides, allantoin, glycolic acid, etc. It has pharmacological activities that encourage cell migration and proliferation, and promote angiogenesis and have antibacterial, anti-oxidative and anticancer properties. The mechanism of snail mucus' chemicals performing antibacterial and wound-healing was proposed. Snail mucus is a promising bioactive product with multiple medical applications and has great potential in the pharmaceutical and healthcare industries. Therefore, this review provides a valuable reference for researching and developing snail mucus.


Subject(s)
Anti-Bacterial Agents , Polysaccharides , Polysaccharides/chemistry , Anti-Bacterial Agents/pharmacology , Mucus/chemistry , Lectins/metabolism , Glycosaminoglycans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL