Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Poult Sci ; 103(8): 103904, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38880050

ABSTRACT

Aflatoxin B1 (AFB1) is a prevalent mycotoxin present in feed ingredients. In this study, we investigated the effects of Lactobacillus salivarius (L. salivarius) on the Landes geese exposed to AFB1. The 300 one-day-old Landes geese were randomly divided into five groups: The control group received a basic diet, while the other groups were fed a basic diet supplemented with 10 µg/kg AFB1, 10 µg/kg AFB1+ 4*108 cfu/g L. salivarius, 50 µg/kg AFB1, and 50 µg/kg AFB1 + 4*108 cfu/g L. salivarius for 63 d. Results showed that high level AFB1 exposure significantly decreased final BW and ADG, increased feed/gain ratio (F/G) and liver index (P < 0.05). L. salivarius improved levels of IL-1, IL-6, and IL-12 under low level of AFB1 exposure (P < 0.05), along with similar trends observed in serum IgA, IgG, IgM, T3, T4, TNF-ɑ, and EDT (P < 0.05). AFB1 exposure reduced jejunum villus high and villus high/crypt depth ratio, and suppressed expression of ZO-1, Occludin, and Claudin-1 mRNA, and significant improved with L. salivarius supplementation under low level AFB1 exposure (P < 0.05). AFB1 significantly increased expression levels of TLR3 and NF-kB1, with supplementation of L. salivarius showing significant improvement under low AFB1 exposure (P < 0.05). Cecal microbiota sequencing revealed that under low level AFB1 exposure, supplementation with L. salivarius increased the abundance of Bacteroidetes and Lactococcus. In summary, supplementation with 4*108 cfu/g L. salivarius under 10 µg/kg AFB1 exposure improved growth performance and immune capacity, enhanced jejunum morphology, reduced liver inflammation, altered the cecal microbial structure, and positively affected the growth and development of geese.

2.
Ecotoxicol Environ Saf ; 280: 116574, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38875822

ABSTRACT

Aflatoxin B1 (AFB1) is commonly found in feed ingredients and foods all over the world, posing a significant threat to food safety and public health in animals and humans. Lactobacillus salivarius (L. salivarius) was recorded to improve the intestinal health and performance of chickens. However, whether L. salivarius can alleviate AFB1-induced hepatotoxicity in geese was unknown. A total of 300 Lande geese were randomly assigned to five groups: control group, AFB1 low-dose group (L), L. salivarius+AFB1 low-dose group (LL), AFB1 high dosage groups (H), L. salivarius+AFB1 high dosage groups (LH), respectively. The results showed that the concentrations of ALT, AST, and GGT significantly increased after exposure to AFB1. Similarly, severe damage of hepatic morphology was observed including the hepatic structure injury and inflammatory cell infiltration. The oxidative stress was evidenced by the elevated concentrations of MDA, and decreased activities of GSH-Px, GSH and SOD. The observation of immunofluorescence, real-time PCR, and western blotting showed that the expression of PINK1 and the value of LC3II/LC3I were increased, but that of p62 significantly decreased after AFB1 exposure. Moreover, the supplementation of L. salivarius effectively improved the geese performance, ameliorated AFB1-induced oxidative stress, inhibited mitochondrial mitophagy and enhanced the liver restoration to normal level. The present study demonstrated that L. salivarius ameliorated AFB1-induced the hepatotoxicity by decreasing the oxidative stress, and regulating the expression of PINK1/Parkin-mediated mitophagy in the mitochondria of the geese liver. Furthermore, this investigation suggested that L. salivarius might serve as a novel and safe additive for preventing AFB1 contamination in poultry feed.


Subject(s)
Aflatoxin B1 , Geese , Ligilactobacillus salivarius , Liver , Mitophagy , Protein Kinases , Ubiquitin-Protein Ligases , Animals , Aflatoxin B1/toxicity , Mitophagy/drug effects , Ubiquitin-Protein Ligases/metabolism , Ligilactobacillus salivarius/physiology , Liver/drug effects , Liver/pathology , Protein Kinases/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/pathology , Oxidative Stress/drug effects , Probiotics/pharmacology
3.
BMC Genomics ; 25(1): 505, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778258

ABSTRACT

BACKGROUND: In day-old Hungarian white goose goslings, there is a noticeable difference in dorsal down coloration between males and females, with females having darker dorsal plumage and males having lighter plumage. The ability to autosex day-old goslings based on their dorsal down coloration is important for managing them efficiently and planning their nutrition in the poultry industry. The aim of this study was to determine the biological and genetic factors underlying this difference in dorsal down colorationthrough histological analysis, biochemical assays, transcriptomic profiling, and q‒PCR analysis. RESULTS: Tissue analysis and biochemical assays revealed that compared with males, 17-day-old embryos and day-old goslings of female geese exhibited a greater density of melanin-containing feather follicles and a greater melanin concentration in these follicles during development. Both female and male goslings had lower melanin concentrations in their dorsal skin compared to 17-day-old embryos. Transcriptome analysis identified a set of differentially expressed genes (DEGs) (MC1R, TYR, TYRP1, DCT and MITF) associated with melanogenesis pathways that were downregulated or silenced specifically in the dorsal skin of day-old goslings compared to 17-day-old embryos, affecting melanin synthesis in feather follicles. Additionally, two key genes (MC1R and MITF) associated with feather coloration showed differences between males and females, with females having higher expression levels correlated with increased melanin synthesis and darker plumage. CONCLUSION: The expression of multiple melanogenesis genes determines melanin synthesis in goose feather follicles. The dorsal down coloration of day-old Hungarian white goose goslings shows sexual dimorphism, likely due to differences in the expression of the MC1R and MITF genes between males and females. These results could help us better understand why male and female goslings exhibit different plumage patterns.


Subject(s)
Geese , Gene Expression Profiling , Melanins , Pigmentation , Sex Characteristics , Animals , Female , Male , Geese/genetics , Geese/metabolism , Melanins/metabolism , Pigmentation/genetics , Feathers/metabolism , Feathers/growth & development , Transcriptome
4.
Heliyon ; 10(8): e29784, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681589

ABSTRACT

This study investigated the effects of partially replacing corn with elephant grass dry matter (air drass) on growth performance, serum parameters, carcass traits, and nutrient digestibility in geese. A total of 360 one-day-old Hortobágyi geese were randomly divided into three groups: control (basic diet), 12 % elephant grass, and 24 % elephant grass. The geese were raised for 70 days. The results showed that compared to the control, 12 % elephant grass had no adverse effects on final body weight, feed/gain ratio, mortality, serum liver and kidney function markers. However, 24 % elephant grass significantly reduced the final body weight (P < 0.001) and feed/gain ratio (P = 0.026) compared to the control group. Both experiment groups had decreased serum aspartate aminotransferase (P < 0.001), alanine aminotransferase (P < 0.001), alkaline phosphatase (P < 0.001), triglycerides (P < 0.001), and total cholesterol (P < 0.001). The addition of 12 % and 24 % elephant grass reduced abdominal fat (P = 0.002), but it had no significant effect on slaughter rate, half-bore rate, full-bore rate, breast muscle rate and leg muscle rate. For nutrient digestibility, 12 % elephant grass improved neutral detergent fiber digestibility compared to the control group (P = 0.026). The 24 % grass group had reduced Ca absorption (P = 0.020). Overall, the findings suggest that partially replacing corn with 12 % elephant grass in goose diet can maintain growth performance and carcass traits.It also has no negative effect on nutrient digestibility while improving serum parameters.

5.
Sci Rep ; 14(1): 5124, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429366

ABSTRACT

During the COVID-19 pandemic, studies in a number of countries have shown how wastewater can be used as an efficient surveillance tool to detect outbreaks at much lower cost than traditional prevalence surveys. In this study, we consider the utilisation of wastewater data in the post-pandemic setting, in which collection of health data via national randomised prevalence surveys will likely be run at a reduced scale; hence an affordable ongoing surveillance system will need to combine sparse prevalence data with non-traditional disease metrics such as wastewater measurements in order to estimate disease progression in a cost-effective manner. Here, we use data collected during the pandemic to model the dynamic relationship between spatially granular wastewater viral load and disease prevalence. We then use this relationship to nowcast local disease prevalence under the scenario that (i) spatially granular wastewater data continue to be collected; (ii) direct measurements of prevalence are only available at a coarser spatial resolution, for example at national or regional scale. The results from our cross-validation study demonstrate the added value of wastewater data in improving nowcast accuracy and reducing nowcast uncertainty. Our results also highlight the importance of incorporating prevalence data at a coarser spatial scale when nowcasting prevalence at fine spatial resolution, calling for the need to maintain some form of reduced-scale national prevalence surveys in non-epidemic periods. The model framework is disease-agnostic and could therefore be adapted to different diseases and incorporated into a multiplex surveillance system for early detection of emerging local outbreaks.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Prevalence , Wastewater , Benchmarking
6.
Curr Res Food Sci ; 8: 100718, 2024.
Article in English | MEDLINE | ID: mdl-38545378

ABSTRACT

Currently, dairy mastitis caused by Staphylococcus xylosus poses a serious challenge for dairy farming. In this study, we explored the role and mechanism of rhein against S. xylosus with the hope of providing new research ideas to solve mastitis in dairy cows and ensure the source safety of dairy products. Through in vitro antimicrobial studies, we found that the minimum inhibitory concentration (MIC) of rhein was 64 µg/mL, and it significantly interfered with the formation of S. xylosus biofilm at sub-MIC. In experiments on mastitis in mice, rhein alleviated inflammation in mammary tissue, reduced the levels of TNF-α and IL-6, and decreased the number of S. xylosus. To explore the anti-S. xylosus mechanism of rhein, we identified the relevant proteins involved in carbon metabolism (Glycolysis/gluconeogenesis, TCA cycle, Fatty acid degradation) through proteomics. Additionally, proteins associated with the respiratory chain, oxidative stress (proteins of antioxidant and DNA repair), and nitrate respiration were also found to be upregulated. Thus, rhein may act as an antibacterial agent by interfering with the respiratory metabolism of S. xylosus and inducing the production of ROS, high levels of which alter the permeability of bacterial cell membranes and cause damage to them. We measured the concentrations of extracellular ß-galactosidase and nucleic acids. Additionally, SEM observation of S. xylosus morphology showed elevated membrane permeability and damage to the cell membrane. Finally, RT-PCR experiments showed that mRNAs of key proteins of the TCA cycle (odhA, mqo) and nitrate respiration (nreB, nreC, narG) were significantly up-regulated, consistent with proteomic results. In conclusion, rhein has good anti-S. xylosus effects in vitro and in vivo, by interfering with bacterial energy metabolism, inducing ROS production, and causing cell membrane and DNA damage, which may be one of the important mechanisms of its antimicrobial activity.

7.
Foods ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38540810

ABSTRACT

Zongzi, made from glutinous rice, is usually thought to stay in the stomach for a long time, causing many people to shy away. In our research, Zongzi was prepared from three indica glutinous rice samples, and three japonica glutinous rice samples were digested in vitro in a human gastric simulator (HGS). It was found that digestion performance in HGS (gastric emptying) was mainly related to the hardness and stickiness of texture properties, and surprisingly, the hardness and stickiness of Zongzi were positively correlated, which contradicts past perception. Through the extraction and analysis of the coated layer on the surface of glutinous rice grains in Zongzi, the main source of its stickiness was the entanglement between the long chains of leached amylopectin molecules. The hardness was also mainly due to the high proportion of long chains in its glutinous rice starch, which made it difficult to gelatinize. Studies suggested that stickiness gradually disappeared during digestion, while hardness had a longer impact on digestive performance. The indica glutinous rice Zongzi with a higher long-chain level showed a higher resistant-starch (RS) level and slow hydrolysis in the intestinal digestion stage. Therefore, the texture and digestibility of Zongzi can be adjusted by changing the molecular structure of glutinous rice starch.

8.
Aging (Albany NY) ; 16(3): 3021-3042, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38309292

ABSTRACT

Depression is a neurological disorder that profoundly affects human physical and mental health, resulting in various changes in the central nervous system. Despite several prominent hypotheses, such as the monoaminergic theory, hypothalamic-pituitary-adrenal (HPA) axis theory, neuroinflammation, and neuroplasticity, the current understanding of depression's pathogenesis remains incomplete. Importantly, depression is a gender-dimorphic disorder, with women exhibiting higher incidence rates than men. Given estrogen's pivotal role in the menstrual cycle, it is reasonable to postulate that its fluctuating levels could contribute to the pathogenesis of depression. Estrogen acts by binding to a diversity of receptors, which are widely distributed in the central nervous system. An abundance of research has established that estrogen and its receptors play a crucial role in depression, spanning pathogenesis and treatment. In this comprehensive review, we provide an in-depth analysis of the fundamental role of estrogen and its receptors in depression, with a focus on neuroinflammation, neuroendocrinology, and neuroplasticity. Furthermore, we discuss potential mechanisms underlying the therapeutic effects of estrogen in the treatment of depression, which may pave the way for new antidepressant drug development and alternative treatment options.


Subject(s)
Depression , Neuroinflammatory Diseases , Male , Female , Humans , Depression/drug therapy , Estrogens/metabolism , Hypothalamo-Hypophyseal System/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
9.
J Virol ; 98(1): e0143723, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38084957

ABSTRACT

SARS-CoV-2 belongs to the subgenus Sarbecovirus, which universally encodes the accessory protein ORF6. SARS-CoV-2 ORF6 is an antagonist of the interferon (IFN)-mediated antiviral response and plays an important role in viral infections. However, the mechanism by which the host counteracts the function of ORF6 to restrict viral replication remains unclear. In this study, we found that most ORF6 proteins encoded by sarbecoviruses could be ubiquitinated and subsequently degraded via the proteasome pathway. Through extensive screening, we identified that the deubiquitinase USP1, which effectively and broadly deubiquitinates sarbecovirus ORF6 proteins, stabilizes ORF6 proteins, resulting in enhanced viral replication. Therefore, ubiquitination and deubiquitination of ORF6 are important for antagonizing IFN-mediated antiviral signaling and influencing the virulence of SARS-CoV-2. These findings highlight an essential molecular mechanism and may provide a novel target for therapeutic interventions against viral infections.IMPORTANCEThe ORF6 proteins encoded by sarbecoviruses are essential for effective viral replication and infection and are important targets for developing effective intervention strategies. In this study, we confirmed that sarbecovirus ORF6 proteins are important antagonists of the host immune response and identified the regulatory mechanisms of ubiquitination and deubiquitination of most sarbecovirus ORF6 proteins. Moreover, we revealed that DUB USP1 prevents the proteasomal degradation of all ORF6 proteins, thereby promoting the virulence of SARS-CoV-2. Thus, impeding ORF6 function is helpful for attenuating the virulence of sarbecoviruses. Therefore, our findings provide a deeper understanding of the molecular mechanisms underlying sarbecovirus infections and offer potential new therapeutic targets for the prevention and treatment of these infections.


Subject(s)
SARS-CoV-2 , Viral Proteins , Virus Diseases , Humans , Deubiquitinating Enzymes , Interferons/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Severe acute respiratory syndrome-related coronavirus/physiology , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
10.
Heliyon ; 9(11): e21734, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38053867

ABSTRACT

The evident shedding of the SARS-CoV-2 RNA particles from infected individuals into the wastewater opened up a tantalizing array of possibilities for prediction of COVID-19 prevalence prior to symptomatic case identification through community testing. Many countries have therefore explored the use of wastewater metrics as a surveillance tool, replacing traditional direct measurement of prevalence with cost-effective approaches based on SARS-CoV-2 RNA concentrations in wastewater samples. Two important aspects in building prediction models are: time over which the prediction occurs and space for which the predicted case numbers is shown. In this review, our main focus was on finding mathematical models which take into the account both the time-varying and spatial nature of wastewater-based metrics into account. We used six main characteristics as our assessment criteria: i) modelling approach; ii) temporal coverage; iii) spatial coverage; iv) sample size; v) wastewater sampling method; and vi) covariates included in the modelling. The majority of studies in the early phases of the pandemic recognized the temporal association of SARS-CoV-2 RNA concentration level in wastewater with the number of COVID-19 cases, ignoring their spatial context. We examined 15 studies up to April 2023, focusing on models considering both temporal and spatial aspects of wastewater metrics. Most early studies correlated temporal SARS-CoV-2 RNA levels with COVID-19 cases but overlooked spatial factors. Linear regression and SEIR models were commonly used (n = 10, 66.6 % of studies), along with machine learning (n = 1, 6.6 %) and Bayesian approaches (n = 1, 6.6 %) in some cases. Three studies employed spatio-temporal modelling approach (n = 3, 20.0 %). We conclude that the development, validation and calibration of further spatio-temporally explicit models should be done in parallel with the advancement of wastewater metrics before the potential of wastewater as a surveillance tool can be fully realised.

11.
Front Vet Sci ; 10: 1210706, 2023.
Article in English | MEDLINE | ID: mdl-37397002

ABSTRACT

Introduction: The aim of this study was to investigate the effects of adding whole-plant ensiled corn stalks (WECS) to the diet of Holdorbagy geese on their growth performance, serum parameters, and cecal microbiota. Geese farming is an important agricultural practice, and optimizing their diet can contribute to better growth and health outcomes. However, there is limited research on the utilization of WECS as a feed source for geese. Understanding the potential effects of WECS on growth, blood parameters, and cecal microbiota can provide valuable insights into its feasibility and impact on geese farming practices. Methods: A total of 144 six-week-old Holdorbagy geese were randomly assigned to one of three groups: a control group (0% WECS), a group fed 15% WECS and 85% concentrated feed (15% WECS), and a group fed 30% WECS and 70% concentrated feed (30% WECS). The trial period lasted for three weeks, during which the growth performance, serum parameters, and cecal microbiota were assessed. Results: The results revealed significant findings in different aspects. Firstly, the feed-to-gain ratio (F/G ratio) of the 15% WECS group was significantly higher than that of the control group (p<0.05), indicating potential challenges in feed efficiency. Additionally, the average daily feed intake (ADFI) of both the 15% and 30% WECS groups was significantly higher than that of the control group (p<0.05), suggesting increased appetite or palatability of the diet containing WECS. In terms of serum parameters, the level of lactate dehydrogenase (LDH) in the 30% WECS group was significantly lower than that in the control group (p<0.05). Moreover, there was a tendency for increasing Fe levels and decreasing Zn levels with higher levels of WECS supplementation, although the differences were not statistically significant (p<0.05). Furthermore, the principal coordinate analysis showed significant differences in the composition of cecal microbiota among the three groups (p < 0.01). The observed_species, Shannon, and Pielou_e indices of the 30% WECS group were significantly higher than those of the 0% and 15% WECS groups (p<0.05), while the Simpson index of the 15% WECS group was significantly lower than that of the control group (p<0.05). Discussion: The results indicate that the addition of WECS to the geese diet has both positive and negative effects. The study suggests that WECS can be a long-term stable feed source for geese, which can contribute to reducing feeding costs. However, it is important to monitor the amount of WECS added as it can affect the absorption of Zn by geese. Supplementation of Zn in the diet might be necessary to meet the needs of geese. Notably, adding 30% WECS to the diet can increase the richness, evenness, and diversity of the cecal microbiota, indicating potential benefits to gut health. In conclusion, this study highlights the potential of WECS as a feed source for geese. It provides valuable insights into the effects of WECS on growth performance, serum parameters, and cecal microbiota. These findings contribute to optimizing geese farming practices, improving feed utilization, and enhancing overall productivity and well-being of geese. Further research is needed to determine the optimal inclusion level of WECS and to explore strategies for mitigating any negative effects.

12.
Ann Epidemiol ; 86: 72-79.e3, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37453464

ABSTRACT

PURPOSE: We examine how various pre-exposure prophylaxis (PrEP) accessibility measures impact the detection of PrEP shortage areas and the relation of shortage areas to social determinants of health (SDOH). METHODS: Using ZIP Code Tabulation Areas (ZCTAs) in New York City as a case study, we compared 25 measures of spatial PrEP accessibility across four categories, including density, proximity, two-step floating catchment area (2SFCA), and Gaussian 2SFCA (G2SFCA). Bayesian spatial regression models were used to examine how PrEP accessibility is associated with SDOH. RESULTS: Using density to measure PrEP accessibility for small areas such as ZCTAs poses challenges to statistical modeling because the measured accessibility values are highly skewed with excess zeros, leading to the necessity of using complex models such as the two-part mixture model. When G2SFCA measures are used, which account for distance decay effects and the competition from the PrEP demand side, findings on PrEP shortage area detection and the association between PrEP accessibility and SDOH were more consistent and less sensitive to spatial scales (i.e., varying from 10- to 30-minute driving). CONCLUSIONS: This research adds to the nascent research on PrEP accessibility measurement and sheds light on selecting an appropriate measure to assess spatial disparities in PrEP accessibility and its associations with SDOH.

13.
Front Microbiol ; 14: 1185218, 2023.
Article in English | MEDLINE | ID: mdl-37303790

ABSTRACT

Bile acids(BAs) are important components of bile and play a significant role in fat metabolism. However, there is currently no systematic evaluation of the use of BAs as feed additives for geese.This study aimed to investigate the effects of adding BAs to goose feed on growth performance, lipid metabolism, intestinal morphology, mucosal barrier function, and cecal microbiota. A total of 168 28-day-old geese were randomly assigned to four treatment groups and fed diets supplemented with 0, 75, 150, or 300 mg/kg of BAs for 28 days. The addition of 75 and 150 mg/kg of BAs significantly improved the feed/gain (F/G) (p < 0.05).The addition of BAs decreased abdominal fat percentage and serum total cholesterol (TC) levels, with 150 mg/kg of BAs significantly reducing serum triglyceride levels and increased expression of Farnesoid X Receptor (FXR) mRNA in the liver(p < 0.05), 300 mg/kg of BAs significantly increasing the expression level of liver peroxisome proliferator-activated receptor α (PPARα) (p < 0.05). In terms of intestinal morphology and mucosal barrier function, 150 mg/kg of BAs significantly increased villus height (VH) and VH/crypt depth (CD) in the jejunum (p < 0.05). The addition of 150 and 300 mg/kg of BAs significantly reduced the CD in the ileum, while increasing VH and VH/CD (p<0.05). Additionally, the addition of 150 and 300 mg/kg of BAs significantly increased the expression levels of zonula occludens-1 (ZO-1) and occludin in the jejunum. Simultaneously 150mg/kg and 300mg/kg BAs increased the total short-chain fatty acids (SCFA) concentrations in the jejunum and cecum(p < 0.05).Supplementation with BAs resulted in a significant increase in the ɑ-diversity of cecal microbiota and a decrease in the abundance of Proteobacteria in the cecum. The addition of 150 mg/kg of BAs significantly reduced the abundance of Bacteroidetes and increased the abundance of Firmicutes. Moreover,Linear discriminant analysis Effect Size analysis (LEfSe) showed that the abundances of bacteria producing SCFA and bile salt hydrolases (BSH) were increased in the BAs-treated group. Furthermore, Spearman's analysis showed that the genus Balutia, which is negatively correlated with visceral fat area, was positively correlated with serum high-density lipoprotein cholesterol (HDL-C), while Clostridium was positively correlated with intestinal VH and VH/CD. In conclusion, BAs can be considered an effective feed additive for geese, as they increased SCFA concentration, improve lipid metabolism and intestinal health by enhancing the intestinal mucosal barrier, improving intestinal morphology, and altering the cecal microbiota structure.

14.
Anim Genet ; 54(5): 628-631, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37381668

ABSTRACT

This study aimed to investigate the role of the LCORL gene in regulating the growth performance of Zhedong white (ZDW) geese, belonging to the swan geese (Anser cygnoides), and identify possible selective signatures in diverse goose breeds. Single nucleotide polymorphisms around LCORL were genotyped, and their associations with body-size-related (BSR) traits were estimated. The results showed that the genotyped loci upstream of LCORL were significantly related to the body weight and breast width of ZDW geese aged 10 weeks (p < 0.05). A genome scan comparing expected heterozygosity among different breeds identified a ~150 kb long genomic region with extremely low heterozygosity downstream of LCORL among swan geese. Further, significant associations of variants within the low heterozygosity region among ZDW geese with BSR traits, including body weight, body length and breast width (p < 0.05) were also detected. Overall, mutations adjacent to LCORL were related to the growth performance of swan geese, and the significant effects of variants in a low-heterozygosity region on BSR traits provided valuable insights into the molecular mechanism of artificial selection reshaping body stature in swan geese.


Subject(s)
Geese , Polymorphism, Single Nucleotide , Animals , Geese/genetics , Mutation , Body Weight/genetics
15.
Lancet Reg Health Eur ; 27: 100580, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37069855

ABSTRACT

Background: London has outperformed smaller towns and rural areas in terms of life expectancy increase. Our aim was to investigate life expectancy change at very-small-area level, and its relationship with house prices and their change. Methods: We performed a hyper-resolution spatiotemporal analysis from 2002 to 2019 for 4835 London Lower-layer Super Output Areas (LSOAs). We used population and death counts in a Bayesian hierarchical model to estimate age- and sex-specific death rates for each LSOA, converted to life expectancy at birth using life table methods. We used data from the Land Registry via the real estate website Rightmove (www.rightmove.co.uk), with information on property size, type and land tenure in a hierarchical model to estimate house prices at LSOA level. We used linear regressions to summarise how much life expectancy changed in relation to the combination of house prices in 2002 and their change from 2002 to 2019. We calculated the correlation between change in price and change in sociodemographic characteristics of the resident population of LSOAs and population turnover. Findings: In 134 (2.8%) of London's LSOAs for women and 32 (0.7%) for men, life expectancy may have declined from 2002 to 2019, with a posterior probability of a decline >80% in 41 (0.8%, women) and 14 (0.3%, men) LSOAs. The life expectancy increase in other LSOAs ranged from <2 years in 537 (11.1%) LSOAs for women and 214 (4.4%) for men to >10 years in 220 (4.6%) for women and 211 (4.4%) for men. The 2.5th-97.5th-percentile life expectancy difference across LSOAs increased from 11.1 (10.7-11.5) years in 2002 to 19.1 (18.4-19.7) years for women in 2019, and from 11.6 (11.3-12.0) years to 17.2 (16.7-17.8) years for men. In the 20% (men) and 30% (women) of LSOAs where house prices had been lowest in 2002, mainly in east and outer west London, life expectancy increased only in proportion to the rise in house prices. In contrast, in the 30% (men) and 60% (women) most expensive LSOAs in 2002, life expectancy increased solely independently of price change. Except for the 20% of LSOAs that had been most expensive in 2002, LSOAs with larger house price increases experienced larger growth in their population, especially among people of working ages (30-69 years), had a larger share of households who had not lived there in 2002, and improved their rankings in education, poverty and employment. Interpretation: Large gains in area life expectancy in London occurred either where house prices were already high, or in areas where house prices grew the most. In the latter group, the increases in life expectancy may be driven, in part, by changing population demographics. Funding: Wellcome Trust; UKRI (MRC); Imperial College London; National Institutes of Health Research.

16.
Polymers (Basel) ; 15(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36771856

ABSTRACT

Porous organic polymers (POPs) have attracted much attention in numerous areas, including catalysis, adsorption and separation. Herein, POP supported Ziegler-Natta catalysts were designed for preparation of isotactic polypropylene (iPP). The POPs-based Ziegler-Natta catalysts exhibited the characteristic of broad molecular weight distribution (MWD > 11) with or without adding an extra internal electron donor. The added internal electron donor 3-methyl-5-tert-butyl-1,2-phenylene dibenzoate (ID-2) used in cat-2 showed good propylene polymerization activity of 15.3 × 106 g·PP/mol·Ti·h, high stereoregularity with 98.2% of isotacticity index and broad molecular weight distribution (MWD) of 12.3. Compared to the MgCl2-supported Ziegler-Natta catalysts (cat-4) with the same ID-2, cat-2 showed higher chain stereoregularity for propylene polymerization. As seen in the TREF results, the elution peak of PP-2 (124.0 °C, 91.7%) is 1.5 °C higher than the isotactic fraction from PP-4 (122.5 °C, 87.2%), and even 1.2 °C higher than PP-5 prepared from ID-3 with the characteristics of high stereoregularity. Moreover, the pentad methyl sequence mmmm of PP-2 (93.0%) from cat-2 is 0.5% higher than that of PP-4 from cat-4. XPS analysis revealed that the minute difference in binding energy of Ti, Mg, C and O atoms exist between the inorganic MgCl2 and the organic polymer based Z-N catalysts. The plausible interaction mechanism of active sites of Mg and Ti with the functional groups in the POP support and the added ID was proposed, which could be explained by their high stereoregularity and the broad molecular weight distribution of the POP-based Z-N catalysts.

17.
Environ Int ; 172: 107765, 2023 02.
Article in English | MEDLINE | ID: mdl-36709674

ABSTRACT

The potential utility of wastewater-based epidemiology as an early warning tool has been explored widely across the globe during the current COVID-19 pandemic. Methods to detect the presence of SARS-CoV-2 RNA in wastewater were developed early in the pandemic, and extensive work has been conducted to evaluate the relationship between viral concentration and COVID-19 case numbers at the catchment areas of sewage treatment works (STWs) over time. However, no attempt has been made to develop a model that predicts wastewater concentration at fine spatio-temporal resolutions covering an entire country, a necessary step towards using wastewater monitoring for the early detection of local outbreaks. We consider weekly averages of flow-normalised viral concentration, reported as the number of SARS-CoV-2N1 gene copies per litre (gc/L) of wastewater available at 303 STWs over the period between 1 June 2021 and 30 March 2022. We specify a spatially continuous statistical model that quantifies the relationship between weekly viral concentration and a collection of covariates covering socio-demographics, land cover and virus associated genomic characteristics at STW catchment areas while accounting for spatial and temporal correlation. We evaluate the model's predictive performance at the catchment level through 10-fold cross-validation. We predict the weekly viral concentration at the population-weighted centroid of the 32,844 lower super output areas (LSOAs) in England, then aggregate these LSOA predictions to the Lower Tier Local Authority level (LTLA), a geography that is more relevant to public health policy-making. We also use the model outputs to quantify the probability of local changes of direction (increases or decreases) in viral concentration over short periods (e.g. two consecutive weeks). The proposed statistical framework can predict SARS-CoV-2 viral concentration in wastewater at high spatio-temporal resolution across England. Additionally, the probabilistic quantification of local changes can be used as an early warning tool for public health surveillance.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , RNA, Viral , Wastewater
18.
Anim Biotechnol ; 34(4): 1170-1178, 2023 Nov.
Article in English | MEDLINE | ID: mdl-34928784

ABSTRACT

Insulin-like growth factor 2 (IGF2) belongs to the member of the insulin-like growth factors family, which plays key roles in animal growth, differentiation and proliferation, as well as reproduction and the regulation of ovarian follicle development. However, little is known about the goose IGF2 gene. In this study, a 1879 bp fragment that covered the complete coding region (CDS) of goose IGF2 cDNA was identified for the first time. The cDNA consists of an open reading frame of 574 nucleotides with the capacity to encode a prepro-IGF-II protein of 187 amino acids, which comprises a signal peptide (24 residues), IGF-II peptide (67 residues), and C-terminal peptide (96 residues), and is closely related to that of chicken. qPCR indicates that the goose IGF2 mRNA is differentially expressed in all examined tissues of fertilized eggs (28 days) and laying Zhedong White geese (270 days). Two novel single nucleotide polymorphisms (SNPs) were detected in exon 1 (G63A, Chr2: G26541617A) and intron 1 (G38A, Chr2: G26541479A) regions, and the synonymous mutation G63A showed a significant association with egg numbers (E180d) of Sanhua goose population (p < 0.05). All the information derived from this study could be valuable and facilitate further studies on the functions of goose IGF2 gene.


Subject(s)
Geese , Insulin-Like Growth Factor II , Female , Animals , Geese/genetics , Amino Acid Sequence , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , DNA, Complementary/genetics , Polymorphism, Single Nucleotide/genetics , Cloning, Molecular
19.
Ground Water ; 61(4): 544-551, 2023.
Article in English | MEDLINE | ID: mdl-36250973

ABSTRACT

From the perspective of rock mechanics, transmission of fluid pressure that drives groundwater flow is not instantaneous; instead it is a slow compressional (P) wave in porous rocks saturated with a fluid. In this paper, the approach of monochromatic wave is used to analyze the slow P-wave. Permeability is derived as a function of the frequency of the wave. The permeability appears to be a complex number which asymptotes to Darcy permeability at the low frequency end but tends to vanish at the high frequency end. With Biot theory, the permeability predicts phase velocity and the quality factor of the monochromatic wave. Using Berea sandstone as an illustrative example, the complex-number permeability can yield a lower phase velocity (within frequency of 105 -108 Hz) and a larger attenuation (for frequency above 106 Hz) than Darcy permeability does. This study extends the recent research of the low-frequency waves of fluid pressure to the regime of very high frequency.


Subject(s)
Groundwater , Porosity , Pressure , Hydrology
20.
Anim Biotechnol ; 34(7): 3261-3266, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36001379

ABSTRACT

Insulin-like growth factors 2 (IGF2) is an insulin-like growth factor that plays a major role in animal growth, cell proliferation and differentiation, as well as reproduction. IGF2 is well-known to be a candidate gene of growth and reproductive traits in many agricultural animals. Our previous study revealed that the G63A (Chr2: G26541617A) mutation within IGF2 exon 1 showed a significant association with egg numbers (E180d) of Sanhua goose population (p < 0.05). However, little work focus on the correlation between the IGF2 mutations and goose growth traits. In this study, qPCR indicated that the IGF2 mRNA highly expressed in leg muscle, liver, ovary and pituitary gland. Meanwhile, association analysis showed that the G63A mutation was significantly associated with the body weight of first-hatched Zhedong-White geese (BW0, p < 0.05), and strongly significantly associated with the BW2, BW4, BW6, BW8 and BW10 (p < 0.01). The GG homozygous had the lowest BW (from 4 weeks to 10 weeks) than those of AA and AG genotypes (p < 0.01), and the allele A was also positively correlated with the BW of the Zhedong-White goose population. Therefore, the G63A mutation in IGF2 may be an important genetic marker for goose breeding.


Subject(s)
Geese , Female , Animals , Geese/genetics , Genotype , Alleles , Phenotype , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...