Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Biol Res ; 55(1): 30, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36195947

ABSTRACT

BACKGROUND: Xenotransplantation has been primarily performed using fresh donor tissue to study testicular development for about 20 years, and whether the cultured tissue would be a suitable donor is unclear. In this study, we combined testicular culture and xenotransplantation into an integrative model and explored whether immature testicular tissue would survive and continue to develop in this model. METHODS: In the new integrative model group, the testes of neonatal rats on postnatal day 8 (PND 8) were cultured for 4 days ex vivo and then were transplanted under the dorsal skin of castrated nude mice. The xenografted testes were resected on the 57th day after xenotransplantation and the testes of rats in the control group were harvested on PND 69. The survival state of testicular tissue was evaluated from morphological and functional perspectives including H&E staining, immunohistochemical staining of 8-OH-dG, immunofluorescence staining, TUNEL assay, ultrastructural study, gene expression and protein analysis. RESULTS: (a) We found that complete spermatogenesis was established in the testes in the new integrative model group. Compared with the control in the same stage, the seminiferous epithelium in some tubules was a bit thinner and there were vacuoles in part of the tubules. Immunofluorescence staining revealed some ACROSIN-positive spermatids were present in seminiferous tubule of xenografted testes. TUNEL detection showed apoptotic cells and most of them were germ cells in the new integrative model group. 8-OH-dG immunohistochemistry showed strongly positive-stained in the seminiferous epithelium after xenotransplantation in comparison with the control group; (b) Compared with the control group, the expressions of FOXA3, DAZL, GFRα1, BOLL, SYCP3, CDC25A, LDHC, CREM and MKI67 in the new integrative model group were significantly elevated (P < 0.05), indicating that the testicular tissue was in an active differentiated and proliferative state; (c) Antioxidant gene detection showed that the expression of Nrf2, Keap1, NQO1 and SOD1 in the new integrative model group was significantly higher than those in the control group (P < 0.05), and DNA methyltransferase gene detection showed that the expression of DNMT3B was significantly elevated as well (P < 0.05). CONCLUSION: The new integrative model could maintain the viability of immature testicular tissue and sustain the long-term survival in vivo with complete spermatogenesis. However, testicular genes expression was altered, vacuolation and thin seminiferous epithelium were still apparent in this model, manifesting that oxidative damage may contribute to the testicular development lesion and it needs further study in order to optimize this model.


Subject(s)
NF-E2-Related Factor 2 , Testis , 8-Hydroxy-2'-Deoxyguanosine , Acrosin/metabolism , Animals , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Male , Methyltransferases/metabolism , Mice , Mice, Nude , NF-E2-Related Factor 2/metabolism , Rats , Spermatogenesis , Superoxide Dismutase-1/metabolism , Testis/metabolism
2.
Biol. Res ; 55: 30-30, 2022. ilus, tab, graf
Article in English | LILACS | ID: biblio-1403569

ABSTRACT

BACKGROUND: Xenotransplantation has been primarily performed using fresh donor tissue to study testicular development for about 20 years, and whether the cultured tissue would be a suitable donor is unclear. In this study, we combined testicular culture and xenotransplantation into an integrative model and explored whether immature testicular tissue would survive and continue to develop in this model. METHODS: In the new integrative model group, the testes of neonatal rats on postnatal day 8 (PND 8) were cultured for 4 days ex vivo and then were transplanted under the dorsal skin of castrated nude mice. The xenografted testes were resected on the 57th day after xenotransplantation and the testes of rats in the control group were harvested on PND 69. The survival state of testicular tissue was evaluated from morphological and functional perspectives including H&E staining, immunohistochemical staining of 8-OH-dG, immunofluorescence staining, TUNEL assay, ultrastructural study, gene expression and protein analysis. RESULTS: (a) We found that complete spermatogenesis was established in the testes in the new integrative model group. Compared with the control in the same stage, the seminiferous epithelium in some tubules was a bit thinner and there were vacuoles in part of the tubules. Immunofluorescence staining revealed some ACROSIN-positive spermatids were present in seminiferous tubule of xenografted testes. TUNEL detection showed apoptotic cells and most of them were germ cells in the new integrative model group. 8-OH-dG immunohistochemistry showed strongly positive-stained in the seminiferous epithelium after xenotransplantation in comparison with the control group; (b) Compared with the control group, the expressions of FOXA3, DAZL, GFRα1, BOLL, SYCP3, CDC25A, LDHC, CREM and MKI67 in the new integrative model group were significantly elevated (P < 0.05), indicating that the testicular tissue was in an active differentiated and proliferative state; (c) Antioxidant gene detection showed that the expression of Nrf2, Keap1, NQO1 and SOD1 in the new integrative model group was significantly higher than those in the control group (P < 0.05), and DNA methyltransferase gene detection showed that the expression of DNMT3B was significantly elevated as well (P < 0.05). CONCLUSION: The new integrative model could maintain the viability of immature testicular tissue and sustain the long-term survival in vivo with complete spermatogenesis. However, testicular genes expression was altered, vacuolation and thin seminiferous epithelium were still apparent in this model, manifesting that oxidative damage may contribute to the testicular development lesion and it needs further study in order to optimize this model.


Subject(s)
Animals , Male , Mice , Rats , Testis/metabolism , NF-E2-Related Factor 2/metabolism , Spermatogenesis , Acrosin/metabolism , Superoxide Dismutase-1/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Methyltransferases/metabolism , Antioxidants/metabolism
3.
Biol Res ; 46(2): 139-46, 2013.
Article in English | MEDLINE | ID: mdl-23959011

ABSTRACT

Studies of developmental effects of mixtures of endocrine disrupters on the male reproductive system are of great concern. In this study, the reproductive effects of the co-administration of di-2-(ethylhexyl) phthalate (DEHP) and genistein (GEN) during pregnancy and lactation were studied in male rat offspring. Pregnant Sprague-Dawley rats were gavaged from gestation day 3 to postnatal day 21 with vehicle control, DEHP 250 mg/kg body weight (bwyday, GEN 50 mg/kg bwday, GEN 400 mg/kg bwday, and two combinations of the two compounds (DEHP 250 mg/kg bwday + GEN 50 mg/kg bwday, DEHP 250 mg/kg bwday + GEN 400 mg/kg bwday). The outcomes studied were general morphometry (weight, AGD), testicular histology, testosterone levels, and expression at the mRNA level of genes involved in steroidogenesis. Organ coefficient, AGD / body weight1/3 י, serum testosterone concentration and genes involved in steroidogenic pathway expression when exposed to DEHP (250mg/kg bwday), GEN(50mg/kg bwday) or GEN(400mg/kg bwday) alone were not significantly different from the control group. When exposed to (DEHP 250mg/kg bwday +GEN 50mg/kg bwday) together during pregnancy and lactation, serum testosterone concentration, epididymis coefficient and Cypal17a1,Scarb1 m RNA expression significantly decreased compared to the control and GEN(50mg/kg bwday). When exposed to (DEHP 250mg/kg bwday +GEN 400mg/kg bwday) together during pregnancy and lactation, AGD / body weight1/3 י, serum testosterone concentration, testis and epididymis coefficient and Star, Cypal17a1 mRNA expression appeared significantly decreased compared to the control and DEHP/GEN single exposure, together with developmental impairment of seminiferous tubules and seminiferous epithelium. Overall, co-administration of DEHP and GEN during gestation and lactation seem to acts in a cumulative manner to induce the most significant alterations in the neonate, especially with GEN at high dose, although the effect of the DEHP-GEN mixture on adult offspring should be observed further.


Subject(s)
Diethylhexyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Genistein/toxicity , Genitalia, Male/drug effects , Lactation/drug effects , Phytoestrogens/toxicity , Plasticizers/toxicity , Animals , Cytochrome P-450 CYP11B2/genetics , Female , Male , Maternal Exposure/adverse effects , Phosphoproteins/genetics , Pregnancy , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Scavenger Receptors, Class B/genetics , Steroid 17-alpha-Hydroxylase/genetics , Testis/drug effects
4.
Biol. Res ; 46(2): 139-146, 2013. ilus, tab
Article in English | LILACS | ID: lil-683990

ABSTRACT

Studies of developmental effects of mixtures of endocrine disrupters on the male reproductive system are of great concern. In this study, the reproductive effects of the co-administration of di-2-(ethylhexyl) phthalate (DEHP) and genistein (GEN) during pregnancy and lactation were studied in male rat offspring. Pregnant Sprague-Dawley rats were gavaged from gestation day 3 to postnatal day 21 with vehicle control, DEHP 250 mg/kg body weight (bwyday, GEN 50 mg/kg bwday, GEN 400 mg/kg bwday, and two combinations of the two compounds (DEHP 250 mg/kg bwday + GEN 50 mg/kg bwday, DEHP 250 mg/kg bwday + GEN 400 mg/kg bwday). The outcomes studied were general morphometry (weight, AGD), testicular histology, testosterone levels, and expression at the mRNA level of genes involved in steroidogenesis. Organ coefficient, AGD / body weight1/3 י, serum testosterone concentration and genes involved in steroidogenic pathway expression when exposed to DEHP (250mg/kg bwday), GEN(50mg/kg bwday) or GEN(400mg/kg bwday) alone were not significantly different from the control group. When exposed to (DEHP 250mg/kg bwday +GEN 50mg/kg bwday) together during pregnancy and lactation, serum testosterone concentration, epididymis coefficient and Cypal17a1,Scarb1 m RNA expression significantly decreased compared to the control and GEN(50mg/kg bwday). When exposed to (DEHP 250mg/kg bwday +GEN 400mg/kg bwday) together during pregnancy and lactation, AGD / body weight1/3 י, serum testosterone concentration, testis and epididymis coefficient and Star, Cypal17a1 mRNA expression appeared significantly decreased compared to the control and DEHP/GEN single exposure, together with developmental impairment of seminiferous tubules and seminiferous epithelium. Overall, co-administration of DEHP and GEN during gestation and lactation seem to acts in a cumulative manner to induce the most significant alterations in the neonate, especially with GEN at high dose, although the effect of the DEHP-GEN mixture on adult offspring should be observed further.


Subject(s)
Animals , Female , Male , Pregnancy , Diethylhexyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Genistein/toxicity , Genitalia, Male/drug effects , Lactation/drug effects , Phytoestrogens/toxicity , Plasticizers/toxicity , Cytochrome P-450 CYP11B2/genetics , Maternal Exposure/adverse effects , Phosphoproteins/genetics , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Scavenger Receptors, Class B/genetics , /genetics , Testis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL