Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 401
1.
Oncogene ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834657

Single-cell transcriptome sequencing (scRNA-seq) is a high-throughput technique used to study gene expression at the single-cell level. Clustering analysis is a commonly used method in scRNA-seq data analysis, helping researchers identify cell types and uncover interactions between cells. However, the choice of a robust similarity metric in the clustering procedure is still an open challenge due to the complex underlying structures of the data and the inherent noise in data acquisition. Here, we propose a deep clustering method for scRNA-seq data called scRISE (scRNA-seq Iterative Smoothing and self-supervised discriminative Embedding model) to resolve this challenge. The model consists of two main modules: an iterative smoothing module based on graph autoencoders designed to denoise the data and refine the pairwise similarity in turn to gradually incorporate cell structural features and enrich the data information; and a self-supervised discriminative embedding module with adaptive similarity threshold for partitioning samples into correct clusters. Our approach has shown improved quality of data representation and clustering on seventeen scRNA-seq datasets against a number of state-of-the-art deep learning clustering methods. Furthermore, utilizing the scRISE method in biological analysis against the HNSCC dataset has unveiled 62 informative genes, highlighting their potential roles as therapeutic targets and biomarkers.

2.
Environ Monit Assess ; 196(6): 591, 2024 May 31.
Article En | MEDLINE | ID: mdl-38819539

The increasing number of vehicles are emitting a large amount of particles into the atmosphere, causing serious harm to the ecological environment and human health. This study conducted the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) to investigate the emission characteristics of particle number (PN) of China-VI gasoline vehicles with different gasoline. The gasoline with lower aromatic hydrocarbons and olefins reduced particulate matter (PM) and PN emissions by 24% and 52% respectively. The average PN emission rate of the four vehicles during the first 300 s (the cold start period) was 7.2 times that of the 300 s-1800s. Additionally, because the particle transmission time and instrument response time, the test results of instantaneous emissions of PN were not synchronized with vehicle specific power (VSP). By calculating the Spearman correlation coefficient between pre-average vehicle specific power (PAVSP) and the test results of PN instantaneous emissions, the delay time was determined as 10s. After the PN emissions results were corrected, the PN emissions were found to be more related to VSP. By analyzing the influence of driving status on emission, this study found that vehicles in acceleration mode increased PN emissions by 76% compared to those in constant speed mode.


Air Pollutants , Environmental Monitoring , Gasoline , Particulate Matter , Vehicle Emissions , Vehicle Emissions/analysis , Gasoline/analysis , China , Air Pollutants/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Automobile Driving , Air Pollution/statistics & numerical data
3.
J Med Chem ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38809692

High extracellular concentrations of adenosine triphosphate (ATP) in the tumor microenvironment generate adenosine by sequential dephosphorylation of CD39 and CD73, resulting in potent immunosuppression to inhibit T cell and natural killer (NK) cell function. CD73, as the determining enzyme for adenosine production, has been shown to correlate with poor clinical tumor prognosis. Conventional inhibitors as analogues of adenosine 5'-monophosphate (AMP) may have a risk of further metabolism to adenosine analogues. Here, we report a new series of malonic acid non-nucleoside inhibitors coordinating with zinc ions of CD73. Compound 12f was found to be a superior CD73 inhibitor (IC50 = 60 nM) by structural optimization, and its pharmacokinetic properties were investigated. In mouse tumor models, compound 12f showed excellent efficacy and reversal of immunosuppression in combination with chemotherapeutic agents or checkpoint inhibitors, suggesting that it deserves further development as a novel CD73 inhibitor.

4.
Sci Rep ; 14(1): 10728, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730027

The purpose of this study was to explore the diagnostic implications of ubiquitination-related gene signatures in Alzheimer's disease. In this study, we first collected 161 samples from the GEO database (including 87 in the AD group and 74 in the normal group). Subsequently, through differential expression analysis and the iUUCD 2.0 database, we obtained 3450 Differentially Expressed Genes (DEGs) and 806 Ubiquitin-related genes (UbRGs). After taking the intersection, we obtained 128 UbR-DEGs. Secondly, by conducting GO and KEGG enrichment analysis on these 128 UbR-DEGs, we identified the main molecular functions and biological pathways related to AD. Furthermore, through the utilization of GSEA analysis, we have gained insight into the enrichment of functions and pathways within both the AD and normal groups. Further, using lasso regression analysis and cross-validation techniques, we identified 22 characteristic genes associated with AD. Subsequently, we constructed a logistic regression model and optimized it, resulting in the identification of 6 RUbR-DEGs: KLHL21, WDR82, DTX3L, UBTD2, CISH, and ATXN3L. In addition, the ROC result showed that the diagnostic model we built has excellent accuracy and reliability in identifying AD patients. Finally, we constructed a lncRNA-miRNA-mRNA (competing endogenous RNA, ceRNA) regulatory network for AD based on six RUbR-DEGs, further elucidating the interaction between UbRGs and lncRNA, miRNA. In conclusion, our findings will contribute to further understanding of the molecular pathogenesis of AD and provide a new perspective for AD risk prediction, early diagnosis and targeted therapy in the population.


Alzheimer Disease , Ubiquitination , Alzheimer Disease/genetics , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Humans , Gene Expression Profiling , Transcriptome , Gene Regulatory Networks , Databases, Genetic
5.
Front Mol Neurosci ; 17: 1332876, 2024.
Article En | MEDLINE | ID: mdl-38596777

Radicular pain, a common and complex form of neuropathic pain, presents significant challenges in treatment. Acupuncture, a therapy originating from ancient traditional Chinese medicine and widely utilized for various pain types, including radicular pain, has shown promising outcomes in the management of lumbar radicular pain, cervical radicular pain, and radicular pain due to spinal stenosis. Despite its efficacy, the exact mechanisms through which acupuncture achieves analgesia are not fully elucidated and are the subject of ongoing research. This review sheds light on the current understanding of the analgesic mechanisms of acupuncture for radicular pain, offering valuable perspectives for both clinical application and basic scientific research. Acupuncture is postulated to relieve radicular pain by several mechanisms: peripherally, it reduces muscle spasms, lessens mechanical pressure on nerve roots, and improves microcirculation; at the molecular level, it inhibits the HMGB1/RAGE and TLR4/NF-κB signaling pathways, thereby decreasing the release of pro-inflammatory cytokines; within the spinal cord, it influences synaptic plasticity; and centrally, it modulates brain function, particularly affecting the medial prefrontal cortex, anterior cingulate cortex, and thalamus within the default mode network. By acting across these diverse biological domains, acupuncture presents an effective treatment modality for radicular pain, and deepening our understanding of the underlying mechanisms regarding analgesia for radicular pain is crucial for enhancing its clinical efficacy and advancement in pain management.

6.
Glob Chang Biol ; 30(4): e17274, 2024 Apr.
Article En | MEDLINE | ID: mdl-38605677

Climate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support. Consequently, trees and lianas have evolved highly divergent stem, leaf, and root traits. Here we show that this trait divergence is likely to persist after death, into the afterlives of these organs, leading to divergent effects on forest biogeochemistry. We introduce a conceptual framework combining horizontal, vertical, and time dimensions for the effects of liana proliferation and liana tissue decomposition on ecosystem carbon and nutrient cycling. We propose a series of empirical studies comparing traits between lianas and trees to answer questions concerning the influence of trait afterlives on the decomposability of liana and tree organs. Such studies will increase our understanding of the contribution of lianas to terrestrial biogeochemical cycling, and help predict the effects of their increasing abundance.


Ecosystem , Tropical Climate , Forests , Trees , Carbon
7.
J Mol Model ; 30(5): 131, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38613643

CONTEXT: SHP2 is a non-receptor protein tyrosine phosphatase to remove tyrosine phosphorylation. Functionally, SHP2 is an essential bridge to connect numerous oncogenic cell-signaling cascades including RAS-ERK, PI3K-AKT, JAK-STAT, and PD-1/PD-L1 pathways. This study aims to discover novel and potent SHP2 inhibitors using a hierarchical structure-based virtual screening strategy that combines molecular docking and the fragment molecular orbital method (FMO) for calculating binding affinity (referred to as the Dock-FMO protocol). For the SHP2 target, the FMO method prediction has a high correlation between the binding affinity of the protein-ligand interaction and experimental values (R2 = 0.55), demonstrating a significant advantage over the MM/PBSA (R2 = 0.02) and MM/GBSA (R2 = 0.15) methods. Therefore, we employed Dock-FMO virtual screening of ChemDiv database of ∼2,990,000 compounds to identify a novel SHP2 allosteric inhibitor bearing hydroxyimino acetamide scaffold. Experimental validation demonstrated that the new compound (E)-2-(hydroxyimino)-2-phenyl-N-(piperidin-4-ylmethyl)acetamide (7188-0011) effectively inhibited SHP2 in a dose-dependent manner. Molecular dynamics (MD) simulation analysis revealed the binding stability of compound 7188-0011 and the SHP2 protein, along with the key interacting residues in the allosteric binding site. Overall, our work has identified a novel and promising allosteric inhibitor that targets SHP2, providing a new starting point for further optimization to develop more potent inhibitors. METHODS: All the molecular docking studies were employed to identify potential leads with Maestro v10.1. The protein-ligand binding affinities of potential leads were further predicted by FMO calculations at MP2/6-31G* level using GAMESS v2020 system. MD simulations were carried out with AmberTools18 by applying the FF14SB force field. MD trajectories were analyzed using VMD v1.9.3. MM/GB(PB)SA binding free energy analysis was carried out with the mmpbsa.py tool of AmberTools18. The docking and MD simulation results were visualized through PyMOL v2.5.0.


Acetamides , Molecular Dynamics Simulation , Phosphatidylinositol 3-Kinases , Ligands , Molecular Docking Simulation
9.
J Craniofac Surg ; 35(4): e371-e374, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38568861

PURPOSE: Iatrogenic lip injury may occur during oral and maxillofacial surgical procedures. This study aimed to evaluate the effect of oral retractors on iatrogenic lip injury prevention during intraoral procedures of oral and maxillofacial surgery. METHODS: We conducted a randomized controlled trial and included patients who underwent intraoral procedures of oral and maxillofacial surgery. Patients were randomly allocated to receive oral retractor (intervention group) or traditional procedure without lip protection (control group). The incidence of lip injury was the outcome variable. Other study variables included surgical time and satisfaction of patients and surgeons with treatment experience evaluated by visual analog scale (VAS). Student t test and χ 2 test were used to compare both groups' variables and measure the relationship between the predictor variable and the outcome variable. P <0.05 was considered significant for all analyses. RESULTS: A total of 114 patients were included, with 56 allocated to intervention group and 58 to control group. The results showed that the application of an oral retractor did not significantly increase surgical time ( P =0.318). A total of 12 patients had lip injury, with 1 in the intervention group and 11 in the control group ( P =0.003). For the assessment of satisfaction with treatment experience, the intervention group had significantly higher VAS scores for doctors and patients ( P <0.05). CONCLUSIONS: We found that the oral retractor was a good tool for iatrogenic lip injury prevention in oral and maxillofacial surgical procedures and could be considered in clinical treatment.


Iatrogenic Disease , Lip , Oral Surgical Procedures , Patient Satisfaction , Humans , Lip/injuries , Female , Male , Adult , Iatrogenic Disease/prevention & control , Oral Surgical Procedures/instrumentation , Middle Aged , Surgical Instruments , Operative Time , Treatment Outcome
10.
J Reprod Immunol ; 163: 104238, 2024 Jun.
Article En | MEDLINE | ID: mdl-38479056

PURPOSE: Observational studies have linked cytokines to the occurrence of female and male infertility. However, it is not clear how biomarkers of inflammation are causally related to infertility. To explore whether genetic variants in circulating cytokines are associated with the pathogenesis of infertility, we performed two-sample Mendelian randomization (MR) analysis. METHODS: A total of 31,112 individuals of European ancestry were included in a genome-wide association study (GWAS) of 47 circulating cytokines as instrumental variables (IVs). Outcome data were female infertility, including four different subtypes, and male infertility, from the FinnGen consortium. Five MR methods, including inverse-variance weighted (IVW), MR-Egger, simple mode, weighted median, and weighted mode were employed to examine the genetic association between cytokines and the risk of female infertility and male infertility. The false discovery rate (FDR) was controlled using the Benjamini-Hochberg method. RESULTS: After FDR correction, cis-protein quantitative trait locus (cis-pQTL) instruments showed that the cytokines GROa and MCSF were positively associated with female infertility. In analyses of subtypes of female infertility, eotaxin and sICAM were inversely associated with ovulation-related infertility; MCP3 alone was positively associated with uterus-related infertility; GROa and MCSF were positively correlated with infertility of cervical, vaginal, and other or unspecified origin; and MIP1a was negatively correlated with tubal origin infertility. The cytokines HGF, IL-2ra, and RANTES were positively correlated with male infertility. Similar findings were obtained in sensitivity analyses. There was no evidence of pleiotropy or heterogeneity in the results. CONCLUSION: These findings contribute to current understanding of the role of cytokine biomarkers in the etiology of female and male infertility. Furthermore clinical experimental validation is required to evaluate the potential of these cytokines as biomarkers.


Cytokines , Genome-Wide Association Study , Infertility, Female , Infertility, Male , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Female , Male , Cytokines/blood , Cytokines/genetics , Infertility, Male/genetics , Infertility, Male/blood , Infertility, Male/immunology , Infertility, Female/genetics , Infertility, Female/blood , Infertility, Female/immunology , Quantitative Trait Loci , Genetic Predisposition to Disease , Biomarkers/blood
11.
Natl Sci Rev ; 11(3): nwad303, 2024 Mar.
Article En | MEDLINE | ID: mdl-38440073
12.
Article En | MEDLINE | ID: mdl-38502624

Many complex social, biological, or physical systems are characterized as networks, and recovering the missing links of a network could shed important lights on its structure and dynamics. A good topological representation is crucial to accurate link modeling and prediction, yet how to account for the kaleidoscopic changes in link formation patterns remains a challenge, especially for analysis in cross-domain studies. We propose a new link representation scheme by projecting the local environment of a link into a "dipole plane", where neighboring nodes of the link are positioned via their relative proximity to the two anchors of the link, like a dipole. By doing this, complex and discrete topology arising from link formation is turned to differentiable point-cloud distribution, opening up new possibilities for topological feature-engineering with desired expressiveness, interpretability and generalization. Our approach has comparable or even superior results against state-of-the-art GNNs, meanwhile with a model up to hundreds of times smaller and running much faster. Furthermore, it provides a universal platform to systematically profile, study, and compare link-patterns from miscellaneous real-world networks. This allows building a global link-pattern atlas, based on which we have uncovered interesting common patterns of link formation, i.e., the bridge-style, the radiation-style, and the community-style across a wide collection of networks with highly different nature.

13.
BMC Med ; 22(1): 116, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38481207

BACKGROUND: Experiences during childhood and adolescence have enduring impacts on physical and mental well-being, overall quality of life, and socioeconomic status throughout one's lifetime. This underscores the importance of prioritizing the health of children and adolescents to establish an impactful healthcare system that benefits both individuals and society. It is crucial for healthcare providers and policymakers to examine the relationship between COVID-19 and the health of children and adolescents, as this understanding will guide the creation of interventions and policies for the long-term management of the virus. METHODS: In this umbrella review (PROSPERO ID: CRD42023401106), systematic reviews were identified from the Cochrane Database of Systematic Reviews; EMBASE (OvidSP); and MEDLINE (OvidSP) from December 2019 to February 2023. Pairwise and single-arm meta-analyses were extracted from the included systematic reviews. The methodological quality appraisal was completed using the AMSTAR-2 tool. Single-arm meta-analyses were re-presented under six domains associated with COVID-19 condition. Pairwise meta-analyses were classified into five domains according to the evidence classification criteria. Rosenberg's FSN was calculated for both binary and continuous measures. RESULTS: We identified 1551 single-arm and 301 pairwise meta-analyses from 124 systematic reviews that met our predefined criteria for inclusion. The focus of the meta-analytical evidence was predominantly on the physical outcomes of COVID-19, encompassing both single-arm and pairwise study designs. However, the quality of evidence and methodological rigor were suboptimal. Based on the evidence gathered from single-arm meta-analyses, we constructed an illustrative representation of the disease severity, clinical manifestations, laboratory and radiological findings, treatments, and outcomes from 2020 to 2022. Additionally, we discovered 17 instances of strong or highly suggestive pairwise meta-analytical evidence concerning long-COVID, pediatric comorbidity, COVID-19 vaccines, mental health, and depression. CONCLUSIONS: The findings of our study advocate for the implementation of surveillance systems to track health consequences associated with COVID-19 and the establishment of multidisciplinary collaborative rehabilitation programs for affected younger populations. In future research endeavors, it is important to prioritize the investigation of non-physical outcomes to bridge the gap between research findings and clinical application in this field.


COVID-19 , Child , Humans , Adolescent , COVID-19/epidemiology , Quality of Life , COVID-19 Vaccines , Post-Acute COVID-19 Syndrome , Systematic Reviews as Topic
14.
Plants (Basel) ; 13(5)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38475534

Seeds are one of the most important characteristics of plant evolution. Within a seed, the embryo, which will grow into a plant, can survive harsh environments. When the seeds are mature, the mother plant will disperse them from its body, allowing them to be taken away to grow in a new place. Otherwise, if the young generation grows alongside the mother plants in the same place, they will compete for sunlight and nutrition. The mother plants use different strategies to send away their seeds. One of these strategies is endozoochory, which means that the seeds disperse via ingestion by animals. There is a conflict between the seeds' abilities to attract animals and protect the embryo within the digestion systems of animals. Magnolia seeds exhibit typical endozoochory. The seed coats of Magnolia feature sarcotestas and sclerotestas. The sarcotesta, which is fleshy, bright-colored, and edible, attracts animals. The sclerotesta is hard and woody, protecting the embryo from the digestive systems of animals. In this study, we used scanning electron and light microscopes to examine the development of the sarcotesta and sclerotesta of Magnolia stellata seed coats. The results showed that the sarcotesta and sclerotesta come from the outer integument. This result confirms the hypothesis of Asa Gray from 1848. The dependence of the seed dispersal strategy on structural development is discussed.

15.
Animals (Basel) ; 14(5)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38473150

Four trials were conducted to establish a protein and amino acid requirement model for layer chicks over 0-6 weeks by using the analytical factorization method. In trial 1, a total of 90 one-day-old Jing Tint 6 chicks with similar body weight were selected to determine the growth curve, carcass and feather protein deposition, and amino acid patterns of carcass and feather proteins. In trials 2 and 3, 24 seven-day-old and 24 thirty-five-day-old Jing Tint 6 chicks were selected to determine the protein maintenance requirements, amino acid pattern, and net protein utilization rate. In trial 4, 24 ten-day-old and 24 thirty-eight-day-old Jing Tint 6 chicks were selected to determine the standard terminal ileal digestibility of amino acids. The chicks were fed either a corn-soybean basal diet, a low nitrogen diet, or a nitrogen-free diet throughout the different trials. The Gompertz equation showed that there is a functional relationship between body weight and age, described as BWt(g) = 2669.317 × exp(-4.337 × exp(-0.019t)). Integration of the test results gave a comprehensive dynamic model equation that could accurately calculate the weekly protein and amino acid requirements of the layer chicks. By applying the model, it was found that the protein requirements for Jing Tint 6 chicks during the 6-week period were 21.15, 20.54, 18.26, 18.77, 17.79, and 16.51, respectively. The model-predicted amino acid requirements for Jing Tint 6 chicks during the 6-week period were as follows: Aspartic acid (0.992-1.284), Threonine (0.601-0.750), Serine (0.984-1.542), Glutamic acid (1.661-1.925), Glycine (0.992-1.227), Alanine (0.909-0.961), Valine (0.773-1.121), Cystine (0.843-1.347), Methionine (0.210-0.267), Isoleucine (0.590-0.715), Leucine (0.977-1.208), Tyrosine (0.362-0.504), Phenylalanine (0.584-0.786), Histidine (0.169-0.250), Lysine (0.3999-0.500), Arginine (0.824-1.147), Proline (1.114-1.684), and Tryptophan (0.063-0.098). In conclusion, this study constructed a dynamic model for the protein and amino acid requirements of Jing Tint 6 chicks during the brooding period, providing an important insight to improve precise feeding for layer chicks through this dynamic model calculation.

16.
Sci Rep ; 14(1): 5598, 2024 03 07.
Article En | MEDLINE | ID: mdl-38454045

The prevalence of dual usage and the relatively low cessation rate among e-cigarette (EC) users suggest that ECs have not demonstrated significant effectiveness as a smoking cessation tool. Furthermore, there has been a substantial increase in the prevalence of EC usage in recent years. Therefore, the objective of this study is to investigate the association between EC use and the incidence of respiratory symptoms and chronic obstructive pulmonary disease (COPD). A total of 10,326 participants aged between 20 and 55 years, without any respiratory diseases or COPD, were recruited for the study. These individuals attended employee physical examinations conducted at 16 public hospitals in Hebei province, China from 2015 to 2020. Logistic regression models were utilized to assess the association between EC use and the risk of respiratory symptoms and COPD using risk ratios along with their corresponding 95% confidence intervals. Restricted cubic spline functions were employed to investigate the dose-response non-linear relationship. The robustness of the logistic regression models was evaluated through subgroup analyses, and sensitivity analyses. During the 5-year follow-up period, a total of 1071 incident cases of respiratory symptoms and 146 incident cases of COPD were identified in this cohort study. After adjusting for relevant confounding factors, EC users demonstrated a respective increase in the risk of reporting respiratory symptoms and COPD by 28% and 8%. Furthermore, dual users who used both ECs and combustible cigarettes exhibited an elevated risk of incident respiratory symptoms and COPD by 41% and 18%, respectively, compared to those who had never used non-users of any cigarette products. The association between daily EC consumption and the development of respiratory symptoms, as well as COPD, demonstrated a significant J-shaped pattern. The potential adverse association between the consumption of ECs, particularly when used in combination with combustible cigarettes, and the development of respiratory symptoms and COPD necessitates careful consideration. Policymakers should approach ECs cautiously as a prospective smoking cessation tool.


Electronic Nicotine Delivery Systems , Pulmonary Disease, Chronic Obstructive , Smoking Cessation , Adult , Humans , Young Adult , Middle Aged , Cohort Studies , Prospective Studies , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/diagnosis
17.
Phytomedicine ; 126: 155029, 2024 Apr.
Article En | MEDLINE | ID: mdl-38417241

BACKGROUND: Cancer ranks as the second leading cause of death globally, imposing a significant public health burden. The rise in cancer resistance to current therapeutic agents underscores the potential role of phytotherapy. Black raspberry (BRB, Rubus Occidentalis) is a fruit rich in anthocyanins, ellagic acid, and ellagitannins. Accumulating evidence suggests that BRB exhibits promising anticancer effects, positioning it as a viable candidate for phytotherapy. PURPOSE: This article aims to review the existing research on BRB regarding its role in cancer prevention and treatment. It further analyzes the effective components of BRB, their metabolic pathways, and the potential mechanisms underlying the fruit's anticancer effects. METHODS: Ovid MEDLINE, EMBASE, Web of Science, and CENTRAL were searched through the terms of Black Raspberry, Raspberry, and Rubus Occidentali up to January 2023. Two reviewers performed the study selection by screening the title and abstract. Full texts of potentially eligible studies were retrieved to access the details. RESULTS: Out of the 767 articles assessed, 73 papers met the inclusion criteria. Among them, 63 papers investigated the anticancer mechanisms, while 10 conducted clinical trials focusing on cancer treatment or prevention. BRB was found to influence multiple cancer hallmarks by targeting various pathways. Decomposition of free radicals and regulation of estrogen metabolism, BRB can reduce DNA damage caused by reactive oxygen species. BRB can also enhance the function of nucleotide excision repair to repair DNA lesions. Through regulation of epigenetics, BRB can enhance the expression of tumor suppressor genes, inducing cell cycle arrest, and promoting apoptosis and pyroptosis. BRB can reduce the energy and nutrients supply to the cancer nest by inhibiting glycolysis and reducing angiogenesis. The immune and inflammatory microenvironment surrounding cancer cells can also be ameliorated by BRB, inhibiting cancer initiation and progression. However, the limited bioavailability of BRB diminishes its anticancer efficacy. Notably, topical applications of BRB, such as gels and suppositories, have demonstrated significant clinical benefits. CONCLUSION: BRB inhibits cancer initiation, progression, and metastasis through diverse anticancer mechanisms while exhibiting minimal side effects. Given its potential, BRB emerges as a promising phototherapeutic agent for cancer treatment.


Neoplasms , Rubus , Humans , Anthocyanins/pharmacology , Fruit , Neoplasms/prevention & control , Phytotherapy , Rubus/metabolism , Tumor Microenvironment
18.
Future Med Chem ; 16(7): 665-677, 2024 04.
Article En | MEDLINE | ID: mdl-38390730

Background: DJ-1 is a ubiquitously expressed protein with multiple functions. Its overexpression has been associated with the occurrence of several cancers, positioning DJ-1 as a promising therapeutic target for cancer treatment. Methods: To find novel inhibitors of DJ-1, we employed a hybrid virtual screening strategy that combines structure-based and ligand-based virtual screening on a comprehensive compound library. Results: In silico study identified six hit compounds as potential DJ-1 inhibitors that were assessed in vitro at the cellular level. Compound 797780-71-3 exhibited antiproliferation activity in ACHN cells with an IC50 value of 12.18 µM and was able to inhibit the Wnt signaling pathway. This study discovers a novel covalent inhibitor for DJ-1 and paves the way for further optimization.


Drug Evaluation, Preclinical , Protein Deglycase DJ-1 , Molecular Docking Simulation , Protein Deglycase DJ-1/antagonists & inhibitors , Antineoplastic Agents/chemistry
19.
Am J Physiol Cell Physiol ; 326(5): C1494-C1504, 2024 May 01.
Article En | MEDLINE | ID: mdl-38406824

Primary Sjögren's syndrome (pSS) is characterized by its autoimmune nature. This study investigates the role of the IFNγ SNP rs2069705 in modulating the susceptibility to pSS. Differential expression of IFNγ and BAFF was analyzed using the GEO database's mRNA microarray GSE84844. Genotyping of the IFNγ SNP rs2069705 was conducted via the dbSNP website. The JASPAR tool was used for predicting transcription factor bindings. Techniques such as dual-luciferase reporter assays, Chromatin immunoprecipitation, and analysis of a pSS mouse model were applied to study gene and protein interactions. A notable increase in the mutation frequency of IFNγ SNP rs2069705 was observed in MNCs from the exocrine glands of pSS mouse models. Bioinformatics analysis revealed elevated levels of IFNγ and BAFF in pSS samples. The model exhibited an increase in both CD20+ B cells and cells expressing IFNγ and BAFF. Knocking down IFNγ resulted in lowered BAFF expression and less lymphocyte infiltration, with BAFF overexpression reversing this suppression. Activation of the Janus kinase (JAK)/STAT1 pathway was found to enhance transcription in the BAFF promoter region, highlighting IFNγ's involvement in pSS. In addition, rs2069705 was shown to boost IFNγ transcription by promoting interaction between its promoter and STAT4. SNP rs2069705 in the IFNγ gene emerges as a pivotal element in pSS susceptibility, primarily by augmenting IFNγ transcription, activating the JAK/STAT1 pathway, and leading to B-lymphocyte infiltration in the exocrine glands.NEW & NOTEWORTHY The research employed a combination of bioinformatics analysis, genotyping, and experimental models, providing a multifaceted approach to understanding the complex interactions in pSS. We have uncovered that the rs2069705 SNP significantly affects the transcription of IFNγ, leading to altered immune responses and B-lymphocyte activity in pSS.


B-Lymphocytes , Interferon-gamma , Polymorphism, Single Nucleotide , Sjogren's Syndrome , Transcriptional Activation , Animals , Female , Humans , Mice , B-Cell Activating Factor/genetics , B-Cell Activating Factor/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Disease Models, Animal , Genetic Predisposition to Disease , Interferon-gamma/genetics , Interferon-gamma/metabolism , Janus Kinases/metabolism , Janus Kinases/genetics , Polymorphism, Single Nucleotide/genetics , Signal Transduction , Sjogren's Syndrome/genetics , Sjogren's Syndrome/immunology , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/pathology , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism
20.
Lab Chip ; 24(6): 1715-1726, 2024 03 12.
Article En | MEDLINE | ID: mdl-38328873

The liver and kidney are the major detoxifying organs in the human body and play an important role in pharmacokinetics. Drug-induced hepatotoxicity and nephrotoxicity can cause irreversible damage to the liver and kidney and are a major cause of drug failure in later stages. Both animal models and conventional cell culture have a number of limitations, such as animal ethics and gene mismatching and there is an urgent need to develop a new drug toxicity evaluation approach. In this paper, a 3D liver-kidney on a chip with a biomimicking circulating system (LKOCBCS) was constructed to obtain kidney and liver models in vitro for drug safety evaluation. LKOCBCS, which has a parallel circulating system mimicking biological circulation, consists of 3D biomimetic tissue of liver lobules similar to that of the human liver constructed by 3D bioprinting and renal proximal tubule barriers fabricated by ultrafast laser assisted etching. The proposed LKOCBCS facilitates the communication between the liver and the kidney, including the exchange of nutrients, compounds, and metabolites. The results revealed that the glucose concentration and cell metabolism stabilized after 7 days. A dynamically repeated low-dose administration of cyclosporine A (CsA) was fed to the system, and hepatotoxicity and nephrotoxicity were observed on day 3 according to the changes in toxicity markers. The high levels of drug induced biomarkers expressed in LKOCBCS indicate that this system is more sensitive than the monoculture liver chip and it is highly potential in replacing animal models for effective drug toxicity screening.


Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Animals , Humans , Kidney , Chemical and Drug Induced Liver Injury/metabolism , Lab-On-A-Chip Devices
...