Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
1.
Biomaterials ; 313: 122763, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39180917

ABSTRACT

Cuproptosis is a new kind of cell death that depends on delivering copper ions into mitochondria to trigger the aggradation of tricarboxylic acid (TCA) cycle proteins and has been observed in various cancer cells. However, whether cuproptosis occurs in cancer stem cells (CSCs) is unexplored thus far, and CSCs often reside in a hypoxic tumor microenvironment (TME) of triple negative breast cancers (TNBC), which suppresses the expression of the cuproptosis protein FDX1, thereby diminishing anticancer efficacy of cuproptosis. Herein, a ROS-responsive active targeting cuproptosis-based nanomedicine CuET@PHF is developed by stabilizing copper ionophores CuET nanocrystals with polydopamine and hydroxyethyl starch to eradicate CSCs. By taking advantage of the photothermal effects of CuET@PHF, tumor hypoxia is overcome via tumor mechanics normalization, thereby leading to enhanced cuproptosis and immunogenic cell death in 4T1 CSCs. As a result, the integration of CuET@PHF and mild photothermal therapy not only significantly suppresses tumor growth but also effectively inhibits tumor recurrence and distant metastasis by eliminating CSCs and augmenting antitumor immune responses. This study presents the first evidence of cuproptosis in CSCs, reveals that disrupting hypoxia augments cuproptosis cancer therapy, and establishes a paradigm for potent cancer therapy by simultaneously eliminating CSCs and boosting antitumor immunity.


Subject(s)
Copper , Nanomedicine , Neoplastic Stem Cells , Triple Negative Breast Neoplasms , Tumor Microenvironment , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/therapy , Tumor Microenvironment/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Animals , Female , Nanomedicine/methods , Copper/chemistry , Copper/pharmacology , Cell Line, Tumor , Mice , Nanoparticles/chemistry , Mice, Inbred BALB C , Photothermal Therapy/methods , Humans , Polymers/chemistry , Indoles/pharmacology
2.
Environ Pollut ; : 125098, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39389246

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs), a class of ubiquitous synthetic organic chemicals, are widely utilized across various industrial applications. However, the long-term neurological health effects of PFAS mixture exposure in humans remain poorly understood. To address this gap, we have designed a comprehensive study to predict and validate cell-type-specific neurotoxicity of PFASs using single-cell RNA sequencing (scRNA-seq) and cerebral organoids. Cerebral organoids were exposed to a PFAS mixture at concentrations of 1× (10 ng/ml PFOS and PFOA, and 1 ng/ml PFHxS), 30×, and 900× over 35 days, with a follow-up analysis at day 70. Pathological alterations and lipidomic profiles were analyzed to identify disrupted molecular pathways and mechanisms. The scRNA-seq data revealed a significant impact of PFASs on neurons, suggesting a potential role in Alzheimer's Disease (AD) pathology, as well as intellectual and cognitive impairments. PFAS-treated cerebral organoids exhibited Aß accumulation and tau phosphorylation. Lipidomic analyses further revealed lipid disturbances in response to PFAS mixture exposure, linking PFAS-induced AD-like neuropathology to sphingolipid metabolism disruption. Collectively, our findings provide novel insights into the PFAS-induced neurotoxicity, highlighting the significance of sphingolipid metabolism in the development of AD-like neuropathology. The use of cerebral organoids and scRNA-seq offers a powerful methodology for evaluating the health risks associated with environmental contaminants, particularly those with neurotoxic potential.

3.
Tree Physiol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231271

ABSTRACT

None declared.Conflict of interestSoil salinization has become a global problem and high salt concentration in soil negatively affects plant growth. In our previous study, we found that overexpression of PsAMT1.2 from Populus simonii could improve the salt tolerance of poplar, but the physiological and molecular mechanism was not well understood. To explore the regulation pathway of PsAMT1.2 in salt tolerance, we investigated the morphological, physiological, and transcriptome differences between the PsAMT1.2 overexpression transgenic poplar and the wild type (WT) under salt stress. The PsAMT1.2 overexpression transgenic poplar showed better growth with increased net photosynthetic rate and higher chlorophyll content compared with WT under salt stress. The overexpression of PsAMT1.2 increased the catalase, superoxide dismutase, peroxidase, ascorbate peroxidase activities and therefore probably enhanced the reactive oxygen species clearance ability, which also reduced the degree of membrane lipid peroxidation under salt stress. Meanwhile, the PsAMT1.2 overexpression transgenic poplar maintained a relatively high K+/Na+ ratio under salt stress. RNA-seq analysis indicated that PsAMT1.2 might improve plant salt tolerance by regulating pathways related to the photosynthetic system, chloroplast structure, antioxidant activity, and anion transport. Among the 1056 differentially expressed genes, genes related to photosystemIand photosystemIIwere up-regulated and genes related to chloride channel protein-related were down-regulated. The result of the present study would provide new insight into regulation mechanism of PsAMT1.2 in improving salt tolerance of poplar.

4.
Angew Chem Int Ed Engl ; : e202411068, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137126

ABSTRACT

Electrochemical conversion from nitrate to ammonia is a key step in sustainable ammonia production. However, it suffers from low productive efficiency or high energy consumption due to a lack of desired electrocatalysts. Here we report nickel cobalt phosphide (NiCoP) catalysts for nitrate-to-ammonia electrocatalysis that display a record-high catalytic current density of -702±7 mA cm-2, ammonia production rate of 5415±26 mmol gcat-1 h-1 and Faraday efficiency of 99.7±0.2 % at -0.3 V vs. RHE, affording the estimated energy consumption as low as 22.7 kWh kgammonia-1. Theoretical and experimental results reveal that these catalysts benefit from hydrogen poisoning effects under low overpotentials, which leave behind catalytically inert adsorbed hydrogen species (HI*) at Co-hollow sites and thereupon enable ideally reactive HII* at secondary Co-P sites. The dimerization between HI* and HII* for H2 evolution is blocked due to the catalytic inertia of HI* thereby the HII* drives nitrate hydrogenation timely. With these catalysts, the continuous ammonia production is further shown in an electrolyser with a real energy consumption of 18.9 kWh kgammonia-1.

5.
J Agric Food Chem ; 72(36): 19733-19747, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39190823

ABSTRACT

Dendrobium nobile is a species of the genus Dendrobium that can be used as both a medicinal herb and healthy food. The sesquiterpenes in D. nobile have attracted extensive attention in recent years. In this study, Amide × RP offline two-dimensional chromatography separation tandem high-resolution mass spectrometry combined with GNPS (Global Natural Product Social Molecular Networking) was developed for the characterization of sesquiterpenes in D. nobile. After first-dimensional amide separation, the 70% ethanol extract of D. nobile was divided into 40 fractions, which were analyzed by second-dimensional reverse-phase system separation and LTQ-Orbitrap detection. The raw data was imported into the GNPS, resulting in the efficient clustering of similar substances. Finally, 594 sesquiterpene compounds were characterized, and 25 compounds were isolated based on molecular network analysis, including six new compounds. In vitro bioassays, the isolated compounds decreased NO production in the LPS-induced microglial BV-2 cell model and the content of MDA in PC12 cells, demonstrating neuroprotective activity. These findings unraveled the underlying material and provided valuable insights into the quality control of D. nobile.


Subject(s)
Dendrobium , Plant Extracts , Sesquiterpenes , Tandem Mass Spectrometry , Dendrobium/chemistry , Tandem Mass Spectrometry/methods , Sesquiterpenes/chemistry , Animals , Mice , Rats , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , PC12 Cells , Chromatography, High Pressure Liquid , Microglia/drug effects , Microglia/metabolism , Molecular Structure , Cell Line
6.
Sleep Med Rev ; 77: 101965, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39137553

ABSTRACT

Two researchers independently assessed studies published up to February 5, 2023, across PubMed, Web of Science, Embase, and Cochrane Library, to investigate the associations of sleep traits with cardiometabolic risk factors, as well as with cardiovascular diseases. Fourteen systematic reviews consisting of 23 meta-analyses, and 11 Mendelian randomization (MR) studies were included in this study. Short sleep duration was associated with a higher risk of obesity, type 2 diabetes (T2D), hypertension, stroke, and coronary heart disease (CHD) in observational studies, while a causal role was only demonstrated in obesity, hypertension, and CHD by MR. Similarly, long sleep duration showed connections with a higher risk of obesity, T2D, hypertension, stroke, and CHD in observational studies, none was supported by MR analysis. Both observational and MR studies indicated heightened risks of hypertension, stroke, and CHD in relation to insomnia. Napping was linked to elevated risks of T2D and CHD in observational studies, with MR analysis confirming a causal role in T2D. Additionally, snoring was correlated with increased risks of stroke and CHD in both observational and MR studies. This work consolidates existing evidence on a causal relationship between sleep characteristics and cardiometabolic risk factors, as well as cardiovascular diseases.


Subject(s)
Cardiometabolic Risk Factors , Cardiovascular Diseases , Mendelian Randomization Analysis , Sleep , Humans , Sleep/physiology , Diabetes Mellitus, Type 2/genetics , Observational Studies as Topic , Obesity/complications , Obesity/genetics , Hypertension/genetics , Stroke , Risk Factors
7.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38953448

ABSTRACT

The Ã1A″ ← X̃1A' absorption spectra of HONO and DONO were simulated by a full six-dimensional quantum mechanical method based on the newly constructed potential energy surfaces for the ground and excited electronic states, which were represented by the neural network method utilizing over 36 000 ab initio energy points calculated at the multireference configuration interaction level with Davidson correction. The absorption spectrum of HONO/DONO comprises a superposition of the spectra from two isomers, namely, trans- and cis-HONO/DONO, due to their coexistence in the ground X̃1A' state. Our calculated spectra of both HONO and DONO were found to be in fairly good agreement with the experiment, including the energy positions and widths of the peaks. The dominant progression was assigned to the N=O stretch mode (20n) associated with trans-HONO/DONO, which can be attributed to the promotion of an electron to the π* orbital of N=O. Specifically, the resonances with higher vibrational quanta were found to be in the domain of the Feshbach-type resonances. The assignments of the spectra and mode specificity therein are discussed.

8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 662-670, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948267

ABSTRACT

Objective: To establish a universally applicable logistic risk prediction model for diabetes mellitus type 2 (T2DM) in the middle-aged and elderly populations based on the results of a Meta-analysis, and to validate and confirm the efficacy of the model using the follow-up data of medical check-ups of National Basic Public Health Service. Methods: Cohort studies evaluating T2DM risks were identified in Chinese and English databases. The logistic model utilized Meta-combined effect values such as the odds ratio (OR) to derive ß, the partial regression coefficient, of the logistic model. The Meta-combined incidence rate of T2DM was used to obtain the parameter α of the logistic model. Validation of the predictive performance of the model was conducted with the follow-up data of medical checkups of National Basic Public Health Service. The follow-up data came from a community health center in Chengdu and were collected between 2017 and 2022 from 7602 individuals who did not have T2DM at their baseline medical checkups done at the community health center. This community health center was located in an urban-rural fringe area with a large population of middle-aged and elderly people. Results: A total of 40 cohort studies were included and 10 items covered in the medical checkups of National Basic Public Health Service were identified in the Meta-analysis as statistically significant risk factors for T2DM, including age, central obesity, smoking, physical inactivity, impaired fasting glucose, a reduced level of high-density lipoprotein cholesterol (HDL-C), hypertension, body mass index (BMI), triglyceride glucose (TYG) index, and a family history of diabetes, with the OR values and 95% confidence interval (CI) being 1.04 (1.03, 1.05), 1.55 (1.29, 1.88), 1.36 (1.11, 1.66), 1.26 (1.07, 1.49), 3.93 (2.94, 5.24), 1.14 (1.06, 1.23), 1.47 (1.34, 1.61), 1.11 (1.05, 1.18), 2.15 (1.75, 2.62), and 1.66 (1.55, 1.78), respectively, and the combined ß values being 0.039, 0.438, 0.307, 0.231, 1.369, 0.131, 0.385, 0.104, 0.765, and 0.507, respectively. A total of 37 studies reported the incidence rate, with the combined incidence being 0.08 (0.07, 0.09) and the parameter α being -2.442 for the logistic model. The logistic risk prediction model constructed based on Meta-analysis was externally validated with the data of 7602 individuals who had medical checkups and were followed up for at least once. External validation results showed that the predictive model had an area under curve (AUC) of 0.794 (0.771, 0.816), accuracy of 74.5%, sensitivity of 71.0%, and specificity of 74.7% in the 7602 individuals. Conclusion: The T2DM risk prediction model based on Meta-analysis has good predictive performance and can be used as a practical tool for T2DM risk prediction in middle-aged and elderly populations.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/epidemiology , Middle Aged , Aged , Risk Factors , Logistic Models , Female , Male , China/epidemiology , Cohort Studies , Public Health , Incidence
9.
Angew Chem Int Ed Engl ; 63(38): e202407810, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38957933

ABSTRACT

Hydrogen spillover in metal-supported catalysts can largely enhance electrocatalytic hydrogenation performance and reduce energy consumption. However, its fundamental mechanism, especially at the metal-metal interface, remains further explored, impeding relevant catalyst design. Here, we theoretically profile that a large free energy difference in hydrogen adsorption on two different metals (|ΔGH-metal(i)-ΔGH-metal(ii)|) induces a high kinetic barrier to hydrogen spillover between the metals. Minimizing the difference in their d-band centers (Δϵd) should reduce |ΔGH-metal(i)-ΔGH-metal(ii)|, lowering the kinetic barrier to hydrogen spillover for improved electrocatalytic hydrogenation. We demonstrated this concept using copper-supported ruthenium-platinum alloys with the smallest Δϵd, which delivered record high electrocatalytic nitrate hydrogenation performance, with ammonia production rate of 3.45±0.12 mmol h-1 cm-2 and Faraday efficiency of 99.8±0.2 %, at low energy consumption of 21.4 kWh kgamm -1. Using these catalysts, we further achieve continuous ammonia and formic acid production with a record high-profit space.

10.
BMJ Open ; 14(7): e078992, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39067887

ABSTRACT

BACKGROUND: Pneumoconiosis mostly combines pulmonary and cardiovascular diseases, among which pulmonary heart disease (PHD) is of major concern due to its significant impact on the survival of pneumoconiosis patients. White cell count (WCC), red cell distribution width (RDW) and platelet parameters are thought to affect inflammatory responses and may be predictors of various cardiovascular diseases. However, very few studies have focused on PHD. OBJECTIVES: To examine the relationship between baseline complete blood count parameters (WCC, RDW, platelet parameters) and the risk of incident PHD in pneumoconiosis patients. DESIGN: A retrospective cohort study. SETTING: This was a single-centre, retrospective cohort study that used data from an Occupational Disease Hospital, Chengdu, Sichuan. PARTICIPANTS: A total of 946 pneumoconiosis patients from January 2012 to November 2021 were included in the study. Female patients and patients who had PHD, coronary heart disease, hypertensive heart disease, cardiomyopathy, heart failure, oncological disease, multiple organ dysfunction, AIDS at baseline and follow-up time of less than 6 months were also excluded. OUTCOME MEASURES: We identified PHD according to the patient's discharge diagnosis. We constructed Cox proportional hazard regression models to assess the HR of incident PHD in pneumoconiosis, as well as 95% CIs. RESULTS: In the multiple Cox proportional hazard regression analysis, platelet count (PLT) and plateletcrit (PCT) above the median at baseline were associated with an increased risk of PHD in pneumoconiosis with adjusted HR of 1.52 (95% CI 1.09 to 2.12) and 1.42 (95% CI 1.02 to 1.99), respectively. CONCLUSION: Higher baseline PLT and PCT are associated with a higher risk of PHD in pneumoconiosis.


Subject(s)
Pneumoconiosis , Pulmonary Heart Disease , Humans , Retrospective Studies , Male , Pneumoconiosis/blood , Pneumoconiosis/epidemiology , Female , Middle Aged , China/epidemiology , Aged , Blood Cell Count , Pulmonary Heart Disease/blood , Pulmonary Heart Disease/epidemiology , Risk Factors , Erythrocyte Indices , Proportional Hazards Models , Platelet Count , Incidence
11.
J Cell Mol Med ; 28(12): e18490, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923119

ABSTRACT

Studies have reported variable effects of sex hormones on serious diseases. Severe disease and mortality rates in COVID-19 show marked gender differences that may be related to sex hormones. Sex hormones regulate the expression of the viral receptors ACE2 and TMPRSS2, which affect the extent of viral infection and consequently cause variable outcomes. In addition, sex hormones have complex regulatory mechanisms that affect the immune response to viruses. These hormones also affect metabolism, leading to visceral obesity and severe disease can result from complications such as thrombosis. This review presents the latest researches on the regulatory functions of hormones in viral receptors, immune responses, complications as well as their role in COVID-19 progression. It also discusses the therapeutic possibilities of these hormones by reviewing the recent findings of clinical and assay studies.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Gonadal Steroid Hormones , SARS-CoV-2 , Serine Endopeptidases , Humans , COVID-19/virology , COVID-19/immunology , COVID-19/metabolism , COVID-19/pathology , Gonadal Steroid Hormones/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Female , Severity of Illness Index , Male
12.
Research (Wash D C) ; 7: 0335, 2024.
Article in English | MEDLINE | ID: mdl-38766644

ABSTRACT

Cuproptosis-based cancer nanomedicine has received widespread attention recently. However, cuproptosis nanomedicine against pancreatic ductal adenocarcinoma (PDAC) is severely limited by cancer stem cells (CSCs), which reside in the hypoxic stroma and adopt glycolysis metabolism accordingly to resist cuproptosis-induced mitochondria damage. Here, we leverage hyperbaric oxygen (HBO) to regulate CSC metabolism by overcoming tumor hypoxia and to augment CSC elimination efficacy of polydopamine and hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@PH NPs). Mechanistically, while HBO and CuET@PH NPs inhibit glycolysis and oxidative phosphorylation, respectively, the combination of HBO and CuET@PH NPs potently suppresses energy metabolism of CSCs, thereby achieving robust tumor inhibition of PDAC and elongating mice survival importantly. This study reveals novel insights into the effects of cuproptosis nanomedicine on PDAC CSC metabolism and suggests that the combination of HBO with cuproptosis nanomedicine holds significant clinical translation potential for PDAC patients.

13.
Eur J Immunol ; : e2350916, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778737

ABSTRACT

Emerging and re-emerging viral pandemics have emerged as a major public health concern. Highly pathogenic coronaviruses, which cause severe respiratory disease, threaten human health and socioeconomic development. Great efforts are being devoted to the development of safe and efficacious therapeutic agents and preventive vaccines to combat them. Nevertheless, the highly mutated virus poses a challenge to drug development and vaccine efficacy, and the use of common immunomodulatory agents lacks specificity. Benefiting from the burgeoning intersection of biological engineering and biotechnology, membrane-derived vesicles have shown superior potential as therapeutics due to their biocompatibility, design flexibility, remarkable bionics, and inherent interaction with phagocytes. The interactions between membrane-derived vesicles, viruses, and the immune system have emerged as a new and promising topic. This review provides insight into considerations for developing innovative antiviral strategies and vaccines against SARS-CoV-2. First, membrane-derived vesicles may provide potential biomimetic decoys with a high affinity for viruses to block virus-receptor interactions for early interruption of infection. Second, membrane-derived vesicles could help achieve a balanced interplay between the virus and the host's innate immunity. Finally, membrane-derived vesicles have revealed numerous possibilities for their employment as vaccines.

14.
Phytochemistry ; 224: 114162, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38797255

ABSTRACT

Bile acids play a vital role in modulating host metabolism, with chenodeoxycholic acid (CDCA) standing out as a primary bile acid that naturally activates farnesoid X receptor (FXR). In this study, we investigated the microbial transformations of CDCA by seven human intestinal fungal species. Our findings revealed that hydroxylation and dehydrogenation were the most prevalent metabolic pathways. Incubation of CDCA with Rhizopus microspores (PT2906) afforded eight undescribed compounds (6-13) alongside five known analogs (1-5) which were elucidated by HRESI-MS and NMR data. Notably, compounds 8, 12 and 13 exhibited an inhibitory effect on FXR in contrast to the FXR activation observed with CDCA in vitro assays. This study shone a light on the diverse transformations of CDCA by intestinal fungi, unveiling potential modulators of FXR activity with implications for host metabolism.


Subject(s)
Biotransformation , Chenodeoxycholic Acid , Receptors, Cytoplasmic and Nuclear , Humans , Chenodeoxycholic Acid/metabolism , Chenodeoxycholic Acid/pharmacology , Chenodeoxycholic Acid/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Intestines/microbiology , Molecular Structure , Fungi/metabolism , Fungi/drug effects , Rhizopus/metabolism , Structure-Activity Relationship , Dose-Response Relationship, Drug
15.
Chemosphere ; 360: 142342, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754492

ABSTRACT

Microplastics are increasingly prevalent in the environment, and their ability to adsorb various organic additives, posing harm to organisms, has attracted growing attention. Currently, there are no effective methods to age microplastics, and there is limited discussion on the subsequent treatment of aged microplastics. This study focuses on micro polyethylene (PE) and employs electron beam technology for aging treatment, investigating the adsorption and leaching behavior between PE and dibutyl phthalate (DBP) before and after aging. Experimental results indicate that with increasing doses of electron beam irradiation, the surface microstructure of PE worsens, inducing the generation of oxygen-containing functional groups on the surface of polyethylene. Comparative evaluations between electron beam aging and existing methods show that electron beam technology surpasses existing aging methods, achieving a level of aging exceeding 0.7 within an extremely short period of 1 min at doses exceeding 350 kGy. Adsorption experiments demonstrate that the adsorption between PE and DBP conforms to pseudo-second-order kinetics and the Freundlich model both before and after aging. The adsorption capacity of microplastics for DBP increases from 76.8 mg g-1 to 167.0 mg g-1 after treatment, exceeding that of conventional DBP adsorbents. Electron beam irradiation causes aging of microplastics mainly through the generation of ·OH, which lead to the formation of oxygen-containing functional groups on the microplastics' surface, thereby enhancing their adsorption capacity for DBP. This provides a new perspective for the degradation of aged microplastics and composite pollutants.


Subject(s)
Dibutyl Phthalate , Microplastics , Adsorption , Dibutyl Phthalate/chemistry , Microplastics/chemistry , Kinetics , Polyethylene/chemistry , Electrons , Water Pollutants, Chemical/chemistry
16.
J Cancer Res Clin Oncol ; 150(4): 184, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598014

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) can mediate cell-to-cell communication and affect various physiological and pathological processes in both parent and recipient cells. Currently, extensive research has focused on the EVs derived from cell cultures and various body fluids. However, insufficient attention has been paid to the EVs derived from tissues. Tissue EVs can reflect the microenvironment of the specific tissue and the cross-talk of communication among different cells, which can provide more accurate and comprehensive information for understanding the development and progression of diseases. METHODS: We review the state-of-the-art technologies involved in the isolation and purification of tissue EVs. Then, the latest research progress of tissue EVs in the mechanism of tumor occurrence and development is presented. And finally, the application of tissue EVs in the clinical diagnosis and treatment of cancer is anticipated. RESULTS: We evaluate the strengths and weaknesses of various tissue processing and EVs isolation methods, and subsequently analyze the significance of protein characterization in determining the purity of tissue EVs. Furthermore, we focus on outlining the importance of EVs derived from tumor and adipose tissues in tumorigenesis and development, as well as their potential applications in early tumor diagnosis, prognosis, and treatment. CONCLUSION: When isolating and characterizing tissue EVs, the most appropriate protocol needs to be specified based on the characteristics of different tissues. Tissue EVs are valuable in the diagnosis, prognosis, and treatment of tumors, and the potential risks associated with tissue EVs need to be considered as therapeutic agents.


Subject(s)
Body Fluids , Extracellular Vesicles , Neoplasms , Humans , Carcinogenesis , Cell Communication , Tumor Microenvironment
17.
J Agric Food Chem ; 72(17): 10106-10116, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629120

ABSTRACT

The authentication of ingredients in formulas is crucial yet challenging, particularly for constituents with comparable compositions but vastly divergent efficacy. Rehmanniae Radix and its derivatives are extensively utilized in food supplements, which contain analogous compositions but very distinct effects. Rehmanniae Radix, also a difficult-to-detect herbal ingredient, was chosen as a case to explore a novel HPTLC-QDa MS technique for the identification of herbal ingredients in commercial products. Through systematic condition optimization, including thin layer and mass spectrometry, a stable and reproducible HPTLC-QDa MS method was established, which can simultaneously detect oligosaccharides and iridoids. Rehmannia Radix and its processed products were then analyzed to screen five markers that could distinguish between raw and prepared Rehmannia Radix. An HPTLC-QDa-SIM method was further established for formula detection by using the five markers and validated using homemade prescriptions and negative controls. Finally, this method was applied to detect raw and prepared Rehmannia Radix in 12 commercial functional products and supplements.


Subject(s)
Drugs, Chinese Herbal , Rehmannia , Rehmannia/chemistry , Chromatography, Thin Layer/methods , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Plant Roots/chemistry , Dietary Supplements/analysis , Mass Spectrometry/methods , Oligosaccharides/analysis , Oligosaccharides/chemistry , Iridoids/analysis , Iridoids/chemistry
18.
J Hazard Mater ; 471: 134316, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38669923

ABSTRACT

OBJECTIVES: We examined the associations of self-reported exposures, and urinary metabolites related to household pesticide with cardiovascular disease (CVD) mortality in older adults based on the 2007 to 2014 waves of National Health and Nutrition Examination Survey (NHANES). METHODS: Information on application and urinary metabolites related to household pesticide exposure were collected. We estimated the risks of household pesticide exposure, urinary metabolites with subsequent incident CVD death using Cox proportional hazards regression models. The indirect effects of urinary metabolites and effect modifications were examined. RESULTS: The participants who reported exposure to household pesticide had a higher risk of incident CVD death (adjusted HR 1.40, 95% CI 1.08 to 1.81). Per 1-log10 increase in urinary N, N-diethyl-3-methylbenzamide (DEET) related to household insect repellents was associated with a higher risk of incident CVD death (adjusted HR 1.97, 95% CI 1.14 to 3.40). Urinary DEET explained 4.21% of the total association between household pesticide exposure and CVD death risk. The participants who persisted a low level of health diet exhibited pronounced CVD death risks with household pesticide exposures. CONCLUSIONS: Exposure to household pesticide, especially household insect repellents, was consistently associated with an elevated CVD death risk in older adults. A heatlhy diet could partly attenuate the associations.


Subject(s)
Cardiovascular Diseases , Environmental Exposure , Pesticides , Humans , Cardiovascular Diseases/mortality , Cardiovascular Diseases/urine , Male , Female , Aged , Prospective Studies , Environmental Exposure/analysis , Environmental Exposure/adverse effects , Pesticides/urine , Pesticides/toxicity , Middle Aged , Nutrition Surveys , Insect Repellents , DEET/urine , Aged, 80 and over
19.
Hum Genet ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578439

ABSTRACT

While carotid intima-media thickness (cIMT) as a noninvasive surrogate measure of atherosclerosis is widely considered a risk factor for stroke, the intrinsic link underlying cIMT and stroke has not been fully understood. We aimed to evaluate the clinical value of cIMT in stroke through the investigation of phenotypic and genetic relationships between cIMT and stroke. We evaluated phenotypic associations using observational data from UK Biobank (N = 21,526). We then investigated genetic relationships leveraging genomic data conducted in predominantly European ancestry for cIMT (N = 45,185) and any stroke (AS, Ncase/Ncontrol=40,585/406,111). Observational analyses suggested an increased hazard of stroke per one standard deviation increase in cIMT (cIMTmax-AS: hazard ratio (HR) = 1.39, 95%CI = 1.09-1.79; cIMTmean-AS: HR = 1.39, 95%CI = 1.09-1.78; cIMTmin-AS: HR = 1.32, 95%CI = 1.04-1.68). A positive global genetic correlation was observed (cIMTmax-AS: [Formula: see text]=0.23, P=9.44 × 10-5; cIMTmean-AS: [Formula: see text]=0.21, P=3.00 × 10-4; cIMTmin-AS: [Formula: see text]=0.16, P=6.30 × 10-3). This was further substantiated by five shared independent loci and 15 shared expression-trait associations. Mendelian randomization analyses suggested no causal effect of cIMT on stroke (cIMTmax-AS: odds ratio (OR)=1.12, 95%CI=0.97-1.28; cIMTmean-AS: OR=1.09, 95%CI=0.93-1.26; cIMTmin-AS: OR=1.03, 95%CI = 0.90-1.17). A putative association was observed for genetically predicted stroke on cIMT (AS-cIMTmax: beta=0.07, 95%CI = 0.01-0.13; AS-cIMTmean: beta=0.08, 95%CI = 0.01-0.15; AS-cIMTmin: beta = 0.08, 95%CI = 0.01-0.16) in the reverse direction MR, which attenuated to non-significant in sensitivity analysis. Our work does not find evidence supporting causal associations between cIMT and stroke. The pronounced cIMT-stroke association is intrinsic, and mostly attributed to shared genetic components. The clinical value of cIMT as a surrogate marker for stroke risk in the general population is likely limited.

20.
Biomed Pharmacother ; 174: 116448, 2024 May.
Article in English | MEDLINE | ID: mdl-38522241

ABSTRACT

BACKGROUND: The roots and rhizomes of Nardostachys jatamansi DC. are reported to be useful for the treatment of Parkinson's disease (PD). Previous research has also shown that Nardosinone, the main active component isolated from Nardostachys jatamansi DC., exhibits the potential to treat PD. AIM OF THE STUDY: To investigate how the effects of Nardosinone could assist levodopa in the treatment of PD, how this process changes the intestinal flora, and to explore the effective forms of Nardosinone in the intestinal flora. MATERIAL AND METHODS: We used behavioral experiments, and hematoxylin-eosin staining and immunohistochemical staining, to investigate the effects of a combination of Nardosinone and levodopa on rotenone-induced PD rats. In addition, we used LC/MS-MS to determine the levels of levodopa, 5-hydroxytryptamine, dopamine and its metabolite 3, 4-dihydroxyphenylacetic acid, and homovanillic acid, to investigate the effect of the intestinal flora on co-administration in the treatment of PD. LC/MS-MS was also used to detect the metabolites of Nardosinone on the gastrointestinal tract and intestinal flora. RESULTS: The behavioral disorders and neuronal damage associated with PD were significantly improved following the co-administration. Analysis also revealed that the co-administration increased the levels of five neurotransmitters in the striatum, plasma and feces. In vitro experiments further demonstrated that the levels of dopamine and levodopa were increased in the intestinal flora. In total, five metabolites of Nardosinone were identified. CONCLUSION: Our findings indicate that Nardosinone and its metabolites might act as a potential adjutant to enhance the efficacy of levodopa via the intestinal flora, thus expanding the therapeutic potential of the combination of Chinese and Western medicine as a treatment method for PD.


Subject(s)
Gastrointestinal Microbiome , Levodopa , Parkinson Disease , Rats, Sprague-Dawley , Levodopa/pharmacology , Animals , Male , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Rats , Gastrointestinal Microbiome/drug effects , Antiparkinson Agents/pharmacology , Rotenone/pharmacology , Nardostachys/chemistry , Dopamine/metabolism , Behavior, Animal/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL