Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 615
Filter
1.
Bioorg Chem ; 150: 107605, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38971095

ABSTRACT

The dorsal root ganglion (DRG) is the primary neuron responsible for transmitting peripheral pain signals to the central nervous system and plays a crucial role in pain transduction. Modulation of DRG excitability is considered a viable approach for pain management. Neuronal excitability is intricately linked to the ion channels on the neurons. The small and medium-sized DRG neurons are chiefly engaged in pain conduction and have high levels of TTX-S sodium channels, with Nav1.7 accounting for approximately 80% of the current. Voltage-gated sodium channel (VGSC or Nav) blockers are vital targets for the management of central nervous system diseases, particularly chronic pain. VGSCs play a key role in controlling cellular excitability. Clinical research has shown that Nav1.7 plays a crucial role in pain sensation, and there is strong genetic evidence linking Nav1.7 and its encoding gene SCN9A gene to painful disorders in humans. Many studies have shown that Nav1.7 plays an important role in pain management. The role of Nav1.7 in pain signaling pathways makes it an attractive target for the potential development of new pain drugs. Meanwhile, understanding the architecture of Nav1.7 may help to develop the next generation of painkillers. This review provides updates on the recently reported molecular inhibitors targeting the Nav1.7 pathway, summarizes their structure-activity relationships (SARs), and discusses their therapeutic effects on painful diseases. Pharmaceutical chemists are working to improve the therapeutic index of Nav1.7 inhibitors, achieve better analgesic effects, and reduce side effects. We hope that this review will contribute to the development of novel Nav1.7 inhibitors as potential drugs.

2.
Nat Food ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951691

ABSTRACT

Healthy dietary patterns, such as the alternate Mediterranean diet and alternate Healthy Eating Index, benefit cardiometabolic health. However, several food components of these dietary patterns are primary sources of environmental chemicals. Here, using data from a racially and ethnically diverse US cohort, we show that healthy dietary pattern scores were positively associated with plasma chemical exposure in pregnancy, particularly for the alternate Mediterranean diet and alternate Healthy Eating Index with polychlorinated biphenyls and per- and poly-fluoroalkyl substances. The associations appeared stronger among Asian and Pacific Islanders. These findings suggest that optimizing the benefits of a healthy diet requires concerted regulatory efforts aimed at lowering environmental chemical exposure.

3.
Article in English | MEDLINE | ID: mdl-38888754

ABSTRACT

Berberine (BBR), a benzylisoquinoline alkaloid obtained from natural medicines such as coptidis rhizoma, has a wide range of pharmacological activities such as protecting the nervous system, protecting the cardiovascular system, anti-inflammatory, antidiabetic, antihyperlipidemic, antitumor, antibacterial, and antidiarrheal. However, factors such as poor solubility, low permeability, P-glycoprotein (P-gp) efflux, and hepatic-intestinal metabolism result in BBR having a low bioavailability (< 1%), which restricts its application in clinical settings. Therefore, improving its bioavailability is a prerequisite for its clinical applications. This review summarizes the various pharmacological effects of BBR and analyzes the main reasons for its poor bioavailability. It introduces methods to improve the bioavailability of BBR through the use of absorption enhancers and P-gp inhibitors, structural modification of BBR, and preparation of BBR salts and cocrystals as well as the development of new formulations and focuses on the bioavailability study of the new formulations of BBR. The research of BBR was also prospected in order to provide reference for the further research of BBR.

4.
Proc Natl Acad Sci U S A ; 121(24): e2320867121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838015

ABSTRACT

O-GlcNAcase (OGA) is the only human enzyme that catalyzes the hydrolysis (deglycosylation) of O-linked beta-N-acetylglucosaminylation (O-GlcNAcylation) from numerous protein substrates. OGA has broad implications in many challenging diseases including cancer. However, its role in cell malignancy remains mostly unclear. Here, we report that a cancer-derived point mutation on the OGA's noncatalytic stalk domain aberrantly modulates OGA interactome and substrate deglycosylation toward a specific set of proteins. Interestingly, our quantitative proteomic studies uncovered that the OGA stalk domain mutant preferentially deglycosylated protein substrates with +2 proline in the sequence relative to the O-GlcNAcylation site. One of the most dysregulated substrates is PDZ and LIM domain protein 7 (PDLIM7), which is associated with the tumor suppressor p53. We found that the aberrantly deglycosylated PDLIM7 suppressed p53 gene expression and accelerated p53 protein degradation by promoting the complex formation with E3 ubiquitin ligase MDM2. Moreover, deglycosylated PDLIM7 significantly up-regulated the actin-rich membrane protrusions on the cell surface, augmenting the cancer cell motility and aggressiveness. These findings revealed an important but previously unappreciated role of OGA's stalk domain in protein substrate recognition and functional modulation during malignant cell progression.


Subject(s)
Cytoskeleton , LIM Domain Proteins , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Cytoskeleton/metabolism , Acetylglucosamine/metabolism , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Cell Line, Tumor , Glycosylation , Hydrolysis , Mutation , Cell Movement , Antigens, Neoplasm , Hyaluronoglucosaminidase , Histone Acetyltransferases
5.
Eur J Pharmacol ; 978: 176746, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880219

ABSTRACT

Psoriasis is a prevalent immune-mediated inflammatory skin disease characterized by excessive abnormal proliferation of keratinocytes and infiltration of immune cells, which have significant impact on the life quality of individuals. Although biological agents and small molecule targeted drugs have brought significant clinical benefits to psoriasis patients, adverse reactions and high prices remains key issues in clinical medication of psoriasis, while natural product monomers possess high efficiency, low toxicity, anti-inflammatory and immunomodulatory properties, and bring new hope for the clinical treatment of psoriasis. Sappanone A (SA), a small molecule compound isolated from Caesalpinia sappan L, exhibits significant anti-inflammatory properties in various models, such as kidney inflammation and LPS-induced mice inflammation. Among these effects, the anti-inflammatory property of SA has received significant attention. In our study, we found that SA exhibited anti-proliferation and anti-inflammatory effects in HaCaT cells, and significantly alleviated imiquimod-induced psoriasis-like skin lesions via the inhibition of the excessive proliferation of keratinocytes and the infiltration of lymphocytes. Furthermore, the combinational analysis of network pharmacology and transcriptome sequencing revealed that SA exerted anti-psoriasis effects by inhibiting the matrix metalloproteinase 8 (Mmp8) expression and IL-17 pathway activation. In summary, we have first demonstrated that SA can be used as a novel anti-psoriasis drug, which may provide a novel strategy for the clinical treatment of psoriasis.

6.
J Dent ; 146: 105028, 2024 07.
Article in English | MEDLINE | ID: mdl-38719135

ABSTRACT

AIM: Three-dimensional (3D) cell culture systems perform better in resembling tissue or organism structures compared with traditional 2D models. Organs-on-chips (OoCs) are becoming more efficient 3D models. This study aimed to create a novel simplified dentin-on-a-chip using microfluidic chip technology and tissue engineering for screening dental materials. METHODOLOGY: A microfluidic device with three channels was designed for creating 3D dental tissue constructs using stem cells from the apical papilla (SCAP) and gelatin methacrylate (GelMA). The study investigated the effect of varying cell densities and GelMA concentrations on the layer features formed within the microfluidic chip. Cell viability and distribution were evaluated through live/dead staining and nuclei/F-actin staining. The osteo/odontogenic potential was assessed through ALP staining and Alizarin red staining. The impact of GelMA concentrations (5 %, 10 %) on the osteo/odontogenic differentiation trajectory of SCAP was also studied. RESULTS: The 3D tissue constructs maintained high viability and favorable spreading within the microfluidic chip for 3-7 days. A cell seeding density of 2 × 104 cells/µL was found to be the most optimal choice, ensuring favorable cell proliferation and even distribution. GelMA concentrations of 5 % and 10 % proved to be most effective for promoting cell growth and uniform distribution. Within the 5 % GelMA group, SCAP demonstrated higher osteo/odontogenic differentiation than that in the 10 % GelMA group. CONCLUSION: In 3D culture, GelMA concentration was found to regulate the osteo/odontogenic differentiation of SCAP. The study recommends a seeding density of 2 × 104 cells/µL of SCAP within 5 % GelMA for constructing simplified dentin-on-a-chip. CLINICAL SIGNIFICANCE: This study built up the 3D culture protocol, and induced odontogenic differentiation of SCAP, thus forming the simplified dentin-on-a-chip and paving the way to be used as a well-defined biological model for regenerative endodontics. It may serve as a potential testing platform for cell differentiation.


Subject(s)
Cell Differentiation , Cell Proliferation , Cell Survival , Dental Papilla , Dentin , Gelatin , Lab-On-A-Chip Devices , Tissue Engineering , Tissue Engineering/methods , Humans , Dental Papilla/cytology , Stem Cells/cytology , Odontogenesis , Osteogenesis/physiology , Methacrylates , Cell Culture Techniques , Microfluidics/methods , Microfluidics/instrumentation , Cell Culture Techniques, Three Dimensional/methods , Cell Culture Techniques, Three Dimensional/instrumentation , Cells, Cultured
7.
EClinicalMedicine ; 72: 102609, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38707911

ABSTRACT

Background: It is known that gestational diabetes mellitus (GDM)-complicated pregnancies could affect maternal cardiometabolic health after delivery, resulting in hepatic dysfunction and a heightened risk of developing non-alcoholic fatty liver disease (NAFLD). Hence, this study aims to summarise existing literature on the impact of GDM on NAFLD in mothers and investigate the intergenerational impact on NAFLD in offspring. Methods: Using 4 databases (PubMed, Embase, Web of Science and Scopus) between January 1980 and December 2023, randomized controlled trials and observational studies that assessed the effect of maternal GDM on intergenerational liver outcomes were extracted and analysed using random-effects meta-analysis to investigate the effect of GDM on NAFLD in mothers and offspring. Pooled odds ratio (OR) was calculated using hazards ratio (HR), relative risk (RR), or OR reported from each study, with corresponding 95% confidence intervals (CI), and statistical heterogeneity was assessed with the Cochran Q-test and I2 statistic, with two-sided p values. The study protocol was pre-registered on PROSPERO (CRD42023392428). Findings: Twenty studies pertaining to mothers and offspring met the inclusion criteria and 12 papers were included further for meta-analysis on intergenerational NAFLD development. Compared with mothers without a history of GDM, mothers with a history of GDM had a 50% increased risk of developing NAFLD (OR 1.50; 95% CI: 1.21-1.87, over a follow-up period of 16 months-25 years. Similarly, compared with offspring born to non-GDM-complicated pregnancies, offspring born to GDM-complicated pregnancies displayed an approximately two-fold elevated risk of NAFLD development (2.14; 1.57-2.92), over a follow-up period of 1-17.8 years. Interpretation: This systematic review and meta-analysis suggests that both mothers and offspring from GDM-complicated pregnancies exhibit a greater risk to develop NAFLD. These findings underline the importance of early monitoring of liver function and prompt intervention of NAFLD in both generations from GDM-complicated pregnancies. Funding: No funding was available for this research.

8.
Mol Neurobiol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769227

ABSTRACT

Accumulating evidence suggests that prenatal stress (PNS) increases offspring susceptibility to depression, but the underlying mechanisms remain unclear. We constructed a mouse model of prenatal stress by spatially restraining pregnant mice from 09:00-11:00 daily on Days 5-20 of gestation. In this study, western blot analysis, quantitative real-time PCR (qRT‒PCR), immunofluorescence, immunoprecipitation, chromatin immunoprecipitation (ChIP), and mifepristone rescue assays were used to investigate alterations in the GR/P300-MKP1 and downstream ERK/CREB/TRKB pathways in the brains of prenatally stressed offspring to determine the pathogenesis of the reduced neurogenesis and depression-like behaviors in offspring induced by PNS. We found that prenatal stress leads to reduced hippocampal neurogenesis and depression-like behavior in offspring. Prenatal stress causes high levels of glucocorticoids to enter the fetus and activate the hypothalamic‒pituitary‒adrenal (HPA) axis, resulting in decreased hippocampal glucocorticoid receptor (GR) levels in offspring. Furthermore, the nuclear translocation of GR and P300 (an acetylation modifying enzyme) complex in the hippocampus of PNS offspring increased significantly. This GR/P300 complex upregulates MKP1, which is a negative regulator of the ERK/CREB/TRKB signaling pathway associated with depression. Interestingly, treatment with a GR antagonist (mifepristone, RU486) increased hippocampal GR levels and decreased MKP1 expression, thereby ameliorating abnormal neurogenesis and depression-like behavior in PNS offspring. In conclusion, our study suggested that the regulation of the MKP1 signaling pathway by GR/P300 is involved in depression-like behavior in prenatal stress-exposed offspring and provides new insights and ideas for the fetal hypothesis of mental health.

9.
Sci Total Environ ; 931: 172944, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38701919

ABSTRACT

Air pollution poses a significant threat to public health, while biogenic volatile organic compounds (BVOCs) play a crucial role in both aspects. However, the unclear relationship between BVOCs and air pollutants in the under-canopy space limits the accuracy of air pollution control and the exploitation of forest healthcare functions. To clarify the variation of BVOCs in forest therapy bases, and their impacts on ozone (O3) and fine particulate matter (PM2.5) at nose height, total VOCs (TVOCs) in the forest were collected during typical sunny days, while air pollutants and meteorological factors were observed simultaneously. The results showed that the branch-level emissions of P. tabuliformis were dominated by healthcare-effective monoterpenoids, with only α-pinene having relative air concentrations of over 5 % in forest air samples. The correlation between concentrations of under-canopy TVOCs and emission rates of BVOCs from P. tabuliformis was weak (p > 0.09) in all seasons. However, the correlation between concentrations of TVOCs and the concentrations of O3 and PM2.5 showed clear seasonal differences. In spring, TVOCs only showed a significant negative correlation with PM2.5 in the forest (p < 0.01). In summer and autumn, TVOCs were significantly negatively correlated with both O3 (p < 0.001) and PM2.5 (p < 0.01). Specifically, the negative linear relationships were more pronounced for O3 and oxygenated VOCs in autumn (R2 = 0.40, p < 0.001) than for other relationships. The relationship between air pollutant concentrations inside and outside the forest also showed significant seasonal differences, generally characterized by a weaker correlation between them during seasons of strong emissions. Therefore, BVOCs in coniferous forests are health functions as they can provide healthcare effects and mitigate the concentration of air pollutants in the forest, and the establishment of forest therapy bases in rural areas with low NOx can be a sensible approach to promote good health, well-being, and sustainable development.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Forests , Ozone , Particulate Matter , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Air Pollution/statistics & numerical data , Ozone/analysis , Seasons
10.
Anal Chem ; 96(19): 7506-7515, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38690851

ABSTRACT

Alzheimer's disease (AD) is a progressive neurological disorder featuring abnormal protein aggregation in the brain, including the pathological hallmarks of amyloid plaques and hyperphosphorylated tau. Despite extensive research efforts, understanding the molecular intricacies driving AD development remains a formidable challenge. This study focuses on identifying key protein conformational changes associated with the progression of AD. To achieve this, we employed quantitative cross-linking mass spectrometry (XL-MS) to elucidate conformational changes in the protein networks in cerebrospinal fluid (CSF). By using isotopically labeled cross-linkers BS3d0 and BS3d4, we reveal a dynamic shift in protein interaction networks during AD progression. Our comprehensive analysis highlights distinct alterations in protein-protein interactions within mild cognitive impairment (MCI) states. This study accentuates the potential of cross-linked peptides as indicators of AD-related conformational changes, including previously unreported site-specific binding between α-1-antitrypsin (A1AT) and complement component 3 (CO3). Furthermore, this work enables detailed structural characterization of apolipoprotein E (ApoE) and reveals modifications within its helical domains, suggesting their involvement in MCI pathogenesis. The quantitative approach provides insights into site-specific interactions and changes in the abundance of cross-linked peptides, offering an improved understanding of the intricate protein-protein interactions underlying AD progression. These findings lay a foundation for the development of potential diagnostic or therapeutic strategies aimed at mitigating the negative impact of AD.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Mass Spectrometry , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/diagnosis , Humans , Apolipoproteins E/chemistry , Apolipoproteins E/metabolism , Cross-Linking Reagents/chemistry , Protein Conformation , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/metabolism , Cognitive Dysfunction/metabolism
11.
Org Lett ; 26(20): 4356-4360, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38739349

ABSTRACT

The intramolecular Curtius rearrangement suffers from a high reaction temperature, low yields, tedious product isolation, and difficult scale up. This study presents a room-temperature Curtius rearrangement that can be novelly driven by the HFIP solvent, followed by light-illuminated intramolecular cyclization. Such a mild reaction allows for the preparation of various fused pyridone derivatives with diverse substituent groups that have rarely been incorporated by previous methods. The roles of HFIP and light are investigated by a set of control experiments through a combination of IR and NMR titration. Furthermore, using the substituted fused pyridones as unnatural bases, we can obtain a panel of new nucleotides.

12.
Nat Neurosci ; 27(6): 1103-1115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38741020

ABSTRACT

The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. Here, to explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3 and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely, thymosin beta 4, thymosin beta 10 and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.


Subject(s)
Brain , Subcommissural Organ , Animals , Mice , Brain/metabolism , Brain/growth & development , Brain/embryology , Subcommissural Organ/metabolism , Gene Expression Regulation, Developmental , Thymosin/metabolism , Thymosin/genetics , Mice, Transgenic , Hydrocephalus/genetics , Hydrocephalus/metabolism , Hydrocephalus/pathology , Neurons/metabolism , Cell Movement/physiology , Peptides/metabolism , Mice, Inbred C57BL
13.
bioRxiv ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38585720

ABSTRACT

The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. To explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3, and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely thymosin beta 4, thymosin beta 10, and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.

14.
Article in English | MEDLINE | ID: mdl-38618714

ABSTRACT

OBJECTIVE: The meta-analysis was performed to evaluate the effectiveness of telemedicine interventions on patients with diabetic foot ulcers(DFU). APPROACH: The authors conducted a comprehensive search across eight databases. The aim was to identify randomized controlled trials examining the effectiveness of telemedicine for patients with DFU. Methodological qualities of included studies were assessed using Cochrane Handbook for Systematic Reviews of Intervention.. Subsequently, a meta-analysis was conducted using RevMan 5.3 to synthesize the findings. RESULTS: Ten studies involving 1678 patients with DFU were included in the meta-analysis. In comparison to the face-to-face intervention group, telemedicine interventions significantly reduced the amputation rate (risk ratio (RR) = 0.64, 95% confidence interval (CI) = 0.44-0.92, p = 0.02), decreased costs (mean difference (MD) = -4158.51, 95% CI = -7304.69--1012.34, p = 0.01), better controlled fasting blood glucose( FPG)(MD = -0.89, 95% CI = -1.43--0.36, p = 0.001), achieved superior glycated hemoglobin(HbA1c) control (MD = -0.71, 95% CI = -1.01--0.41, p ˂ 0.00001). No significant differences were observed between the telemedicine group and the face-to-face group in terms of healing rate, mortality, and healing time.  Innovations: Our study suggests that telemedicine is a viable strategy for managing DFU. CONCLUSIONS: The meta-analysis indicates that telemedicine interventions have a positive effect on DFU. Nevertheless, more well-designed and high-quality studies are needed to reach a conclusion with greater confidence.

15.
J Proteome Res ; 23(5): 1757-1767, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38644788

ABSTRACT

The American lobster, Homarus americanus, is not only of considerable economic importance but has also emerged as a premier model organism in neuroscience research. Neuropeptides, an important class of cell-to-cell signaling molecules, play crucial roles in a wide array of physiological and psychological processes. Leveraging the recently sequenced high-quality draft genome of the American lobster, our study sought to profile the neuropeptidome of this model organism. Employing advanced mass spectrometry techniques, we identified 24 neuropeptide precursors and 101 unique mature neuropeptides in Homarus americanus. Intriguingly, 67 of these neuropeptides were discovered for the first time. Our findings provide a comprehensive overview of the peptidomic attributes of the lobster's nervous system and highlight the tissue-specific distribution of these neuropeptides. Collectively, this research not only enriches our understanding of the neuronal complexities of the American lobster but also lays a foundation for future investigations into the functional roles that these peptides play in crustacean species. The mass spectrometry data have been deposited in the PRIDE repository with the identifier PXD047230.


Subject(s)
Amino Acid Sequence , Nephropidae , Neuropeptides , Proteomics , Animals , Nephropidae/metabolism , Neuropeptides/metabolism , Neuropeptides/genetics , Neuropeptides/analysis , Proteomics/methods , Mass Spectrometry , Molecular Sequence Data
16.
J Proteome Res ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426863

ABSTRACT

Neuropeptides represent a unique class of signaling molecules that have garnered much attention but require special consideration when identifications are gleaned from mass spectra. With highly variable sequence lengths, neuropeptides must be analyzed in their endogenous state. Further, neuropeptides share great homology within families, differing by as little as a single amino acid residue, complicating even routine analyses and necessitating optimized computational strategies for confident and accurate identifications. We present EndoGenius, a database searching strategy designed specifically for elucidating neuropeptide identifications from mass spectra by leveraging optimized peptide-spectrum matching approaches, an expansive motif database, and a novel scoring algorithm to achieve broader representation of the neuropeptidome and minimize reidentification. This work describes an algorithm capable of reporting more neuropeptide identifications at 1% false-discovery rate than alternative software in five Callinectes sapidus neuronal tissue types.

17.
Chem Soc Rev ; 53(8): 3656-3686, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38502089

ABSTRACT

Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.


Subject(s)
Gold , Gold/chemistry , Humans , Surface Properties , Metal Nanoparticles/chemistry , Dentistry , Drug Delivery Systems , Nanotechnology/methods
18.
Methods Mol Biol ; 2758: 255-289, 2024.
Article in English | MEDLINE | ID: mdl-38549019

ABSTRACT

Crustaceans serve as a useful, simplified model for studying peptides and neuromodulation, as they contain numerous neuropeptide homologs to mammals and enable electrophysiological studies at the single-cell and neural circuit levels. Crustaceans contain well-defined neural networks, including the stomatogastric ganglion, oesophageal ganglion, commissural ganglia, and several neuropeptide-rich organs such as the brain, pericardial organs, and sinus glands. As existing mass spectrometry (MS) methods are not readily amenable to neuropeptide studies, there is a great need for optimized sample preparation, data acquisition, and data analysis methods. Herein, we present a general workflow and detailed methods for MS-based neuropeptidomic analysis of crustacean tissue samples and circulating fluids. In conjunction with profiling, quantitation can also be performed with isotopic or isobaric labeling. Information regarding the localization patterns and changes of peptides can be studied via mass spectrometry imaging. Combining these sample preparation strategies and MS analytical techniques allows for a multi-faceted approach to obtaining deep knowledge of crustacean peptidergic signaling pathways.


Subject(s)
Neuropeptides , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Neuropeptides/metabolism , Peptides , Diagnostic Imaging , Ganglia/chemistry , Mammals/metabolism
19.
Methods Mol Biol ; 2758: 445-455, 2024.
Article in English | MEDLINE | ID: mdl-38549029

ABSTRACT

Human cerebrospinal fluid (CSF) is a rich source for central nervous system (CNS)-related disease biomarker discovery due to its direct interchange with the extracellular fluid of the CNS. Though extensive proteome-level profiling has been conducted for CSF, studies targeting at its endogenous peptidome is still limited. It is more difficult to include the post-translational modifications (PTMs) characterization of the peptidome in the mass spectrometry (MS) analysis because of their low abundance and the challenge of data interpretation. In this chapter, we present a peptidomic workflow that combines molecular weight cut-off (MWCO) separation, electron-transfer and higher-energy collision dissociation (EThcD) fragmentation, and a three-step database searching strategy for comprehensive PTM analysis of endogenous peptides including both N-glycosylation and O-glycosylation and other common peptide PTMs. The method has been successfully adopted to analyze CSF samples from healthy donors, mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients to provide a landscape of peptidome in different disease states.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/cerebrospinal fluid , Peptides/chemistry , Tandem Mass Spectrometry , Protein Processing, Post-Translational , Glycosylation , Biomarkers/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid
20.
Am J Clin Nutr ; 119(4): 1065-1074, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408725

ABSTRACT

BACKGROUND: Evidence has indicated that polyunsaturated fatty acids (PUFAs)-enriched diet could reduce inflammation because of thyroid autoimmunity in vivo, and therefore, enhance thyroid function. OBJECTIVES: We investigated whether early pregnancy plasma phospholipid PUFAs could benefit maternal thyroid function across pregnancy, which is critical to fetal brain development and growth in pregnancy. METHODS: Within the National Institute of Child Health and Human Development Fetal Growth Studies-Singleton Cohort, we collected plasma samples longitudinally from 214 subjects [107 with gestational diabetes mellitus (GDM) matched with 107 controls] with a singleton pregnancy. We measured 11 PUFAs at early pregnancy (10-14 wk) and 5 thyroid biomarkers at 10-14, 15-26, 23-31, and 33-39 wk, including free thyroxine (fT4), free triiodothyronine (fT3), thyroid-stimulating hormone, antithyroid peroxidase, and antithyroglobulin. Associations of PUFAs with thyroid function biomarkers and relative risk (RR) of gestational hypothyroidism (GHT) during pregnancy were assessed using generalized linear mixed models and modified Poisson regression, respectively. RESULTS: After sample weighting because of subjects with GDM over-representing in the analytic sample with biomarkers, eicosapentaenoic acid (EPA) at early pregnancy was associated with a reduction of 0.24 pmol/L (95% confidence intervals: -0.31, -0.16) in fT3 across gestation per standard deviation (SD) increment, whereas docosahexaenoic acid (DHA) at early pregnancy was associated with an increment of 0.04 ng/dL (0.02, 0.05) in fT4 across gestation per SD increment. Furthermore, EPA and docosatetraenoic acid (DTA) were associated with lower risks of persistent GHT (EPA-RR: 0.13; 0.06, 0.28; DTA-RR: 0.24; 0.13, 0.44) per SD increment. All significant associations remained robust in sensitivity analysis and multiple testing. CONCLUSIONS: Certain plasma phospholipid PUFAs were associated with optimal levels of thyroid biomarkers and even lower risk of GHT throughout pregnancy, which might be potentially targeted for maternal thyroid regulation in early pregnancy. CLINICAL TRIAL REGISTRY: This trial was registered at https://beta. CLINICALTRIALS: gov/study/NCT00912132?distance=50&term=NCT00912132&rank=1 as NCT00912132.


Subject(s)
Diabetes, Gestational , Phospholipids , Pregnancy , Female , Child , Humans , Longitudinal Studies , Thyroid Gland , Fatty Acids, Unsaturated , Eicosapentaenoic Acid , Biomarkers , Fatty Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...