Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.860
1.
medRxiv ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38826438

Methamphetamine Use Disorder (MUD) is associated with substantially reduced quality of life. Yet, decisions to use persist, due in part to avoidance of anticipated withdrawal states. However, the specific cognitive mechanisms underlying this decision process, and possible modulatory effects of aversive states, remain unclear. Here, 56 individuals with MUD and 58 healthy comparisons (HCs) performed a decision task, both with and without an aversive interoceptive state induction. Computational modeling measured the tendency to test beliefs about uncertain outcomes (directed exploration) and the ability to update beliefs in response to outcomes (learning rates). Compared to HCs, those with MUD exhibited less directed exploration and slower learning rates, but these differences were not affected by aversive state induction. These results suggest novel, state-independent computational mechanisms whereby individuals with MUD may have difficulties in testing beliefs about the tolerability of abstinence and in adjusting behavior in response to consequences of continued use.

2.
Chemphyschem ; : e202400075, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822681

Environmental pollution management and renewable energy development are humanity's biggest issues in the 21st century. The rise in atmospheric CO2, which has surpassed 400 parts per million, has stimulated research on CO2 reduction and conversion methods. Presently, photocatalytic conversion of CO2 to valuable hydrocarbons enables the transformation of solar energy into chemical energy and offers a novel avenue for energy conversion while regulating the greenhouse effect. This is an ideal strategy for simultaneously addressing environmental issues and the energy crisis. Photocatalysts are essential to photocatalytic processes. Photocatalyst is the core of photocatalytic technology, and graphite carbon nitride (g-C3N4) has attracted much attention because of its nonmetallic characteristics, and it has the characteristics of low cost, tunable electronic structure, easy manufacture and strong reducibility. However, its activity is not only affected by external reaction conditions, but also by the band gap structure, physical and chemical stability, surface morphology and specific surface area of the photocatalyst it. In this paper, the application progress of g-C3N4-based photocatalytic materials in CO2 reduction is reviewed, and the modification strategies of g-C3N4-based catalysts to obtain better catalytic efficiency and selectivity in CO2 photocatalytic reduction are summarized, and the future development of this material is prospected.

3.
Cancer Lett ; : 216989, 2024 May 31.
Article En | MEDLINE | ID: mdl-38825162

Exosomes, a subset of extracellular vesicles, are released by all active cells and play a crucial role in intercellular communications. Exosomes could facilitate the transfer of various biologically active molecules, such as DNA, non-coding RNAs, and proteins, from donor to recipient cells, thereby participating in diverse biological and pathological processes. Besides, exosomes possess unique characteristics, including non-toxicity, low-immunogenicity, and stability within biological systems, rendering them highly advantageous for cancer drug development. Meanwhile, accumulating evidence suggests that exosomes originating from tumor cells and immune cells possess distinct composition profiles that play a direct role in anticancer immunotherapy. Of note, exosomes can transport their contents to specific cells, thereby exerting an impact on the phenotype and immune-regulatory functions of targeted cells. Therapeutic cancer vaccines, an emerging therapeutics of immunotherapy, could enhance antitumor immune responses by delivering a large number of tumor antigens, thereby augmenting the immune response against tumor cells. Therefore, the therapeutic rationale of cancer vaccines and exosome-based immunotherapy are almost similar to some extent, but some challenges have hindered their application in the clinical setting. Here, in this review, we first summarized the biogenesis, structure, compositions, and biological functions of exosomes. Then we described the roles of exosomes in cancer biology, particularly in tumor immunity. We also comprehensively reviewed current exosome-based anticancer vaccine development and we divided them into three types. Finally, we give some insights into clinical translation and clinical trial progress of exosome-based anticancer vaccines for future direction.

4.
Small Methods ; : e2400261, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38837641

The advantages of small extracellular vesicles (sEV) in disease management have become increasingly prominent, with the main challenge lying in meeting the demands of large-scale extraction and high-throughput analysis, a crucial aspect in the realm of precision medicine. To overcome this challenge, an engineered on-plate aptamer array (16×24 spots) is developed for continuous scale-up microextraction of plasma sEV and their in situ metabolic analysis using mass spectrometry. With this integrated array strategy, metabolic profiles of sEV are acquired from the plasma of 274 antenatal or postpartum women, reducing analysis time by half (7.5 h) and sample volume by 95% (only 0.125 µL usage) compared to the traditional suspension method. Moreover, using machine learning algorithms on sEV metabolic profiles, a risk score system is constructed that accurately assesses the need for epidural analgesia during childbirth and the likelihood of post-administration fever. The system, based on admission samples, achieves an impressive 94% accuracy. Furthermore, post-administration fever can be identified from delivery samples, reaching an overall accuracy rate of 88%. This work offers real-time monitoring of the childbirth process that can provide timely guidance for maternal delivery, underscoring the significance of sEV detection in large-scale clinical samples for medicine innovation and advancement.

5.
Proc Natl Acad Sci U S A ; 121(24): e2321267121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38838014

Mitochondria perform an array of functions, many of which involve interactions with gene products encoded by the nucleus. These mitochondrial functions, particularly those involving energy production, can be expected to differ between sexes and across ages. Here, we measured mitochondrial effects on sex- and age-specific gene expression in parental and reciprocal F1 hybrids between allopatric populations of Tigriopus californicus with over 20% mitochondrial DNA divergence. Because the species lacks sex chromosomes, sex-biased mitochondrial effects are not confounded by the effects of sex chromosomes. Results revealed pervasive sex differences in mitochondrial effects, including effects on energetics and aging involving nuclear interactions throughout the genome. Using single-individual RNA sequencing, sex differences were found to explain more than 80% of the variance in gene expression. Males had higher expression of mitochondrial genes and mitochondrially targeted proteins (MTPs) involved in oxidative phosphorylation (OXPHOS), while females had elevated expression of non-OXPHOS MTPs, indicating strongly sex-dimorphic energy metabolism at the whole organism level. Comparison of reciprocal F1 hybrids allowed insights into the nature of mito-nuclear interactions, showing both mitochondrial effects on nuclear expression, and nuclear effects on mitochondrial expression. While based on a small set of crosses, sex-specific increases in mitochondrial expression with age were associated with longer life. Network analyses identified nuclear components of strong mito-nuclear interactions and found them to be sexually dimorphic. These results highlight the profound impact of mitochondria and mito-nuclear interactions on sex- and age-specific gene expression.


Mitochondria , Sex Chromosomes , Animals , Female , Male , Mitochondria/genetics , Mitochondria/metabolism , Sex Chromosomes/genetics , Aging/genetics , Aging/metabolism , Oxidative Phosphorylation , Sex Characteristics , DNA, Mitochondrial/genetics , Cell Nucleus/metabolism , Cell Nucleus/genetics , Gene Expression Regulation , Energy Metabolism/genetics
7.
Life Sci ; 350: 122763, 2024 May 31.
Article En | MEDLINE | ID: mdl-38823505

AIMS: The intricate molecular mechanisms underlying estrogen receptor-positive (ER+) breast carcinogenesis and resistance to endocrine therapy remain elusive. In this study, we elucidate the pivotal role of GPR81, a G protein-coupled receptor, in ER+ breast cancer (BC) by demonstrating low expression of GPR81 in tamoxifen (TAM)-resistant ER+ BC cell lines and tumor samples, along with the underlying molecular mechanisms. MAIN METHODS: Fatty acid oxidation (FAO) levels and lipid accumulation were explored using MDA and FAßO assay, BODIPY 493/503 staining, and Lipid TOX staining. Autophagy levels were assayed using CYTO-ID detection and Western blotting. The impact of GPR81 on TAM resistance in BC was investigated through CCK8 assay, colony formation assay and a xenograft mice model. RESULTS: Aberrantly low GPR81 expression in TAM-resistant BC cells disrupts the Rap1 pathway, leading to the upregulation of PPARα and CPT1. This elevation in PPARα/CPT1 enhances FAO, impedes lipid accumulation and lipid droplet (LD) formation, and subsequently inhibits cell autophagy, ultimately promoting TAM-resistant BC cell growth. Moreover, targeting GPR81 and FAO emerges as a promising therapeutic strategy, as the GPR81 agonist and the CPT1 inhibitor etomoxir effectively inhibit ER+ BC cell and tumor growth in vivo, re-sensitizing TAM-resistant ER+ cells to TAM treatment. CONCLUSION: Our data highlight the critical and functionally significant role of GPR81 in promoting ER+ breast tumorigenesis and resistance to endocrine therapy. GPR81 and FAO levels show potential as diagnostic biomarkers and therapeutic targets in clinical settings for TAM-resistant ER+ BC.

8.
Int J Gen Med ; 17: 2513-2525, 2024.
Article En | MEDLINE | ID: mdl-38846346

Background: This study addresses the predictive modeling of Enlarged Perivascular Spaces (EPVS) in neuroradiology and neurology, focusing on their impact on Cerebral Small Vessel Disease (CSVD) and neurodegenerative disorders. Methods: A retrospective analysis was conducted on 587 neurology inpatients, utilizing LASSO regression for variable selection and logistic regression for model development. The study included comprehensive demographic, medical history, and laboratory data analyses. Results: The model identified key predictors of EPVS, including Age, Hypertension, Stroke, Lipoprotein a, Platelet Large Cell Ratio, Uric Acid, and Albumin to Globulin Ratio. The predictive nomogram demonstrated strong efficacy in EPVS risk assessment, validated through ROC curve analysis, calibration plots, and Decision Curve Analysis. Conclusion: The study presents a novel, robust EPVS predictive model, providing deeper insights into EPVS mechanisms and risk factors. It underscores the potential for early diagnosis and improved management strategies in neuro-radiology and neurology, highlighting the need for future research in diverse populations and longitudinal settings.

9.
Front Oncol ; 14: 1364306, 2024.
Article En | MEDLINE | ID: mdl-38835375

Spontaneous ventilation video-assisted thoracoscopic surgery (SV-VATS) has rapidly developed in recent years. The application scope is still being continuously explored. We describe a case in which a 40-year-old woman with mixed ground-glass opacity (GGO) and an esophageal leiomyoma successfully underwent simultaneous segmentectomy and leiomyoma resection through spontaneous ventilation video-assisted thoracoscopic surgery. The perioperative course was uneventful. Postoperative pathology revealed minimally invasive adenocarcinoma and esophageal leiomyoma.

10.
Front Microbiol ; 15: 1373013, 2024.
Article En | MEDLINE | ID: mdl-38835486

Background: This study aimed to clarify the relationship between the gut microbiota and osteoporosis combining Mendelian randomization (MR) analysis with animal experiments. Methods: We conducted an analysis on the relationship between differential bacteria and osteoporosis using open-access genome-wide association study (GWAS) data on gut microbe and osteoporosis obtained from public databases. The analysis was performed using two-sample MR analysis, and the causal relationship was examined through inverse variance weighting (IVW), MR Egger, weighted median, and weighted mode methods. Bilateral oophorectomy was employed to replicate the mouse osteoporosis model, which was assessed by micro computed tomography (CT), pathological tests, and bone transformation indexes. Additionally, 16S rDNA sequencing was conducted on fecal samples, while SIgA and indexes of IL-6, IL-1ß, and TNF-α inflammatory factors were examined in colon samples. Through immunofluorescence and histopathology, expression levels of tight junction proteins, such as claudin-1, ZO-1, and occludin, were assessed, and conduct correlation analysis on differential bacteria and related environmental factors were performed. Results: A positive correlation was observed between g_Ruminococcus1 and the risk of osteoporosis, while O_Burkholderiales showed a negative correlation with the risk of osteoporosis. Furthermore, there was no evidence of heterogeneity or pleiotropy. The successful replication of the mouse osteoporosis model was assessed, and it was found that the abundance of the O_Burkholderiales was significantly reduced, while the abundance of g_Ruminococcus was significantly increased in the ovariectomized (OVX)-mice. The intestinal SIgA level of OVX mice decreased, the expression level of inflammatory factors increased, barrier damage occurred, and the content of LPS in the colon and serum significantly increased. The abundance level of O_Burkholderiales is strongly positively correlated with bone formation factors, gut barrier indicators, bone density, bone volume fraction, and trabecular bone quantity, whereas it was strongly negatively correlated with bone resorption factors and intestinal inflammatory factors, The abundance level of g_Ruminococcus shows a strong negative correlation with bone formation factors, gut barrier indicators, and bone volume fraction, and a strong positive correlation with bone resorption factors and intestinal inflammatory factors. Conclusion: O_Burkholderiales and g_Ruminococcus may regulate the development of osteoporosis through the microbiota-gut-bone axis.

11.
Front Immunol ; 15: 1395786, 2024.
Article En | MEDLINE | ID: mdl-38835758

It is commonly known that different macrophage phenotypes play specific roles in different pathophysiological processes. In recent years, many studies have linked the phenotypes of macrophages to their characteristics in different metabolic pathways, suggesting that macrophages can perform different functions through metabolic reprogramming. It is now gradually recognized that lactate, previously overlooked as a byproduct of glycolytic metabolism, acts as a signaling molecule in regulating multiple biological processes, including immunological responses and metabolism. Recently, lactate has been found to mediate epigenetic changes in macrophages through a newfound lactylation modification, thereby regulating their phenotypic transformation. This novel finding highlights the significant role of lactate metabolism in macrophage function. In this review, we summarize the features of relevant metabolic reprogramming in macrophages and the role of lactate metabolism therein. We also review the progress of research on the regulation of macrophage metabolic reprogramming by lactylation through epigenetic mechanisms.


Cellular Reprogramming , Epigenesis, Genetic , Lactic Acid , Macrophages , Macrophages/metabolism , Macrophages/immunology , Humans , Animals , Lactic Acid/metabolism , Metabolic Reprogramming
12.
Acta Pharm Sin B ; 14(6): 2786-2789, 2024 Jun.
Article En | MEDLINE | ID: mdl-38828158

The current status of clinical trials utilizing nanoparticle drug delivery system (NDDS) for brain tumors was summarized.Image 1.

13.
iScience ; 27(6): 109979, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38832007

This review explores the hallmarks of cancer resistance, including drug efflux mediated by ATP-binding cassette (ABC) transporters, metabolic reprogramming characterized by the Warburg effect, and the dynamic interplay between cancer cells and mitochondria. The role of cancer stem cells (CSCs) in treatment resistance and the regulatory influence of non-coding RNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are studied. The chapter emphasizes future directions, encompassing advancements in immunotherapy, strategies to counter adaptive resistance, integration of artificial intelligence for predictive modeling, and the identification of biomarkers for personalized treatment. The comprehensive exploration of these hallmarks provides a foundation for innovative therapeutic approaches, aiming to navigate the complex landscape of cancer resistance and enhance patient outcomes.

14.
BMC Microbiol ; 24(1): 160, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724904

BACKGROUND: Antibiotic-associated diarrhea (AAD) refers to symptoms of diarrhea that cannot be explained by other causes after the use of antibiotics. AAD is thought to be caused by a disruption of intestinal ecology due to antibiotics. Fecal Microbiota Transplantation (FMT) is a treatment method that involves transferring microbial communities from the feces of healthy individuals into the patient's gut. METHOD: We selected 23 AAD patients who received FMT treatment in our department. Before FMT, we documented patients' bowel movement frequency, abdominal symptoms, routine blood tests, and inflammatory markers, and collected fecal samples for 16S rRNA sequencing to observe changes in the intestinal microbiota. Patients' treatment outcomes were followed up 1 month and 3 months after FMT. RESULTS: Out of the 23 AAD patients, 19 showed a clinical response to FMT with alleviation of abdominal symptoms. Among them, 82.61% (19/23) experienced relief from diarrhea, 65% (13/20) from abdominal pain, 77.78% (14/18) from abdominal distension, and 57.14% (4/7) from bloody stools within 1 month after FMT. Inflammatory markers IL-8 and CRP significantly decreased after FMT, but there were no noticeable changes in WBC, IL-6, and TNF-α before and after transplantation. After FMT, the abundance of Bacteroides and Faecalibacterium increased in patients' fecal samples, while the abundance of Escherichia-Shigella and Veillonella decreased. CONCLUSION: FMT has a certain therapeutic effect on AAD, and can alleviate abdominal symptoms and change the intestinal microbiota of patients.


Anti-Bacterial Agents , Diarrhea , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Humans , Diarrhea/microbiology , Diarrhea/therapy , Fecal Microbiota Transplantation/methods , Female , Male , Middle Aged , Anti-Bacterial Agents/adverse effects , Feces/microbiology , Adult , RNA, Ribosomal, 16S/genetics , Aged , Treatment Outcome , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics
15.
Am J Dermatopathol ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38718197

ABSTRACT: Acral lentiginous melanoma (ALM) is an aggressive type of cutaneous melanoma (CM) that arises on palms, soles, and nail units. ALM is rare in White population, but it is relatively more frequent in dark-skinned populations. There is an unmet need to develop new personalized and more effective treatments strategies for ALM. Increased expression of antiapoptotic proteins (ie, BCL2, MCL1) has been shown to contribute to tumorigenesis and therapeutic resistance in multiple tumor types and has been observed in a subset of ALM and mucosal melanoma cell lines in vivo and in vitro. However, little is known about their expression and clinical significance in patients with ALM. Thus, we assessed protein expression of BCL2, MCL1, BIM, and BRAF V600E by immunohistochemistry in 32 melanoma samples from White and Hispanic populations, including ALM and non-ALM (NALM). BCL2, MCL1, and BIM were expressed in both ALM and NALM tumors, and no significant differences in expression of any of these proteins were detected between the groups, in our relatively small cohort. There were no significant associations between protein expression and BRAF V600E status, overall survival, or ethnicity. In summary, ALM and NALM demonstrate frequent expressions of apoptosis-related proteins BCL2, MCL1, and BIM. Our findings suggest that patients with melanoma, including ALM, may be potential candidates for apoptosis-directed therapies.

16.
Cereb Cortex ; 34(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38715406

Presbycusis has been reported as related to cognitive decline, but its underlying neurophysiological mechanism is still unclear. This study aimed to investigate the relationship between metabolite levels, cognitive function, and node characteristics in presbycusis based on graph theory methods. Eighty-four elderly individuals with presbycusis and 63 age-matched normal hearing controls underwent magnetic resonance spectroscopy, functional magnetic resonance imaging scans, audiological assessment, and cognitive assessment. Compared with the normal hearing group, presbycusis patients exhibited reduced gamma-aminobutyric acid and glutamate levels in the auditory region, increased nodal characteristics in the temporal lobe and precuneus, as well as decreased nodal characteristics in the superior occipital gyrus and medial orbital. The right gamma-aminobutyric acid levels were negatively correlated with the degree centrality in the right precuneus and the executive function. Degree centrality in the right precuneus exhibited significant correlations with information processing speed and executive function, while degree centrality in the left medial orbital demonstrated a negative association with speech recognition ability. The degree centrality and node efficiency in the superior occipital gyrus exhibited a negative association with hearing loss and speech recognition ability, respectively. These observed changes indicate alterations in metabolite levels and reorganization patterns at the brain network level after auditory deprivation.


Cognitive Dysfunction , Magnetic Resonance Imaging , Presbycusis , Humans , Male , Female , Presbycusis/diagnostic imaging , Presbycusis/metabolism , Presbycusis/physiopathology , Aged , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Magnetic Resonance Spectroscopy , Glutamic Acid/metabolism , gamma-Aminobutyric Acid/metabolism , Middle Aged , Brain/diagnostic imaging , Brain/metabolism
17.
Eur J Surg Oncol ; 50(7): 108383, 2024 May 03.
Article En | MEDLINE | ID: mdl-38704898

OBJECTIVE: To evaluate the impact of previous poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitor therapy on the effectiveness of secondary cytoreductive surgery (SCS) in patients with platinum-sensitive recurrent ovarian cancer (PSROC). METHODS: We identified patients with PSROC who underwent SCS at the Cancer Hospital, Chinese Academy of Medical Science, between January 2010 and December 2022. Postoperative complications within 30 days were categorized using the Accordion Severity Grading System. The Kaplan‒Meier method was used to estimate both overall survival (OS) and progression-free survival (PFS), and multivariate analysis was used to identify independent prognostic factors. RESULTS: Of the 265 patients included, 39 received prior PARP inhibitor therapy (Group A), and 226 did not (Group B). The rates of complete resection after SCS did not significantly differ between the two groups (79.5 % for Group A vs. 81.0 % for Group B; p = 0.766). As of December 2023, Group A exhibited a significantly shorter median PFS (14.2 months) than Group B (22.5 months; p = 0.002). Furthermore, the 3-year OS rate was lower in Group A (72.5 %) than in Group B (82.7 %; p = 0.015). The incidence of severe postoperative complications was comparable between Groups A and B (7.7 % vs. 1.8 %; p = 0.061). Multivariate analysis revealed that prior PARP inhibitor therapy significantly reduced the median PFS (hazard ratio (HR) = 4.434; p = 0.021) and OS (HR = 2.076; p = 0.010). CONCLUSIONS: SCS for PSROC demonstrated reduced efficacy in patients previously treated with PARP inhibitors compared to those without prior PARP inhibitor treatment.

18.
Cancer Sci ; 2024 May 05.
Article En | MEDLINE | ID: mdl-38705575

Persistent activation of estrogen receptor alpha (ERα)-mediated estrogen signaling plays a pivotal role in driving the progression of estrogen receptor positive (ER+) breast cancer (BC). In the current study, LINC00173, a long non-coding RNA, was found to bind both ERα and lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNFα) factor (LITAF), then cooperatively to inhibit ERα protein degradation by impeding the nuclear export of ERα. Concurrently, LITAF was found to attenuate TNFα transcription after binding to LINC00173, and this attenuating transcriptional effect was quite significant under lipopolysaccharide stimulation. Distinct functional disparities between estrogen subtypes emerge, with estradiol synergistically promoting ER+ BC cell growth with LINC00173, while estrone (E1) facilitated LITAF-transcriptional activation. In terms of therapeutic significance, silencing LINC00173 alongside moderate addition of E1 heightened TNFα and induced apoptosis, effectively inhibiting ER+ BC progression.

19.
Chem Sci ; 15(20): 7586-7595, 2024 May 22.
Article En | MEDLINE | ID: mdl-38784730

Fabricating three dimensional (3D) supramolecular frameworks (SMFs) into stable crystalline nanosheets remains a great challenge due to the homogeneous and weak inter-building block interactions along 3D directions. Herein, crystalline nanosheets of a 3D SMF with a uniform thickness of 4.8 ± 0.1 nm immobilized with Pt nanocrystals on the surface (Q[8]/Pt NSs) were fabricated via the solid-liquid reaction between cucurbit[8]uril/H2PtCl6 single crystals and hydrazine hydrate with the help of gas and heat yielded during the reaction process. A series of experiments and theoretical calculations reveal the ultrahigh stability of Q[8]/Pt NSs due to the high density hydrogen bonding interaction among neighboring Q[8] molecules. This in turn endows Q[8]/Pt NSs with excellent photocatalytic and continuous thermocatalytic CO oxidation performance, representing the thus-far reported best Pt nano-material-based catalysts.

20.
Front Med (Lausanne) ; 11: 1369317, 2024.
Article En | MEDLINE | ID: mdl-38813375

Introduction: Embryo implantation requires synchronous communication between the embryo and maternal endometrium. Inadequate maternal endometrial receptivity is one of the principal causes for embryo implantation failure [especially repeated implantation failure (RIF)] when biopsied good-quality euploid embryos are transferred. An RNA-seq-based endometrial receptivity test (rsERT) was previously established to precisely guide successful embryo implantation. In this study, we aimed to evaluate the effect of personalized embryo transfer (pET) via rsERT on the clinical outcomes in patients with RIF. Methods: A total of 155 patients with RIF were included in the present retrospective study and were divided into two groups: 60 patients who underwent rsERT and pET (Group rsERT) and 95 patients who underwent standard frozen embryo transfer (FET) without rsERT (Group FET). Reproductive outcomes were compared for patients who underwent rsERT-guided pET and standard FET. Results: Forty percent (24/60) of the patients who underwent rsERT were receptive, and the remaining 60% (36/60) were non-receptive. The positive human chorionic gonadotropin (ß-hCG) rate (56.3% vs. 30.5%, P = 0.003) and clinical pregnancy rate (43.8% vs. 24.2%, P = 0.017) were significantly higher in Group rsERT patients than in FET group patients. Additionally, Group rsERT patients also showed a higher implantation rate (32.1% vs. 22.1%, P = 0.104) and live birth rate (35.4% vs. 21.1%, P = 0.064) when compared with FET patients, although without significance. For subpopulation analysis, the positive ß-hCG rate, clinical pregnancy rate, implantation rate, and live birth rate of receptive patients were not statistically significant different from those of non-receptive patients. Conclusions: The rsERT can significantly improve the pregnancy outcomes of RIF patients, indicating the clinical potential of rsERT-guided pET.

...