Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Circ Res ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39229723

ABSTRACT

BACKGROUND: Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets. However, the function of crotonylated NAE1 has not been defined. This study aims to elucidate the effects and mechanisms of NAE1 crotonylation on cardiac hypertrophy. METHODS: Crotonylation levels were detected in both human and mouse subjects with cardiac hypertrophy through immunoprecipitation and Western blot assays. TMT-labeled quantitative lysine crotonylome analysis was performed to identify the crotonylated proteins in a mouse cardiac hypertrophic model induced by transverse aortic constriction. We generated NAE1 knock-in mice carrying a crotonylation-defective lysine to arginine K238R (lysine to arginine mutation at site 238) mutation (NAE1 K238R) and NAE1 knock-in mice expressing a crotonylation-mimicking lysine to glutamine K238Q (lysine to glutamine mutation at site 238) mutation (NAE1 K238Q) to assess the functional role of crotonylation of NAE1 at K238 in pathological cardiac hypertrophy. Furthermore, we combined coimmunoprecipitation, mass spectrometry, and dot blot analysis that was followed by multiple molecular biological methodologies to identify the target GSN (gelsolin) and corresponding molecular events contributing to the function of NAE1 K238 crotonylation. RESULTS: The crotonylation level of NAE1 was increased in mice and patients with cardiac hypertrophy. Quantitative crotonylomics analysis revealed that K238 was the main crotonylation site of NAE1. Loss of K238 crotonylation in NAE1 K238R knock-in mice attenuated cardiac hypertrophy and restored the heart function, while hypercrotonylation mimic in NAE1 K238Q knock-in mice significantly enhanced transverse aortic constriction-induced pathological hypertrophic response, leading to impaired cardiac structure and function. The recombinant adenoviral vector carrying NAE1 K238R mutant attenuated, while the K238Q mutant aggravated Ang II (angiotensin II)-induced hypertrophy. Mechanistically, we identified GSN as a direct target of NAE1. K238 crotonylation of NAE1 promoted GSN neddylation and, thus, enhanced its protein stability and expression. NAE1 crotonylation-dependent increase of GSN promoted actin-severing activity, which resulted in adverse cytoskeletal remodeling and progression of pathological hypertrophy. CONCLUSIONS: Our findings provide new insights into the previously unrecognized role of crotonylation on nonhistone proteins during cardiac hypertrophy. We found that K238 crotonylation of NAE1 plays an essential role in mediating cardiac hypertrophy through GSN neddylation, which provides potential novel therapeutic targets for pathological hypertrophy and cardiac remodeling.

2.
Front Med (Lausanne) ; 11: 1417930, 2024.
Article in English | MEDLINE | ID: mdl-39234049

ABSTRACT

Background: Decellularized allograft tendons are highly regarded for their accessibility and the reduced risk of immune rejection, making them a promising choice for grafting due to their favorable characteristics. However, effectively integrating reconstructed tendons with host bone remains a significant clinical challenge. Purpose: This study aims to investigate the relationship between the duration of tendon exposure to trypsin and its impact on tendon biomechanical properties and healing capacity. Methods: Morphological assessments and biochemical quantifications were conducted. Allograft tendons underwent heterotopic transplantation into the anterior cruciate ligament (ACL) in a rabbit model, with specimens harvested 6 weeks post-surgery for a comparative analysis of cell adhesion strength and mechanical performance. Duration-response curves were constructed using maximum stress and cell adhesion quantity as primary indicators. Results: The trypsin treatment enhanced cell adhesion on the tendon surface. Adhesion rates in the control group vs. the experimental groups were as follows: 3.10 ± 0.56% vs. 4.59 ± 1.51%, 5.36 ± 1.24%, 6.12 ± 1.98%, and 8.27 ± 2.34% (F = 6.755, p = 0.001). However, increasing treatment duration led to a decline in mechanical properties, with the ultimate load (N) in the control vs. experimental groups reported as 103.30 ± 10.51 vs. 99.59 ± 4.37, 93.15 ± 12.38, 90.42 ± 7.87, and 82.68 ± 6.89, F = 4.125 (p = 0.013). Conclusion: The findings reveal an increasing trend in adhesion effectiveness with prolonged exposure duration, while mechanical strength declines. The selection of the optimal processing duration should involve careful consideration of the benefits derived from both outcomes.

3.
Article in English | MEDLINE | ID: mdl-39167501

ABSTRACT

We present CO-Net++, a cohesive framework that optimizes multiple point cloud tasks collectively across heterogeneous dataset domains with a two-stage feature rectification strategy. The core of CO-Net++ lies in optimizing task-shared parameters to capture universal features across various tasks while discerning task-specific parameters tailored to encapsulate the unique characteristics of each task. Specifically, CO-Net++ develops a two-stage feature rectification strategy (TFRS) that distinctly separates the optimization processes for task-shared and task-specific parameters. At the first stage, TFRS configures all parameters in backbone as task-shared, which encourages CO-Net++ to thoroughly assimilate universal attributes pertinent to all tasks. In addition, TFRS introduces a sign-based gradient surgery to facilitate the optimization of task-shared parameters, thus alleviating conflicting gradients induced by various dataset domains. In the second stage, TFRS freezes task-shared parameters and flexibly integrates task-specific parameters into the network for encoding specific characteristics of each dataset domain. CO-Net++ prominently mitigates conflicting optimization caused by parameter entanglement, ensuring the sufficient identification of universal and specific features. Extensive experiments reveal that CO-Net++ realizes exceptional performances on both 3D object detection and 3D semantic segmentation tasks. Moreover, CO-Net++ delivers an impressive incremental learning capability and prevents catastrophic amnesia when generalizing to new point cloud tasks.

4.
Adv Sci (Weinh) ; : e2404426, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976554

ABSTRACT

Waste plastics bring about increasingly serious environmental challenges, which can be partly addressed by their interconversion into valuable compounds. It is hypothesized that the porosity and acidity of a zeolite-based catalyst will affect the selectivity and effectiveness, enabling a controllable and selective conversion of polyethylene (PE) into gas-diesel or lubricating base oil. A series of embryonic, partial- and well-crystalline zeolites beta with adjustable porosity and acidity are prepared from mesoporous SBA-15. The catalysts and catalytic systems are studied with nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and adsorption kinetics and catalytic reactions. The adjustable porosity and acidity of zeolite-beta-based catalysts achieve a controllable selectivity toward gas-diesel or lubricating base oil for PE cracking. With a catalyst with mesopores and appropriate acid sites, a fast escape and reduced production of cracking of intermediates are observed, leading to a significant fraction (88.7%) of lubricating base oil. With more micropores, a high acid density, and strong acid strength, PE is multiply cracked into low carbon number hydrocarbons. The strong acid center of the zeolite is confirmed to facilitate significantly the activation of hydrogen (H2), and, an in situ ammonia poisoning strategy can significantly inhibit hydrogen transfer and effectively regulate the product distribution.

5.
Cell Rep ; 43(6): 114301, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38823016

ABSTRACT

CD8+ T cells are rendered exhausted in tumor and chronic infection. Among heterogeneous exhausted T cells, a subpopulation of progenitor-like (Tpex) cells have been found important for long-term tumor or pathogen control and are also the main responders in immunotherapy. Using an RFP reporter mouse for the orphan nuclear receptor NR4A1, originally characterized as critical in T cell dysfunction, we discover that the reporter is highly expressed in Tpex cells in tumor and chronic infection. Enforced expression of Nr4a1 promotes Tpex cell accumulation, whereas tumor control is improved after Nr4a1 deletion, associated with increased effector function but decreased long-term maintenance of CD8+ T cells. Integrating chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analysis, NR4A1 is found to bind and promote the expression of Tpex-related genes, as well as suppress terminal differentiation-associated genes. This study therefore has identified a key role of NR4A1 in Tpex regulation and provides a promising target for immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Differentiation , Nuclear Receptor Subfamily 4, Group A, Member 1 , Tumor Microenvironment , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Tumor Microenvironment/immunology , Mice, Inbred C57BL , Transcription, Genetic , Stem Cells/metabolism , Humans
6.
Research (Wash D C) ; 7: 0375, 2024.
Article in English | MEDLINE | ID: mdl-38826565

ABSTRACT

Pushing the information states' acquisition efficiency has been a long-held goal to reach the measurement precision limit inside scattering spaces. Recent studies have indicated that maximal information states can be attained through engineered modes; however, partial intrusion is generally required. While non-invasive designs have been substantially explored across diverse physical scenarios, the non-invasive acquisition of information states inside dynamic scattering spaces remains challenging due to the intractable non-unique mapping problem, particularly in the context of multi-target scenarios. Here, we establish the feasibility of non-invasive information states' acquisition experimentally for the first time by introducing a tandem-generated adversarial network framework inside dynamic scattering spaces. To illustrate the framework's efficacy, we demonstrate that efficient information states' acquisition for multi-target scenarios can achieve the Fisher information limit solely through the utilization of the external scattering matrix of the system. Our work provides insightful perspectives for precise measurements inside dynamic complex systems.

7.
Cancer Res ; 84(15): 2484-2500, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657100

ABSTRACT

Adenoid cystic carcinoma (ACC) is a rare malignant epithelial neoplasm that arises in secretory glands and commonly metastasizes to the lungs. MYBL1 is frequently overexpressed in ACC and has been suggested to be a driver of the disease. In this study, we identified a circular RNA (circRNA) derived from MYBL1 pre-mRNA that was accompanied by the overexpression of MYBL1 in ACC. Overexpression of circMYBL1 was correlated with increased lung metastasis and poor overall survival in patients with ACC. Ectopic circMYBL1 overexpression promoted malignant phenotypes and lung metastasis of ACC cells. Mechanistically, circMYBL1 formed a circRNA-protein complex with CCAAT enhancer-binding protein ß (CEBPB), which inhibited ubiquitin-mediated degradation and promoted nuclear translocation of CEBPB. In the nucleus, circMYBL1 increased the binding of CEBPB to the CD44 promoter region and enhanced its transcription. In addition, circMYBL1 was enriched in small extracellular vesicles (sEV) isolated from the plasma of patients with ACC. Treatment with sEVs containing circMYBL1 in sEVs enhanced prometastatic phenotypes of ACC cells, elevated the expression of CD44 in human pulmonary microvascular endothelial cells (HPMEC), and enhanced the adhesion between HPMECs and ACC cells. Moreover, circMYBL1 encapsulated in sEVs increased the arrest of circulating ACC cells in the lung and enhanced lung metastatic burden. These data suggest that circMYBL1 is a tumor-promoting circRNA that could serve as a potential biomarker and therapeutic target for ACC. Significance: circMYBL1 stabilizes CEBPB and upregulates CD44 to promote adhesion between cancer cells and endothelial cells and enables lung metastasis of adenoid cystic carcinoma, suggesting that inhibition of this axis could improve patient outcomes.


Subject(s)
Carcinoma, Adenoid Cystic , Endothelial Cells , Extracellular Vesicles , Hyaluronan Receptors , Lung Neoplasms , RNA, Circular , Humans , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Carcinoma, Adenoid Cystic/pathology , Carcinoma, Adenoid Cystic/metabolism , Carcinoma, Adenoid Cystic/genetics , Carcinoma, Adenoid Cystic/secondary , Mice , Animals , Extracellular Vesicles/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , RNA, Circular/genetics , RNA, Circular/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Cell Line, Tumor , Female , Mice, Nude , Male , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice, Inbred BALB C
8.
J Colloid Interface Sci ; 667: 529-542, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38653074

ABSTRACT

Diabetic wounds are characterized by chronic trauma, with long-term non-healing attributed to persistent inflammation and recurrent bacterial infections. Exacerbation of the inflammatory response is largely due to increased levels of reactive oxygen species (ROS). In this study, catalase (CAT) was used as a biological template to synthesize nanozyme-supported natural enzymes (CAT-Mn(SH)x) using a biomimetic mineralization method. Subsequently, polymyxin B (CAT-Mn(SH)x@PMB) was immobilized on its surface through electrostatic assembly. CAT-Mn(SH)x@PMB demonstrates the ability for slow and sustained release of hydrogen sulfide (H2S). Finally, CAT-Mn(SH)x@PMB loaded microneedles (MNs) substrate were synthesized using polyvinyl alcohol (PVA) and hydroxyethyl methacrylate (HEMA), and named CAT-(MnSH)x@PMB-MNs. It exhibited enhanced enzyme and antioxidant activities, along with effective antibacterial properties. Validation findings indicate that it can up-regulate the level of M2 macrophages and reduce the level of pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). Additionally, it promotes angiogenesis and rapid nerve regeneration, thereby facilitating wound healing through its dual anti-inflammatory and antibacterial effects. Hence,this study introduces a time-space tissue-penetrating and soluble microneedle patch with dual anti-inflammatory and antibacterial effects for the treatment of diabetic wounds.


Subject(s)
Anti-Bacterial Agents , Catalase , Needles , Polymyxin B , Wound Healing , Polymyxin B/pharmacology , Polymyxin B/chemistry , Polymyxin B/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Animals , Catalase/metabolism , Catalase/chemistry , Wound Healing/drug effects , Mice , Escherichia coli/drug effects , Diabetes Mellitus, Experimental/drug therapy , Rats , RAW 264.7 Cells , Microbial Sensitivity Tests , Particle Size
9.
J Environ Manage ; 359: 120998, 2024 May.
Article in English | MEDLINE | ID: mdl-38677232

ABSTRACT

Afforestation is beneficial to improving soil carbon pools. However, due to the lack of deep databases, the variations in soil carbon and the combined effects of multiple factors after afforestation have yet to be adequately explored in >1 m deep soils, especially in areas with deep-rooted plants and thick vadose zones. This study examined the multivariate controls of soil organic carbon (SOC) and inorganic carbon (SIC) in 0-18 m deep under farmland, grassland, willow, and poplar in loess deposits. The novelty of this study is that the factors concurrently affecting deep soil carbon were investigated by multiwavelet coherence and structural equation models. On average, the SOC density (53.1 ± 5.0 kg m-2) was only 12% of SIC density (425.4 ± 13.8 kg m-2), with depth-dependent variations under different land use types. In the soil profiles, the variations in SOC were more obvious in the 0-6 m layer, while SIC variations were mainly observed in the 6-12 m layer. Compared with farmland (SOC: 17.0 kg m-2; SIC: 122.9 kg m-2), the plantation of deciduous poplar (SOC: 28.5 kg m-2; SIC: 144.2 kg m-2) increased the SOC and SIC density within the 0-6 m layer (p < 0.05), but grassland and evergreen willow impacted SOC and SIC density insignificantly. The wavelet coherence analysis showed that, at the large scale (>4 m), SOC and SIC intensities were affected by total nitrogen-magnetic susceptibility and magnetic susceptibility-water content, respectively. The structural equation model further identified that SOC density was directly controlled by total nitrogen (path coefficient = 0.64) and indirectly affected by magnetic susceptibility (path coefficient = 0.36). Further, SOC stimulated the SIC deposition by improving water conservation and electrical conductivity. This study provides new insights into afforestation-induced deep carbon cycles, which have crucial implications for forest management and enhancing ecosystem sustainability in arid regions.


Subject(s)
Carbon , Soil , Soil/chemistry , Carbon/analysis
10.
Acta Trop ; 254: 107177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518835

ABSTRACT

Cryptosporidia (Cryptosporidium) is a protozoan that is widely parasitic in the intestinal cells of humans and animals, and it is also an important zoonotic parasite. However, there is no epidemiological investigation on Cryptosporidium spp. infection in infants with diarrhea of Inner Mongolia, the largest livestock region in China. To investigate the prevalence of Cryptosporidium, 2435 fresh fecal samples were collected from children with diarrhea in Inner Mongolia Maternal and Child Health Care Hospital. Molecular characterization of Cryptosporidium was carried out based on its 18S rRNA and gp60 gene sequences. The overall prevalence was 12.85% (313/2435), and in Hohhot (12.15%), it was lower than that in the surrounding city (14.87%) (P < 0.05). Moreover, Cryptosporidium was detected in different seasons and sexes. Concerning the age of children with diarrhea, the prevalence of those age groups between 0 and 1 was obviously lower than others, and there were significant differences in the prevalence at different ages (P < 0.001). Analysis of the 18S rRNA gene sequence revealed that all the positive samples were Cryptosporidium parvum, and there were 5 subtypes (IIdA23G3, IIdA24G3, IIdA24G4, IIdA25G3, and IIdA25G4). To the best of our knowledge, the above subtypes have not been reported. Our results provide a relevant basis for control and education on food safety and foodborne illness prevention.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Diarrhea , Feces , RNA, Ribosomal, 18S , Humans , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , China/epidemiology , Infant , Female , RNA, Ribosomal, 18S/genetics , Male , Diarrhea/epidemiology , Diarrhea/parasitology , Child, Preschool , Feces/parasitology , Prevalence , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Infant, Newborn , Child , DNA, Protozoan/genetics , Seasons , Sequence Analysis, DNA , Genotype , Phylogeny , Cryptosporidium parvum/genetics , Cryptosporidium parvum/isolation & purification , Cryptosporidium parvum/classification , DNA, Ribosomal/genetics , DNA, Ribosomal/chemistry
11.
Biomolecules ; 14(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38540687

ABSTRACT

Disulfidptosis is a newly discovered form of programmed cell death that is induced by disulfide stress. It is closely associated with various cancers, including head and neck squamous cell carcinoma (HNSCC). However, the factors involved in the modulation of disulfidptosis-related genes (DRGs) still remain unknown. In this study, we established and validated a novel risk score model composed of 11 disulfidptosis-related lncRNAs (DRLs) based on 24 DRGs in HNSCC. The results revealed strong correlations between the 11-DRL prognostic signature and clinicopathological features, immune cell infiltration, immune-related functions, and disulfidptosis-associated pathways, including NADPH and disulfide oxidoreductase activities. Furthermore, we studied and verified the involvement of ALMS1-IT1, one of the 11 model DRLs, in the disulfidptosis of HNSCC cell lines. A series of assays demonstrated that ALMS1-IT1 modulated cell death under starvation conditions in a pentose phosphate pathway (PPP)-dependent manner. Knockdown of ALMS1-IT1 inhibited the PPP, contributing to a decline in NADPH levels, which resulted in the formation of multiple intermolecular disulfide bonds between actin cytoskeleton proteins and the collapse of F-actin in the cytoplasm. Therefore, ALMS1-IT1, which is highly expressed in SLC7A11high cells, can be considered a promising therapeutic target for disulfidptosis-focused treatment strategies for cancer and other diseases.


Subject(s)
Head and Neck Neoplasms , RNA, Long Noncoding , Humans , Prognosis , RNA, Long Noncoding/genetics , NADP , Squamous Cell Carcinoma of Head and Neck/genetics , Disulfides , Head and Neck Neoplasms/genetics , Cell Cycle Proteins
12.
ACS Appl Mater Interfaces ; 16(11): 14308-14320, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38456610

ABSTRACT

It is well known that low-silica SAPO-34, with an extra porosity (meso- and/or macropores) system, affords excellent catalytic performance in the methanol-to-olefins (MTO) reaction, while the direct synthesis of low-silica SAPO-34 with a hierarchical structure is difficult to achieve, principally because the crystal impurities are usually formed under a low silica content in a gel precursor. Herein, low-silica SAPO-34 nanocrystals were successfully fabricated for the first time by constructing an isomorphous core-shell structure in an epitaxial growth manner. In which, low-silica, ultrasmall nanosquare-shaped SAPO-34 crystals with the same growth orientation along the (100) crystal plane compactly grow on the monocrystal SAPO-34 cores. Crucially, the external surface acid properties of the core SAPO-34 with the Si-rich outer layer are effectively modified by the low-silica SAPO-34 shell. Furthermore, the growth process and Si-substitution mechanism of the shell zeolite were comprehensively investigated. It was found that with the prolonged crystallization time, more and more coordinated Si(4Al) and Si(3Al) structures via two substitution mechanisms (SM2 and SM3) are generated in the nanocrystalline SAPO-34 shell, which endow moderate acidity of the core-shell SAPO-34. Compared to the uncoated SAPO-34, the core-shell SAPO-34 performs a longer lifespan and a higher average selectivity of light olefins (ethylene plus propylene) when applied to the MTO reaction, which is attributed to the positive effects of the luxuriant interstitial pores offering a fast diffusion channel and the moderate acid density depressing the hydrogen transfer reaction of light olefins. This work provides new insights into the fabrication of low-silica SAPO-34 nanocrystals, which are based on the rational design of the isomorphous core-shell zeolite.

13.
Int J Biol Macromol ; 263(Pt 2): 130443, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417749

ABSTRACT

Peptidylglycine α-hydroxylating monooxygenase (PHM) is pivotal for C-terminal amidation of bioactive peptides in animals, offering substantial potential for customized protein synthesis. However, efficient PHM production has been hindered by the complexity of animal cell culture and the absence of glycosylation in bacterial hosts. Here, we demonstrate the recombinant expression of Caenorhabditis elegans PHM in the yeast Pichia pastoris, achieving a remarkable space-time yield of 28.8 U/L/day. This breakthrough surpasses prior PHM production rates and eliminates the need for specialized cultivation equipment or complex transfection steps. Mass spectrometry revealed N-glycosylation at residue N182 of recombinant CePHM, which impacts the enzyme's activity as indicated by biochemical experiments. To showcase the utility of CePHM, we performed C-terminal amidation on ubiquitin at a substrate loading of 30 g/L, a concentration meeting the requirements for pharmaceutical peptide production. Overall, this work establishes an efficient PHM production method, promising advancements in scalable manufacturing of C-terminally modified bioactive peptides and probe proteins.


Subject(s)
Multienzyme Complexes , Protein C , Saccharomyces cerevisiae , Animals , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Mixed Function Oxygenases/chemistry , Peptides/metabolism
14.
J Environ Manage ; 354: 120300, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359625

ABSTRACT

Global warming has accentuated the effects of extreme heat on health. Health insurance, functioning as a risk management tool, has the potential to alleviate these impacts. Consequently, this paper investigates the correlation between extreme heat events and the demand for health insurance in China. Using data from the China Health and Nutrition Survey, we have observed a substantial increase in the likelihood of residents purchasing health insurance during extreme heat events. To be specific, for every extra day of extreme heat events annually, there is a 0.3% increase in the probability of purchasing health insurance. This effect is not uniform across different demographic groups. It is particularly pronounced among middle-aged and elderly individuals, rural residents, those with lower educational levels, higher income brackets, and individuals residing in underprivileged areas with limited access to green spaces and healthcare facilities. Furthermore, our study indicates that the increased frequency of extreme heat events not only impacts individuals' physical health but also triggers negative emotions, which in turn drive risk-averse behavior related to health insurance purchases. These findings carry substantial policy implications for mitigating the economic consequences of climate change.


Subject(s)
Extreme Heat , Middle Aged , Aged , Humans , Extreme Heat/adverse effects , China , Insurance, Health , Climate Change , Global Warming
15.
Sci Rep ; 14(1): 1733, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38242883

ABSTRACT

Bile acids play important roles in lipid metabolism and glucose homeostasis. Limited research exist on the association between serum total bile acid (TBA) levels and major adverse cardiovascular events (MACEs) in patients with acute coronary syndrome (ACS), particularly those with comorbid type 2 diabetes mellitus (T2DM). This study was conducted to examine the relationship between baseline serum TBA level and T2DM status in patients with ACS after percutaneous coronary intervention (PCI) and to identify the predictive value of TBA levels for a 2-year risk of MACEs. 425 ACS patients underwent PCI were recruited and divided into three groups based on baseline serum TBA concentration. An analysis of the association between the T2DM status and baseline serum TBA levels was conducted using univariate linear regression and multivariate linear regression. The predictive relevance of serum TBA levels was evaluated using the receiver operating characteristic (ROC) curve and Cox regression. Kaplan-Meier curves were employed to analyze the differences among groups in predicting MACEs over a 2-year follow-up period. Baseline serum TBA levels were higher in ACS patients who were diagnosed with T2DM (the median 3.6 µmol/L) than those without T2DM (the median 3.0 µmol/L). T2DM status in ACS patients was positively correlated with baseline serum TBA concentrations (ß: 1.7, 95% confidence interval [CI] 0.3-3.0), particularly in the male (ß: 2.0, 95% CI 0.3-3.6) and 50-69-year-old (ß: 2.5, 95% CI 0.6-4.4) populations. The areas under the ROC curve of baseline serum TBA levels predicted MACEs in ACS and ACS-T2DM patients following PCI were 0.649 (95% CI 0.595-0.703) and 0.783 (95% CI 0.685-0.881), respectively. Furthermore, Cox regression analysis showed that baseline serum TBA level was associated with the occurrence of MACEs in patients with ACS after PCI over a 2-year follow-up period, especially in those diagnosed with T2DM, whose baseline TBA concentration was lower than 10.0 µmol/L. ACS Patients with T2DM had higher serum TBA levels. TBA level at baseline was an independent predictor of MACEs in ACS patients who underwent PCI, especially with comorbid T2DM.


Subject(s)
Acute Coronary Syndrome , Diabetes Mellitus, Type 2 , Percutaneous Coronary Intervention , Humans , Male , Percutaneous Coronary Intervention/adverse effects , Diabetes Mellitus, Type 2/complications , Prospective Studies , Heart , Risk Factors
16.
Chinese Journal of School Health ; (12): 742-745, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1031855

ABSTRACT

Objective@#To explore prevalence and associated factors of nonalcoholic fatty liver disease (NAFLD) in overweight and obese children in Hohhot City, so as to provide the oretical basis for developing health education plans and implementing prevention and treatment of NAFLD in children.@*Methods@#A total of 156 overweight and obese children was enrolled from 4 primary schools in Hohhot City using cluster sampling method during 28th Aug. 2022 to 5th Mar. 2023. Height and weight were measured and body mass index was calculated, and fasting blood was taken in the early morning for fasting blood glucose, alanine aminotransferase, aspartate aminotransferase. Single factor analysis was conducted using ttest, χ2 test and Fishers exact probability method, while multivariate analysis was conducted using Logistic regression analysis and subject characteristic curves.@*Results@#The differences in age, waist circumference, hip circumference, fasting glucose, alanine aminotransferase, aspartate aminotransferase, gamma glutamyltransferase, uric acid, and triglyceride were statistically significant between the nonNAFLD and the NAFLD group (U/t=1 070.0-2 164.0, P<0.05). Significant differences were observed in aspartate aminotransferase (AST) and uric acid levels (AST OR=1.16, 95%CI=1.04-1.28; uric OR=1.01, 95%CI=1.00-1.01, P<0.05). The area under a receiver operating characteristic were 0.737 for aspartate aminotransferase and 0.665 for uric acid, respectively.@*Conclusions@#The prevalence of NAFLD is high in overweight/obese children in Hohhot, and both elevated aspartate aminotransferase and hyperuricemia could increase the risk of NAFLD in overweight/obese children. Special attention should be paid to the NAFLD in overweight and obese children. It is recommended to reduce both BMI and uric level in the prevention and treatment of NAFLD to achieve better treatment outcomes.

17.
Cell Tissue Bank ; 25(1): 357-367, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37355504

ABSTRACT

Tendon injuries repair is a significant burden for orthopaedic surgeons. Finding a proper graft material to repair tendon is one of the main challenges in orthopaedics, for which the requirement of substitute for tendon repair would be different for each clinical application. Among biological scaffolds, the use of decellularized tendon increasingly represents an interesting approach to treat tendon injuries and several articles have investigated the approaches of tendon decellularization. To understand the outcomes of the the approaches of tendon decellularization on effect of tendon transplantation, a literature review was performed. This review was conducted by searching in Pubmed and Embase and 64 studies were included in this study. The findings revealed that the common approaches to decellularize tendon include chemical, physical, and enzymatic decellularization methods or their combination. With the development of tissue engineering, researchers also put forward new theories such as automatic acellular machine, 3D printing technology to manufacture acellular scaffold.


Subject(s)
Hematopoietic Stem Cell Transplantation , Tendon Injuries , Humans , Tissue Scaffolds , Extracellular Matrix , Tendons/transplantation , Tissue Engineering/methods
18.
Neurosci Lett ; 821: 137609, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38157927

ABSTRACT

BACKGROUND: Patients with young-onset Alzheimer's disease (AD) (before the age of 50 years old) often lack obvious imaging changes and amyloid protein deposition, which can lead to misdiagnosis with other cognitive impairments. Considering the association between immunological dysfunction and progression of neurodegenerative disease, recent research has focused on identifying blood transcriptomic signatures for precise prediction of AD. METHODS: In this study, we extracted blood biomarkers from large-scale transcriptomics to construct multiclass eXtreme Gradient Boosting models (XGBoost), and evaluated their performance in distinguishing AD from cognitive normal (CN) and mild cognitive impairment (MCI). RESULTS: Independent testing with external dataset revealed that the combination of blood transcriptomic signatures achieved an area under the receiver operating characteristic curve (AUC of ROC) of 0.81 for multiclass classification (sensitivity = 0.81; specificity = 0.63), 0.83 for classification of AD vs. CN (sensitivity = 0.72; specificity = 0.73), and 0.85 for classification of AD vs. MCI (sensitivity = 0.77; specificity = 0.73). These candidate signatures were significantly enriched in 62 chromosome regions, such as Chr.19p12-19p13.3, Chr.1p22.1-1p31.1, and Chr.1q21.2-1p23.1 (adjusted p < 0.05), and significantly overrepresented by 26 transcription factors, including E2F2, FOXO3, and GATA1 (adjusted p < 0.05). Biological analysis of these signatures pointed to systemic dysregulation of immune responses, hematopoiesis, exocytosis, and neuronal support in neurodegenerative disease (adjusted p < 0.05). CONCLUSIONS: Blood transcriptomic biomarkers hold great promise in clinical use for the accurate assessment and prediction of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Middle Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Transcriptome , Sensitivity and Specificity , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/genetics , Biomarkers , Gene Expression Profiling , Magnetic Resonance Imaging/methods , Disease Progression
19.
J Am Chem Soc ; 145(50): 27358-27366, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38052446

ABSTRACT

Well-defined bimetallic heterogeneous catalysts are not only difficult to synthesize in a controlled manner, but their elemental distributions are also notoriously challenging to define. Knowledge of these distributions is required for both the as-synthesized catalyst and its activated form under reaction conditions, where various types of reconstruction can occur. Success in this endeavor requires observation of the active catalyst via in situ analytical methods. As a step toward this goal, we present a composite material composed of bimetallic nickel-ruthenium nanoparticles supported on a protonated zeolite (Ni-Ru/HZSM-5) and probe its evolution and function as a photoactive carbon dioxide methanation catalyst using in situ X-ray absorption spectroscopy (XAS). The working Ni-Ru/HZSM-5, as a selective and durable photothermal CO2 methanation catalyst, comprises a corona of Ru nanoparticles decorating a Ni nanoparticle core. The specific Ni-Ru interactions in the bimetallic particles were confirmed by in situ XAS, which reveals significant electron transfer from Ni to Ru. The light-harvesting Ni nanoparticle core and electron-accepting Ru nanoparticle corona serve as the CO2 and H2 dissociation centers, respectively. These Ni and Ru nanoparticles also promote synergistic photothermal and hydrogen atom transfer effects. Collectively, these effects enable an associative CO2 methanation reaction pathway while hindering coking and fostering high selectivity toward methane.

20.
Article in English | MEDLINE | ID: mdl-38127606

ABSTRACT

In this work, we seek to learn multiple mainstream vision tasks concurrently using a unified network, which is storage-efficient as numerous networks with task-shared parameters can be implanted into a single consolidated network. Our framework, vision transformer (ViT)-MVT, built on a plain and nonhierarchical ViT, incorporates numerous visual tasks into a modest supernet and optimizes them jointly across various dataset domains. For the design of ViT-MVT, we augment the ViT with a multihead self-attention (MHSE) to offer complementary cues in the channel and spatial dimension, as well as a local perception unit (LPU) and locality feed-forward network (locality FFN) for information exchange in the local region, thus endowing ViT-MVT with the ability to effectively optimize multiple tasks. Besides, we construct a search space comprising potential architectures with a broad spectrum of model sizes to offer various optimum candidates for diverse tasks. After that, we design a layer-adaptive sharing technique that automatically determines whether each layer of the transformer block is shared or not for all tasks, enabling ViT-MVT to obtain task-shared parameters for a reduction of storage and task-specific parameters to learn task-related features such that boosting performance. Finally, we introduce a joint-task evolutionary search algorithm to discover an optimal backbone for all tasks under total model size constraint, which challenges the conventional wisdom that visual tasks are typically supplied with backbone networks developed for image classification. Extensive experiments reveal that ViT-MVT delivers exceptional performances for multiple visual tasks over state-of-the-art methods while necessitating considerably fewer total storage costs. We further demonstrate that once ViT-MVT has been trained, ViT-MVT is capable of incremental learning when generalized to new tasks while retaining identical performances for trained tasks. The code is available at https://github.com/XT-1997/vitmvt.

SELECTION OF CITATIONS
SEARCH DETAIL