Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.252
Filter
1.
J Am Coll Cardiol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39217545

ABSTRACT

BACKGROUND: The Cardiogenic Shock Working Group-modified Society for Cardiovascular Angiography and Interventions (CSWG-SCAI) staging was developed to risk stratify cardiogenic shock (CS) severity. Data showing progressive changes in SCAI stages and outcomes are limited. OBJECTIVES: We investigated serial changes in CSWG-SCAI stages and outcomes of patients presenting with cardiogenic shock complicating acute myocardial infarction (MI-CS) and heart failure-related CS (HF-CS). METHODS: The multicenter CSWG registry was queried. CSWG-SCAI stages were computed at CS diagnosis and 24, 48, and 72 hours. RESULTS: A total of 3,268 patients (57% HF-CS; 27% MI-CS) were included. At CS diagnosis, CSWG-SCAI stage breakdown was 593 (18.1%) stage B, 528 (16.2%) stage C, 1,659 (50.8%) stage D, and 488 (14.9%) noncardiac arrest stage E. At 24 hours, >50% of stages B and C patients worsened, but 86% of stage D patients stayed at stage D. Among stage E patients, 54% improved to stage D and 36% stayed at stage E by 24 hours. Minimal SCAI stage changes occurred beyond 24 hours. SCAI stage trajectories were similar between MI-CS and HF-CS groups. Within 24 hours, unadjusted mortality rates of patients with any SCAI stage worsening or improving were 44.6% and 34.2%, respectively. Patients who presented in or progressed to stage E by 24 hours had the worst prognosis. Survivors had lower lactate than nonsurvivors. CONCLUSIONS: Most patients with CS changed SCAI stages within 24 hours from CS diagnosis. Stage B patients were at high risk of worsening shock severity by 24 hours, associated with excess mortality. Early CS recognition and serial assessment may improve risk stratification.

2.
J Hematol Oncol ; 17(1): 77, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218923

ABSTRACT

BACKGROUND: Targeted protein degradation of neosubstrates plays a crucial role in hematological cancer treatment involving immunomodulatory imide drugs (IMiDs) therapy. Nevertheless, the persistence of inevitable drug resistance and hematological toxicities represents a significant obstacle to their clinical effectiveness. METHODS: Phenotypic profiling of a small molecule compounds library in multiple hematological cancer cell lines was conducted to screen for hit degraders. Molecular dynamic-based rational design and cell-based functional assays were conducted to develop more potent degraders. Multiple myeloma (MM) tumor xenograft models were employed to investigate the antitumor efficacy of the degraders as single or combined agents with standard of care agents. Unbiased proteomics was employed to identify multiple therapeutically relevant neosubstrates targeted by the degraders. MM patient-derived cell lines (PDCs) and a panel of solid cancer cell lines were utilized to investigate the effects of candidate degrader on different stage of MM cells and solid malignancies. Unbiased proteomics of IMiDs-resistant MM cells, cell-based functional assays and RT-PCR analysis of clinical MM specimens were utilized to explore the role of BRD9 associated with IMiDs resistance and MM progression. RESULTS: We identified a novel cereblon (CRBN)-dependent lead degrader with phthalazinone scaffold, MGD-4, which induced the degradation of Ikaros proteins. We further developed a novel potent candidate, MGD-28, significantly inhibited the growth of hematological cancer cells and induced the degradation of IKZF1/2/3 and CK1α with nanomolar potency via a Cullin-CRBN dependent pathway. Oral administration of MGD-4 and MGD-28 effectively inhibited MM tumor growth and exhibited significant synergistic effects with standard of care agents. MGD-28 exhibited preferentially profound cytotoxicity towards MM PDCs at different disease stages and broad antiproliferative activity in multiple solid malignancies. BRD9 modulated IMiDs resistance, and the expression of BRD9 was significant positively correlated with IKZF1/2/3 and CK1α in MM specimens at different stages. We also observed pronounced synergetic efficacy between the BRD9 inhibitor and MGD-28 for MM treatment. CONCLUSIONS: Our findings present a strategy for the multi-targeted degradation of Ikaros proteins and CK1α against hematological cancers, which may be expanded to additional targets and indications. This strategy may enhance efficacy treatment against multiple hematological cancers and solid tumors.


Subject(s)
Hematologic Neoplasms , Humans , Animals , Cell Line, Tumor , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/metabolism , Mice , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Proteolysis/drug effects , Ubiquitin-Protein Ligases/metabolism , Ikaros Transcription Factor/metabolism , Drug Resistance, Neoplasm/drug effects , Adaptor Proteins, Signal Transducing
3.
Chin J Dent Res ; 27(3): 235-241, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221984

ABSTRACT

OBJECTIVE: To establish an animal model of oral squamous cell carcinoma invading the mandible through multi-sample experiments that verified the stability, repeatability, tumorigenicity and mandible destruction rate of the model. METHODS: Oral squamous cell carcinoma cell suspension was injected into the outer side of the mandible through the anterior edge of the masseter muscle of naked mice to observe the tumourforming process. Then, the anatomical, histological and imaging examinations were carried out to determine whether the tumour had invaded the mandible. By comparing the tumour growth of multiple groups of various squamous cell carcinoma cells (CAL27, HN6 and HN30 cells), the changes in body weight and characteristics of tumour formation were compared, and the experience was summarised to further verify the stability, repeatability, tumour formation rate and arch damage rate of the model. RESULTS: The subsequent specimens of tumour-bearing nude mice were validated once the model had been established. In vitro, tumour tissue wrapped around the mandible's tumour-bearing side, and the local texture was tough with no resistance to acupuncture. Haematoxylin and eosin staining revealed that squamous cells were infiltrating the mandible in both the horizontal and sagittal planes. Microcomputed tomography results showed that the mandible on the tumour-bearing side displayed obvious erosion damage. Cell lines with various passage rates clearly had diverse tumour-bearing life cycles. CONCLUSION: This study successfully established an animal model of oral squamous cell carcinoma invasion of the mandible. The model has excellent biological stability, repeatability, tumorigenesis rate and mandible destruction rate.


Subject(s)
Carcinoma, Squamous Cell , Disease Models, Animal , Mandible , Mice, Nude , Mouth Neoplasms , Neoplasm Invasiveness , Animals , Mouth Neoplasms/pathology , Carcinoma, Squamous Cell/pathology , Mice , Mandible/pathology , Cell Line, Tumor , X-Ray Microtomography , Mandibular Neoplasms/pathology , Mandibular Neoplasms/diagnostic imaging , Neoplasm Transplantation , Male , Mice, Inbred BALB C
4.
Anal Methods ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225013

ABSTRACT

Monkeypox, a viral zoonotic disease caused by MPXV, has emerged as a significant global health concern since the first outbreak outside Africa in 2003. As of the current data, there have been 30 189 confirmed cases of monkeypox in 88 countries, with 29 844 cases reported in 81 countries. Given the absence of prior documented instances of the disease, swift and accurate testing is imperative to contain the spread of monkeypox. In this study, we developed a LAMP detection reagent for monkeypox and evaluated its performance in terms of sensitivity, specificity, repeatability, stability, linear range, and linearity, utilizing a commercial magnetic bead-based nucleic acid extraction system. This has led to the establishment of an integrated on-site detection platform for the monkeypox virus, utilizing a closed cartridge. The sensitivity was found to be 100 copies per µL, with no cross-reactivity observed with three other viruses, indicating robust performance. The parameters of repeatability, stability, linear range, and linearity were also assessed. For 28 simulated samples, the detection results obtained from the integrated system were consistent with those from conventional laboratory methods, specifically qPCR and LAMP detection following nucleic acid extraction. The entire process can be completed in approximately one hour, making it highly suitable for immediate rapid testing.

5.
Front Biosci (Landmark Ed) ; 29(8): 286, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39206891

ABSTRACT

Being one of the pivotal adipocytokines, adiponectin binds to various receptors and exerts diverse biological functions, encompassing anti-fibrosis, anti-atherosclerosis, anti-ischemia-reperfusion, regulation of inflammation, and modulation of glucose and lipid metabolism. Alterations in adiponectin levels are observed in patients afflicted with diverse cardiovascular diseases. This paper comprehensively reviews the impact of adiponectin on the pathogenesis and progression of cardiovascular diseases, elucidating the underlying cellular and molecular mechanisms along with the associated cell signaling pathways. Furthermore, it deliberates on the diagnostic and predictive efficacy of adiponectin as a protein marker for cardiovascular diseases. Additionally, it outlines methods for manipulating adiponectin levels in vivo. A thorough understanding of these interconnections can potentially inform clinical strategies for the prevention and management of cardiovascular diseases.


Subject(s)
Adiponectin , Cardiovascular Diseases , Humans , Adiponectin/metabolism , Adiponectin/blood , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/blood , Biomarkers/blood , Biomarkers/metabolism , Signal Transduction , Animals , Receptors, Adiponectin/metabolism
6.
Ecotoxicol Environ Saf ; 283: 116975, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216222

ABSTRACT

The contribution of plant hormones and energy-rich compounds and their metabolites (ECMs) in alleviating aluminum (Al) toxicity by elevated pH remains to be clarified. For the first time, a targeted metabolome was applied to identify Al-pH-interaction-responsive hormones and ECMs in Citrus sinensis leaves. More Al-toxicity-responsive hormones and ECMs were identified at pH 4.0 [4 (10) upregulated and 7 (17) downregulated hormones (ECMs)] than those at pH 3.0 [1 (9) upregulated and 4 (14) downregulated hormones (ECMs)], suggesting that the elevated pH improved the adaptation of hormones and ECMs to Al toxicity in leaves. The roles of hormones and ECMs in reducing leaf Al toxicity mediated by elevated pH might include the following aspects: (a) improved leaf growth by upregulating the levels of jasmonoyl-L-isoleucine (JA-ILE), 6-benzyladenosine (BAPR), N6-isopentenyladenosine (IPR), cis-zeatin-O-glucoside riboside (cZROG), and auxins (AUXs), preventing Al toxicity-induced reduction of gibberellin (GA) biosynthesis, and avoiding jasmonic acid (JA)-mediated defense; (b) enhanced biosynthesis and accumulation of tryptophan (TRP), as well as the resulting increase in biosynthesis of auxin, melatonin and secondary metabolites (SMs); (c) improved ability to maintain the homeostasis of ATP and other phosphorus (P)-containing ECMs; and (d) enhanced internal detoxification of Al due to increased organic acid (OA) and SM accumulation and elevated ability to detoxify reactive oxygen species (ROS) due to enhanced SM accumulation. To conclude, the current results corroborate the hypotheses that elevated pH reduces Al toxicity by upregulating the ability to maintain the homeostasis of ATP and other P-containing ECMs in leaves under Al toxicity and (b) hormones participate in the elevated pH-mediated alleviation of Al toxicity by positively regulating growth, the ability to detoxify ROS, and the internal detoxification of Al in leaves under Al toxicity. Our findings provide novel insights into the roles of hormones and ECMs in mitigating Al toxicity mediated by the elevated pH.

7.
Int J Biol Macromol ; 278(Pt 1): 134599, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127288

ABSTRACT

AIDS is a serious disease with impaired immune function caused by human immunodeficiency virus (HIV) infection. The treatment of AIDS has always been the focus of global scientific research, and Tat protein is a key regulatory protein in the process of HIV infection. Its high expression is closely related to virus replication, disease progression, etc. The aim of this study is to explore the molecular mechanism of regulating Tat protein expression by using network pharmacology based traditional Chinese medicine for calming the liver and detoxifying. 129 AIDS patients were enrolled in the study and randomly divided into HAART combined with PGJDP treatment and HAART alone treatment groups. The virological response rate, immunological response status (CD4 + T cell level, CD4/CD8) and incidence of abnormal liver function were observed before and 48 weeks after treatment. Using the TCMSP database to obtain the chemical components and targets of the main traditional Chinese medicine components in PGJDP, clinical results indicate that the combination of HAART and PGJDP treatment can improve the virological response rate (P > 0.05); Increase the number of CD4 + T lymphocytes (P > 0.05); Significantly increased CD4/CD8 ratio (P < 0.01); Simultaneously, it significantly reduced the incidence of liver dysfunction (P < 0.01). After screening and analysis, the Chinese herbal medicine for calming liver and detoxifying has the potential to significantly regulate the expression of Tat protein. These Chinese herbal compounds can reduce the expression of Tat protein by affecting key pathways and regulating the expression of related genes, which has potential therapeutic effects on the treatment of AIDS.

8.
Eur Spine J ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190038

ABSTRACT

PURPOSE: Cervical hemivertebrae (C3-6) causing significant osseous torticollis, head tilt and facial asymmetry are rare and complicated. Cervical hemivertebrectomy (CHVE) by a posterior-only approach was never reported because it is highly risky and its efficacy remains controversial. This study is to evaluate the feasibility and preliminary clinical outcomes of posterior-only approach for CHVE and torticollis correction in young children. METHODS: Four young children aged 5-9 years old with significant torticollis caused by cervical hemivertebrae underwent deformity correction consisting of cervical pedicle screw (CPS) placement with O-arm-based intraoperative navigation, CHVE using ultrasonic bone scalpel and short-segmental posterior instrumentation and fusion. Details of this novel technique were presented. The preliminary short-term clinical and radiographic outcomes were assessed. RESULTS: On average, the operative time was 312.5 ± 49.9 min, and the surgical blood loss was 375.0 ± 150.0 ml. The structural cervical scoliosis was corrected from 31.5 ± 7.3° to 11.0 ± 4.1°, and the average correction rate was 64.9%. Head tilt was favorably corrected from 11.0 ± 4.2° to 3.5 ± 2.6°. The shoulder balance improved from 6.3 ± 1.3° to 1.5 ± 1.9°. One case with C6 CHVE had convex side radiating nerve root pain but no sign of muscle power weakness. Full recovery was achieved one month after surgery. No other complication occurred. CONCLUSIONS: CHVE by a posterior-only approach was a feasible alternative option for the treatment of congenital cervical scoliosis. It could resect the CHV effectively and achieve satisfactory torticollis correction without additional anterior access surgery. Successful CPS placement in this child population was essentially important to enable reliable osteotomy closure and firm posterior instrumentation.

9.
J Pharm Biomed Anal ; 251: 116431, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39197208

ABSTRACT

The assessment of bioactivity for therapeutic antibody release assay poses challenges, particularly when targeting immune checkpoints. An in vitro bioassay platform was developed using the chimeric antigen receptor on Jurkat cells (Jurkat-CAR) to analyze antibodies targeting immune checkpoints, such as CD47/SIRPα, VEGF/VEGFR1, PD-1/PD-L1, and CD70/CD27. For CD47/SIRPα, the platform involved a Jurkat-CAR cell line expressing the chimeric SIRPα receptor (CarSIRPα). CarSIRPα was created by sequentially fusing the SIRPα extracellular region with the CD8α hinge region, the transmembrane (TM) and intracellular (IC) domains of CD28, and the intracellular signaling domain of CD3ζ. The resulting Jurkat-CarSIRPα cells can undergo "activation-induced cell death (AICD)" upon incubation with purified or cellular CD47, as evidenced by the upregulation of CD69, IL-2, and IFN-γ. Similar results also appeared in Jurkat CarVEGFR1, Jurkat CarPD1 and Jurkat CARCD27 cells. These cells are perfectly utilized for the bioactivity analysis of therapeutic antibody. Our study indicates that the established in vitro assay platform based on Jurkat-CAR has been confirmed repeatedly and has shown robust reproducibility; thus, this platform can be used for screening or for release assays of given antibody drugs targeting immune checkpoints.

10.
Animals (Basel) ; 14(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39199905

ABSTRACT

During an examination of various specimens previously collected from different locations and times, we discovered seven Murina specimens that had been collected in May 2023 from the Guanyinshan Provincial Nature Reserve, Yuanyang, Yunnan, China. Based on the assessment of morphological characteristics and molecular data analysis, these specimens were determined to represent a previously unidentified species, designated Murina yuanyang sp. nov.

11.
J Sci Food Agric ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210561

ABSTRACT

BACKGROUND: The co-application of biochar and wood vinegar has demonstrated the potential to enhance premium crop production. The present study reveals the effects of co-applying rice husk biochar and wood vinegar (both foliar and soil application) on soil properties and the growth of Chinese cabbage (Brassica chinensis L.) in a two-season pot experiment. RESULTS: The soil pH, electrical conductivity and dissolved organic carbon contents in combination treatments of wood vinegar and biochar were increased more when wood vinegar was applied to soils rather than to leaves, and the parameters were observed to surpass those for chemical fertilizer treatments. The biomass of Chinese cabbage shoots was significantly increased by 60.8- and 27.3-fold in the combined treatments compared to the control when 1% wood vinegar was sprayed to the leaves (WF1) in 2022 and 2023, respectively. Higher contents of vitamin C, soluble protein and soluble sugar were also observed in the combined wood vinegar and biochar treatments compared to chemical fertilizer treatments and the control; for example, the vitamin C content of plant shoot in WF1 was 21.3 times that of the control. The yield and quality of plants were decreased across all treatments in 2023 compared to 2022 but the combination treatments still displayed superiority. CONCLUSION: The co-application of wood vinegar and biochar enhances the growth and improve the quality of Chinese cabbage through improving the soil properties and plant photosynthesis. Moreover, the foliage application of wood vinegar is more preferable compared to soil application. © 2024 Society of Chemical Industry.

12.
Exp Gerontol ; 195: 112546, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39153533

ABSTRACT

Senescent chondrocytes or signaling mechanisms leading to senescence are promising new therapeutic approaches for ameliorating cartilage degradation. Herein, we show that the transactive response DNA/RNA-binding protein (TDP-43) regulates chondrocyte senescence and ameliorates cartilage degradation. First, a significant decrease in TDP-43 was observed in 16-month-old mice compared with younger mice. Immunohistochemistry (IHC) analysis of mouse articular cartilage showed that p21, p16, p53, and matrix metalloprotein-13 (MMP13) were increased, but laminB1 and Collagen type II alpha1 1 chain (Col2a1) were decreased in 16-month-old mice. Furthermore, TDP-43 levels were decreased in vivo following D-galactose (D-gal) induction. Therefore, we investigated the role of TDP-43 in the senescent chondrocytes. ATDC5 cells were induced to overexpress TDP-43. Western blot analysis showed increased expression of laminB1, Ki67, and PCNA but decreased expression of p21, p16, p53, and MMP13. Senescence-associated-ß-galactosidase (SA-ß-Gal) assay, γH2AX staining, and EdU were performed to assess changes in chondrocytes, showing weaker SA-ß-Gal and γH2AX staining but stronger EdU and Alican Blue staining. However, TDP-43 deficiency had opposing effects, and similar to D-gal stimulation results. Taken together, our data verified that TDP-43 negatively correlated with senescence markers, positively correlated with cell proliferation markers, and could alleviate cartilage degradation induced by D-gal. This may be an essential mechanism of cellular senescence and cartilage degradation.


Subject(s)
Aging , Cartilage, Articular , Cellular Senescence , Chondrocytes , DNA-Binding Proteins , Animals , Chondrocytes/metabolism , Cellular Senescence/physiology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cartilage, Articular/metabolism , Mice , Aging/metabolism , Mice, Inbred C57BL , Galactose/metabolism , Male , Cell Proliferation
13.
Int J Gen Med ; 17: 3403-3410, 2024.
Article in English | MEDLINE | ID: mdl-39130490

ABSTRACT

Introduction: Osteoporosis diagnosis often utilizes quantitative computed tomography (QCT). This study explored the validity of applying lumbar bone mineral density (LBMD) standards to thoracic vertebrae (T8-T10) for osteoporosis detection during CT lung cancer screenings. This study investigated the utility of thoracic BMD (BMD-T8-T10) for detecting osteoporosis in older persons during CT lung cancer screening. Methods: We studied 701 participants who underwent QCT scans for both LBMD and BMD-T8-T10. Osteoporosis was diagnosed using ACR criteria based on LBMD. We determined BMD-T8-T10 thresholds via a receiver operating characteristic (ROC) curve and translated BMD-T8+T9+T10 to LBMD (TTBMD) using linear regression. Kappa test was used to evaluate the accuracy of BMD-T8-T10 thresholds and TTBMD in diagnosing osteoporosis. Results: Raw BMD-T8-T10 poorly identified osteoporosis (kappa = 0.51). ROC curve analysis identified BMD-T8-T10 thresholds for osteopenia (138 mg/cm3) and osteoporosis (97 mg/cm3) with areas under the curve of 0.97 and 0.99, respectively. We normalized BMD-T8-T10 to TTBMD based on the formula: TTBMD = 0.9 × BMD-T8-T10 - 2.56. These thresholds (kappa = 0.74) and TTBMD performed well in detecting osteoporosis/osteopenia (kappa = 0.74). Conclusion: Both calculating BMD-T8-T10 threshold (138.0 mg/cm3 for osteopenia and 97 mg/cm3 for osteoporosis) and normalizing BMD-T8-T10 to LBMD demonstrated good performance in identifying osteoporosis in older adults during CT lung cancer screening.

14.
Biomed Pharmacother ; 178: 117229, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39096620

ABSTRACT

Enormous patients with gastric cancer (GC) are insensitive to chemotherapy and targeted therapy without the chance of radical surgery, so immunotherapy may supply a novel choice for them. Chimeric antigen receptor (CAR)-T cell therapy has the advantages of higher specificity, stronger lethality, and longer-lasting efficacy, and it has the potential for GC in the future. However, its application still faces numerous obstacles in terms of accuracy, efficacy, and safety. Cytokines can mediate the migration, proliferation, and survival of immune cells, regulate the duration and strength of immune responses, and are involved in the occurrence of severe side effects in CAR-T cell therapy. The expression levels of specific cytokines are associated with the genesis, invasion, metastasis, and prognosis of GC. Applications of cytokines and their receptors in CAR-T cell therapy have emerged, and various cytokines and their receptors have contributed to improving CAR-T cell anti-tumor capabilities. Large amounts of central cytokines in this therapy include chemokines, interleukins (ILs), transforming growth factor-ß (TGF-ß), and colony-stimulating factors (CSFs). Meanwhile, researchers have explored the combination therapy in treating GC, and several approaches applied to other malignancies can also be considered as references. Therefore, our review comprehensively outlines the biological functions and clinical significance of cytokines and summarizes current advances and innovative strategies for harnessing cytokines to optimize CAR-T cell therapy for GC.


Subject(s)
Cytokines , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Stomach Neoplasms , Humans , Stomach Neoplasms/therapy , Stomach Neoplasms/immunology , Cytokines/metabolism , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Animals , T-Lymphocytes/immunology
15.
J Agric Food Chem ; 72(34): 19028-19039, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39150252

ABSTRACT

The somatic embryo (SE) has bipolar characteristics, which is an ideal material for large-scale microproduction of woody plants represented by apples, and the somatic embryo is also an excellent receptor for genetic transformation. The formation of embryogenic cells is a prerequisite for somatic embryogenesis to occur. The embryogenic cells of apples cannot be obtained without induction of exogenous auxin, but how the auxin pathway regulates this process remains unknown. In this study, via RNA sequencing, MdARF5 and MdAHL15 were identified as differentially expressed genes involved in this process. Overexpression of MdARF5 and MdAHL15 induced the formation and proliferation of embryogenic cells and thus substantially shortened the induction cycle and improved the somatic embryo proliferation efficiency. A yeast one-hybrid assay showed that MdARF5 can directly bind to the promoter of MdAHL15. ß-Glucuronidase (GUS) and dual-luciferase reporter assays revealed that MdARF5 activation of MdAHL15 transcription was substantial. In conclusion, our results suggest that MdAHL15 is induced by auxin and promotes the formation of embryogenic cells in early somatic embryogenesis via the positive regulation of MdARF5 in apples. The results will provide a theoretical basis for somatic embryogenesis-based development, reproduction, and transgenic breeding in apples.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Malus , Plant Proteins , Malus/genetics , Malus/metabolism , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/growth & development , Seeds/genetics , Seeds/metabolism , Seeds/drug effects , Plant Growth Regulators/pharmacology , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Plant Somatic Embryogenesis Techniques
16.
Cell Commun Signal ; 22(1): 416, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192337

ABSTRACT

Bone cancer pain (BCP) represents a prevalent symptom among cancer patients with bone metastases, yet its underlying mechanisms remain elusive. This study investigated the transcriptional regulation mechanism of Kv7(KCNQ)/M potassium channels in DRG neurons and its involvement in the development of BCP in rats. We show that HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes, which encode Kv7(KCNQ)/M potassium channels in dorsal root ganglion (DRG), contributes to the sensitization of DRG neurons and the pathogenesis of BCP in rats. Also, HDAC2 requires the formation of a corepressor complex with MeCP2 and Sin3A to execute transcriptional regulation of kcnq2/kcnq3 genes. Moreover, EREG is identified as an upstream signal molecule for HDAC2-mediated kcnq2/kcnq3 genes transcription repression. Activation of EREG/EGFR-ERK-Runx1 signaling, followed by the induction of HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes in DRG neurons, leads to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. Consequently, the activation of EREG/EGFR-ERK-Runx1 signaling, along with the subsequent transcriptional repression of kcnq2/kcnq3 genes by HDAC2 in DRG neurons, underlies the sensitization of DRG neurons and the pathogenesis of BCP in rats. These findings uncover a potentially targetable mechanism contributing to bone metastasis-associated pain in cancer patients.


Subject(s)
Bone Neoplasms , Cancer Pain , ErbB Receptors , Ganglia, Spinal , Histone Deacetylase 2 , KCNQ2 Potassium Channel , Animals , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/metabolism , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Bone Neoplasms/pathology , Rats , Cancer Pain/genetics , Cancer Pain/metabolism , Cancer Pain/pathology , ErbB Receptors/metabolism , ErbB Receptors/genetics , KCNQ3 Potassium Channel/genetics , KCNQ3 Potassium Channel/metabolism , Transcription, Genetic , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Signal Transduction/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Female , Extracellular Signal-Regulated MAP Kinases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Rats, Sprague-Dawley , MAP Kinase Signaling System/genetics
17.
Mar Drugs ; 22(8)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39195447

ABSTRACT

Two new compounds, macrolactin XY (1) and (5R, 9S, 10S)-5-(hydroxymethyl)-1,3,7-decatriene-9,10-diol (2), together with nine known compounds (3-11) were isolated from the marine Bacillus subtilis sp. 18 by the OSMAC strategy. These compounds were evaluated for antibacterial activity against six tested microorganisms. Compounds 1-5 and 7-10 showed varied antibacterial activity, with the minimum inhibitory concentration (MIC) ranging from 3 to 12 µg/mL. Macrolactin XY (1) was found to possess superior antibacterial activity, especially exhibiting significant effectiveness against Enterococcus faecalis. The antibacterial activity mechanism against E. faecalis was investigated. The mechanism may disrupt bacterial cell membrane integrity and permeability, and also inhibit the expression of genes associated with bacterial energy metabolism, as established by the experiments concerning cell membrane potential, SDS-PAGE electrophoresis, cell membrane integrity, and key gene expressions. This study offers valuable insights and serves as a theoretical foundation for the future development of macrolactins as antibacterial precursors.


Subject(s)
Anti-Bacterial Agents , Bacillus subtilis , Macrolides , Microbial Sensitivity Tests , Bacillus subtilis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Macrolides/pharmacology , Macrolides/isolation & purification , Macrolides/chemistry , Enterococcus faecalis/drug effects , Aquatic Organisms , Cell Membrane/drug effects
19.
Mol Neurodegener ; 19(1): 62, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39183331

ABSTRACT

BACKGROUND: Although WD repeat domain 45 (WDR45) mutations have been linked to ß -propeller protein-associated neurodegeneration (BPAN), the precise molecular and cellular mechanisms behind this disease remain elusive. This study aims to shed light on the impacts of WDR45-deficiency on neurodegeneration, specifically axonal degeneration, within the midbrain dopaminergic (DAergic) system. We hope to better understand the disease process by examining pathological and molecular alterations, especially within the DAergic system. METHODS: To investigate the impacts of WDR45 dysfunction on mouse behaviors and DAergic neurons, we developed a mouse model in which WDR45 was conditionally knocked out in the midbrain DAergic neurons (WDR45cKO). Through a longitudinal study, we assessed alterations in the mouse behaviors using open field, rotarod, Y-maze, and 3-chamber social approach tests. We utilized a combination of immunofluorescence staining and transmission electron microscopy to examine the pathological changes in DAergic neuron soma and axons. Additionally, we performed proteomic and lipidomic analyses of the striatum from young and aged mice to identify the molecules and processes potentially involved in the striatal pathology during aging. Further more, primary midbrain neuronal culture was employed to explore the molecular mechanisms leading to axonal degeneration. RESULTS: Our study of WDR45cKO mice revealed a range of deficits, including impaired motor function, emotional instability, and memory loss, coinciding with the profound reduction of midbrain DAergic neurons. The neuronal loss, we observed massive axonal enlargements in the dorsal and ventral striatum. These enlargements were characterized by the accumulation of extensively fragmented tubular endoplasmic reticulum (ER), a hallmark of axonal degeneration. Proteomic analysis of the striatum showed that the differentially expressed proteins were enriched in metabolic processes. The carbohydrate metabolic and protein catabolic processes appeared earlier, and amino acid, lipid, and tricarboxylic acid metabolisms were increased during aging. Of note, we observed a tremendous increase in the expression of lysophosphatidylcholine acyltransferase 1 (Lpcat1) that regulates phospholipid metabolism, specifically in the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC) in the presence of acyl-CoA. The lipidomic results consistently suggested that differential lipids were concentrated on PC and LPC. Axonal degeneration was effectively ameliorated by interfering Lpcat1 expression in primary cultured WDR45-deficient DAergic neurons, proving that Lpcat1 and its regulated lipid metabolism, especially PC and LPC metabolism, participate in controlling the axonal degeneration induced by WDR45 deficits. CONCLUSIONS: In this study, we uncovered the molecular mechanisms underlying the contribution of WDR45 deficiency to axonal degeneration, which involves complex relationships between phospholipid metabolism, autophagy, and tubular ER. These findings greatly advance our understanding of the fundamental molecular mechanisms driving axonal degeneration and may provide a foundation for developing novel mechanistically based therapeutic interventions for BPAN and other neurodegenerative diseases.


Subject(s)
Axons , Dopaminergic Neurons , Lipidomics , Mesencephalon , Mice, Knockout , Proteomics , Animals , Mice , Axons/metabolism , Axons/pathology , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Mesencephalon/metabolism , Mesencephalon/pathology , Nerve Degeneration/pathology , Nerve Degeneration/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology
20.
Viruses ; 16(8)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39205306

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV), also known as the Dabie Banda virus, is an emerging tick-borne Bunyavirus that causes severe fever with thrombocytopenia syndrome (SFTS). Currently, symptomatic treatment and antiviral therapy with ribavirin and favipiravir are used in clinical management. However, their therapeutical efficacy is hardly satisfactory in patients with high viral load. In this study, we explored the antiviral effects of selective estrogen receptor modulators (SERMs) on SFTSV infection and the antiviral mechanisms of a representative SERM, bazedoxifene acetate (BZA). Our data show that SERMs potently inhibited SFTSV-induced cytopathic effect (CPE), the proliferation of infectious viral particles, and viral RNA replication and that BZA effectively protected mice from lethal viral challenge. The mode of action analysis reveals that BZA exerts antiviral effects during the post-entry stage of SFTSV infection. The transcriptome analysis reveals that GRASLND and CYP1A1 were upregulated, while TMEM45B and TXNIP were downregulated. Our findings suggest that SERMs have the potential to be used in the treatment of SFTSV infection.


Subject(s)
Antiviral Agents , Phlebovirus , Selective Estrogen Receptor Modulators , Severe Fever with Thrombocytopenia Syndrome , Virus Replication , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Phlebovirus/drug effects , Mice , Selective Estrogen Receptor Modulators/pharmacology , Selective Estrogen Receptor Modulators/therapeutic use , Severe Fever with Thrombocytopenia Syndrome/drug therapy , Severe Fever with Thrombocytopenia Syndrome/virology , Virus Replication/drug effects , Humans , Chlorocebus aethiops , Female , Cell Line , Vero Cells , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL