Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 503
Filter
1.
Environ Res ; 260: 119617, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004392

ABSTRACT

Dimefluthrin (DIM) is a synthetic pyrethroid insecticide commonly used for the control of pests, particularly for mosquitoes and other flying insects. However, the effects of DIM on non-target aquatic organisms are not known. In this study, we evaluated the long-term effects of DIM on juvenile Acrossocheilus fasciatus (a species of teleost fish) by exposing them to two different concentrations (0.8 µg/L and 4 µg/L) for 60 days. After 60 d of exposure, DIM induced a significant decrease in body weight and irregular, diffused villi in the intestines of A. fasciatus, accompanied by alterations in the expression of immune-related genes. Furthermore, Gene Ontology (GO) enrichment analysis revealed that among the differentially expressed genes (DEGs), all downregulated genes were enriched in processes such as small molecule/cellular amino acid metabolism, generation of precursor metabolites and energy, and phosphatase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the downregulated genes were associated with processes such as cytokine-cytokine receptor interaction, chemokine signaling pathway, JAK-STAT signaling pathway, intestinal immune network for IgA production, natural killer cell-mediated cytotoxicity, and antigen processing and presentation. In contrast, upregulated DEGs were linked to processes such as necroptosis, phototransduction, and Hippo signaling pathway. These results demonstrate the potential toxicity of DIM to non-target aquatic organisms, indicating the broader ecological implications of its use.

2.
Can J Cardiol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032557

ABSTRACT

BACKGROUND: There is a lack of randomized clinical trials investigating whether the 6-Fr Glidesheath Slender (GSS) is superior to the 6-Fr conventional radial sheath (CS) with respect to the early-term incidence of distal radial artery occlusion (dRAO) in patients undergoing coronary angiography (CAG) and/or percutaneous coronary intervention (PCI) via distal transradial access (dTRA). METHODS: This was a prospective, single-centre trial of patients who were randomized to undergo CAG and/or PCI with either a 6-Fr GSS or a 6-Fr CS. The primary endpoint was the incidence of dRAO at 24 h postoperatively, as evaluated by Doppler ultrasound. RESULTS: A total of 620 patients were included in the study. The baseline patient and procedural characteristics were similar between the two groups. For the primary endpoint, the incidence of dRAO at 24 h after the procedure was 1.0% (3/314) in the GSS group and 3.6% (11/306) in the CS group (RR= 0.266, 95% CI= 0.075-0.943, P= 0.027) according to the intention-to-treat (ITT) analysis. For the secondary endpoints, the incidence of proximal RAO was 0.3% (1/314) in the GSS group and 2.3% (7/306) in the CS group (P= 0.029). Other secondary endpoints, including the puncture success rate, procedural outcomes, other puncture-related outcomes and access-related complications, were not significantly different between the two groups. CONCLUSION: The use of a thin-walled and hydrophilic coating sheath can reduce the incidence of early-term dRAO in patients who undergo CAG and/or PCI via the dTRA.

3.
Ann Clin Lab Sci ; 54(3): 354-362, 2024 May.
Article in English | MEDLINE | ID: mdl-39048172

ABSTRACT

OBJECTIVE: Bladder cancer (BC) is primarily treated with cisplatin-based chemotherapy, but the development of cisplatin resistance often leads to BC recurrence. This study is focused on assessing the potential of gambogic acid (GA) in mitigating BC cells' cisplatin resistance, along with an analysis of the underlying mechanism involved. METHODS: Cisplatin was administered to human bladder transitional cell carcinoma cells (T24) at various concentration gradients to induce cisplatin-resistant (T24-DDP) cells. Several experimental groups were set: T24 group, T24-DDP group, T24-DDP+DDP group, T24-DDP+GA group, T24-DDP+DDP+GA group, T24-DDP+DDP+GA+miR-NC group, and T24-DDP+DDP+GA+miR-205-5p inhibitor group. The cell counting kit-8 (CCK-8) assay, Transwell migration assay, and scratch assay were respectively carried out for assessment of cell proliferation, invasion, and migration. Western blot analysis was conducted for detection of the protein expression of E-cadherin, ZEB1, Vimentin, N-cadherin, LRP, MRP, and P-gp in the cells, while the relative expression level of miR-205-5p was determined by qRT-PCR. RESULTS: In comparison with the T24-DDP group, cells in the T24-DDP+GA group showed enhanced sensitivity to cisplatin. Furthermore, as indicated by CCK-8 assay, GA improved T24-DDP cells' sensitivity to cisplatin, potentiated the effects of cisplatin, and exerted an inhibitory effect on the invasion, proliferation, as well as migration of T24-DDP cells. Through Western blot analysis, GA was revealed to significantly inhibit the expression of N-cadherin, E-cadherin, and Vimentin, as well as that of cisplatin-resistant proteins MRP, P-gp, and LRP in BC cells. In addition, shown by further experiments, GA promoted miR-205-5p expression and simultaneously inhibited ZEB1 expression within the cells. CONCLUSION: GA alleviates BC cells' cisplatin resistance through the epithelial-mesenchymal transition pathway mediated by the miR-205-5p/ZEB1 axis.


Subject(s)
Cell Proliferation , Cisplatin , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , MicroRNAs , Urinary Bladder Neoplasms , Xanthones , Zinc Finger E-box-Binding Homeobox 1 , Humans , Cisplatin/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Xanthones/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Cell Movement/drug effects , Antineoplastic Agents/pharmacology
4.
Biochem Biophys Res Commun ; 732: 150404, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39033553

ABSTRACT

The avermectin derivative doramectin is widely used clinically as an antiparasitic drug and, in addition, doramectin may have a modulatory role in obesity. Adipose tissue macrophage recruitment and polarization play an important role in obesity-induced inflammation and insulin resistance. The aim of this study was to investigate the effects of doramectin on high-fat diet-induced inflammation and macrophage polarization in white adipose tissue of epididymis of obese mice. We found that compared with high-fat diet-fed obese mice, doramectin treatment resulted in a significant decrease in body weight and lipid levels, improved insulin resistance, an increase in the proportion of M2-type macrophages and a decrease in the proportion of M1-type macrophages in the epididymal white adipose tissues, as well as a decrease in the infiltration of inflammatory cells in the adipose tissues. Thus, doramectin can ameliorate high-fat diet-induced obesity and adipose inflammation by affecting macrophage polarization in white adipose tissue.

5.
Int Immunopharmacol ; 139: 112807, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068757

ABSTRACT

OBJECTIVE: Sorafenib is a chemotherapeutic agent used to treat hepatocellular carcinoma (HCC). However, its clinical response rates are often low. Tumour-associated macrophages (TAMs) have been implicated in tumour resistance. The relationship between TAMs-derived exosomes and primary resistance to sorafenib in hepatocellular carcinoma is unclear. METHODS: The study analysed RNA-SEQ data from TCGA-LIHC to explore the relationship between TAMs and sorafenib IC50. THP-1-induced M2 macrophages were used as a model to investigate the relationship between M2 macrophage exosomes and primary resistance to sorafenib in hepatocellular carcinoma cells using apoptosis, colony generation, cell viability and dual luciferase. RESULTS: M2 macrophage score and sorafenib IC50 were positively correlated in hepatocellular carcinoma patients, M2 macrophage exosomes promoted sorafenib resistance in hepatocellular carcinoma cells, and M2-exo-miR-200c-3p facilitated the development of sorafenib resistance in hepatocellular carcinoma cells by mediating the activation of PI3K/AKT. CONCLUSION: We propose and demonstrate for the first time that M2 macrophage exosomes promote sorafenib resistance in hepatocellular carcinoma, providing a new perspective for the clinical treatment of hepatocellular carcinoma patients.

6.
ACS Sens ; 9(6): 3272-3281, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38836565

ABSTRACT

Hepatic fibrosis, the insidious progression of chronic liver scarring leading to life-threatening cirrhosis and hepatocellular carcinoma, necessitates the urgent development of noninvasive and precise diagnostic methodologies. Denatured collagen emerges as a critical biomarker in the pathogenesis of hepatic fibrosis. Herein, we have for the first time developed 3D-printed collagen capture chips for highly specific surface-enhanced Raman scattering (SERS) detection of denatured type I and type IV collagen in blood, facilitating the early diagnosis of hepatic fibrosis. Employing a novel blend of denatured collagen-targeting peptide-modified silver nanoparticle probes (Ag@DCTP) and polyethylene glycol diacrylate (PEGDA), we engineered a robust ink for the 3D fabrication of these collagen capture chips. The chips are further equipped with specialized SERS peptide probes, Ag@ICTP@R1 (S-I) and Ag@IVCTP@R2 (S-IV), tailored for the targeted detection of type I and IV collagen, respectively. The SERS chip platform demonstrated exceptional specificity and sensitivity in capturing and detecting denatured type I and IV collagen, achieving detection limits of 3.5 ng/mL for type I and 3.2 ng/mL for type IV collagen within a 10-400 ng/mL range. When tested on serum samples from hepatic fibrosis mouse models across a spectrum of fibrosis stages (S0-S4), the chips consistently measured denatured type I collagen and detected a progressive increase in type IV collagen concentration, which correlated with the severity of fibrosis. This novel strategy establishes a benchmark for the multiplexed detection of collagen biomarkers, enhancing our capacity to assess the stages of hepatic fibrosis.


Subject(s)
Collagen Type IV , Collagen Type I , Liver Cirrhosis , Printing, Three-Dimensional , Silver , Spectrum Analysis, Raman , Liver Cirrhosis/blood , Liver Cirrhosis/diagnosis , Spectrum Analysis, Raman/methods , Collagen Type I/blood , Collagen Type I/chemistry , Animals , Mice , Collagen Type IV/blood , Collagen Type IV/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Protein Denaturation , Humans , Polyethylene Glycols/chemistry
7.
Angew Chem Int Ed Engl ; : e202405949, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871648

ABSTRACT

Layer-by-layer (LbL) deposition of active layers in organic solar cells (OSCs) offers immense potential for optimizing performance through precise tailoring of each layer. However, achieving high-performance LbL OSCs with distinct solid additives in each layer remains challenging. In this study, we explore a novel approach that strategically incorporates different solid additives into specific layers of LbL devices. To this end, we introduce FeCl3 into the lower donor (D18) layer as a p-type dopant to enhance hole concentration and mobility. Concurrently, we incorporate the wide-band gap conjugated polymer poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) into the upper acceptor (L8-BO) layer to improve the morphology and prolong exciton lifetime. Unlike previous studies, our approach combines these two strategies to achieve higher and more balanced electron and hole mobility without affecting device open-circuit voltage, while also suppressing charge recombination. Consequently, the power conversion efficiency (PCE) of the D18+FeCl3/L8-BO device increases to 18.12 %, while the D18/L8-BO+PFO device attains a PCE of 18.79 %. These values represent substantial improvements over the control device's PCE of 17.59 %. Notably, when both FeCl3 and PFO are incorporated, the D18+FeCl3/L8-BO+PFO device achieves a remarkable PCE of 19.17 %. In summary, our research results demonstrate the effectiveness of the layered solid additive strategy in improving OSC performance.

8.
Cell Mol Life Sci ; 81(1): 228, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777955

ABSTRACT

Diabetic cardiomyopathy (DCM) is a prevalent complication of type 2 diabetes (T2D). 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) is a glycolysis regulator. However, the potential effects of PFKFB3 in the DCM remain unclear. In comparison to db/m mice, PFKFB3 levels decreased in the hearts of db/db mice. Cardiac-specific PFKFB3 overexpression inhibited myocardial oxidative stress and cardiomyocyte apoptosis, suppressed mitochondrial fragmentation, and partly restored mitochondrial function in db/db mice. Moreover, PFKFB3 overexpression stimulated glycolysis. Interestingly, based on the inhibition of glycolysis, PFKFB3 overexpression still suppressed oxidative stress and apoptosis of cardiomyocytes in vitro, which indicated that PFKFB3 overexpression could alleviate DCM independent of glycolysis. Using mass spectrometry combined with co-immunoprecipitation, we identified optic atrophy 1 (OPA1) interacting with PFKFB3. In db/db mice, the knockdown of OPA1 receded the effects of PFKFB3 overexpression in alleviating cardiac remodeling and dysfunction. Mechanistically, PFKFB3 stabilized OPA1 expression by promoting E3 ligase NEDD4L-mediated atypical K6-linked polyubiquitination and thus prevented the degradation of OPA1 by the proteasomal pathway. Our study indicates that PFKFB3/OPA1 could be potential therapeutic targets for DCM.


Subject(s)
Diabetic Cardiomyopathies , GTP Phosphohydrolases , Myocytes, Cardiac , Phosphofructokinase-2 , Ubiquitination , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/genetics , Mice , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Oxidative Stress , Apoptosis/genetics , Myocardium/metabolism , Myocardium/pathology , Mice, Inbred C57BL , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Glycolysis , Humans , Protein Stability
9.
Sci Total Environ ; 932: 173109, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729361

ABSTRACT

The influence of endophytic microbial community on plant growth and disease resistance is of considerable importance. Prior research indicates that pre-treatment of kiwifruit with the biocontrol yeast Debaryomyces hansenii suppresses gray mold disease induced by Botrytis cinerea. However, the specific underlying mechanisms remain unclear. In this study, Metagenomic sequencing was utilized to analyze the composition of the endophytic microbiome of kiwifruit under three distinct conditions: the healthy state, kiwifruit inoculated with B. cinerea, and kiwifruit treated with D. hansenii prior to inoculation with B. cinerea. Results revealed a dominance of Proteobacteria in all treatment groups, accompanied by a notable increase in the relative abundance of Actinobacteria and Firmicutes. Ascomycota emerged as the major dominant group within the fungal community. Treatment with D. hansenii induced significant alterations in microbial community diversity, specifically enhancing the relative abundance of yeast and exerting an inhibitory effect on B. cinerea. The introduction of D. hansenii also enriched genes associated with energy metabolism and signal transduction, positively influencing the overall structure and function of the microbial community. Our findings highlight the potential of D. hansenii to modulate microbial dynamics, inhibit pathogenic organisms, and positively influence functional attributes of the microbial community.


Subject(s)
Actinidia , Botrytis , Endophytes , Microbiota , Plant Diseases , Endophytes/physiology , Botrytis/physiology , Actinidia/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fruit/microbiology , Disease Resistance , Debaryomyces/physiology , Ascomycota/physiology
10.
Chem Sci ; 15(18): 6833-6841, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38725503

ABSTRACT

The understanding of electron transfer pathways and orbital interactions between analytes and adsorption sites in gas-sensitive studies, especially at the atomic level, is currently limited. Herein, we have designed eight isoreticular catechol-metalloporphyrin scaffolds, FeTCP-M and InTCP-M (TCP = 5,10,15,20-tetrakis-catechol-porphyrin, M = Fe, Co, Ni and Zn) with adjustable charge transfer schemes in the coordination microenvironment and precise tuning of orbital interactions between analytes and adsorption sites, which can be used as models for exploring the influence of these factors on gas sensing. Our experimental findings indicate that the sensitivity and selectivity can be modulated using the type of metals in the metal-catechol chains (which regulate the electron transfer routes) and the metalloporphyrin rings (which fine-tune the orbital interactions between analytes and adsorption sites). Among the isostructures, InTCP-Co demonstrates the highest response and selectivity to NO2 under visible light irradiation, which could be attributed to the more favorable transfer pathway of charge carriers in the coordination microenvironment under visible light illumination, as well as the better electron spin state compatibility, higher orbital overlap and orbital symmetry matching between the N-2s2pz hybrid orbital of NO2 and the Co-3dz2 orbital of InTCP-Co.

11.
Cancer Res ; 84(15): 2417-2431, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38718297

ABSTRACT

Hepatocellular carcinoma (HCC) is an aggressive disease that occurs predominantly in men. Estrogen elicits protective effects against HCC development. Elucidation of the estrogen-regulated biological processes that suppress HCC could lead to improved prevention and treatment strategies. Here, we performed transcriptomic analyses on mouse and human liver cancer and identified lecithin cholesterol acyltransferase (LCAT) as the most highly estrogen-upregulated gene and a biomarker of favorable prognosis. LCAT upregulation inhibited HCC in vitro and in vivo and mediated estrogen-induced suppression of HCC in an ESR1-dependent manner. LCAT facilitated high-density lipoprotein cholesterol production and uptake via the LDLR and SCARB1 pathways. Consistently, high HDL-C levels corresponded to a favorable prognosis in HCC patients. The enhanced HDL-C absorption induced by LCAT impaired SREBP2 maturation, which ultimately suppressed cholesterol biosynthesis and dampened HCC cell proliferation. HDL-C alone inhibited HCC growth comparably to the cholesterol-lowering drug lovastatin, and SREBF2 overexpression abolished the inhibitory activity of LCAT. Clinical observations and cross-analyses of multiple databases confirmed the correlation of elevated LCAT and HDL-C levels to reduced cholesterol synthesis and improved HCC patient prognosis. Furthermore, LCAT deficiency mimicked whereas LCAT overexpression abrogated the tumor growth-promoting effects of ovariectomy in HCC-bearing female mice. Most importantly, HDL-C and LCAT delayed the development of subcutaneous tumors in nude mice, and HDL-C synergized with lenvatinib to eradicate orthotopic liver tumors. Collectively, this study reveals that estrogen upregulates LCAT to maintain cholesterol homeostasis and to dampen hepatocarcinogenesis. LCAT and HDL-C represent potential prognostic and therapeutic biomarkers for targeting cholesterol homeostasis as a strategy for treating HCC. Significance: Estrogen mediates the sex differences in hepatocellular carcinoma development by reducing cholesterol biosynthesis through activation of an LCAT/HDL-C axis, providing strategies for improving liver cancer prevention, prognosis, and treatment.


Subject(s)
Carcinoma, Hepatocellular , Cholesterol , Estrogens , Homeostasis , Liver Neoplasms , Phosphatidylcholine-Sterol O-Acyltransferase , Animals , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Phosphatidylcholine-Sterol O-Acyltransferase/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Mice , Estrogens/metabolism , Cholesterol/metabolism , Female , Male , Cell Proliferation/drug effects , Prognosis , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Cholesterol, HDL/metabolism , Cholesterol, HDL/blood , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics
12.
J Mater Chem B ; 12(18): 4467-4477, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38629894

ABSTRACT

Skin aging, a complex and inevitable biological process, results in wrinkles, dermal laxity, and skin cancer, profoundly influencing appearance and overall health. Collagen serves as the fundamental element of the dermal matrix; nevertheless, collagen is susceptible to enzymatic degradation within the body. Crosslinking is employed to enhance the physicochemical properties of collagen. However, conventional crosslinking agents may harbor potential issues such as cytotoxicity and calcification risks, constraining their application in the biomedical field. Therefore, we have for the first time developed a highly biocompatible CE-crosslinked collagen implant with exceptional anti-calcification and collagen regeneration capabilities for aging skin rejuvenation. A novel collagen crosslinking agent (CE) was synthesized through a reaction involving chitosan quaternary ammonium salt with 1,4-butanediol diglycidyl ether. Compared to collagen crosslinked with glutaraldehyde (GA), the CE-crosslinked collagen implant exhibited notable stability and durability. The implant demonstrated excellent injectability and viscosity, resisting displacement after implantation. Additionally, the CE-crosslinked collagen implant displayed superior biocompatibility, effectively promoting the proliferation and adhesion of HFF-1 cells compared with the GA-crosslinked collagen. The CE-crosslinked collagen represented a safer and more biologically active implant material. In vivo experiments further substantiated that the implant significantly facilitated collagen regeneration without inducing calcification. The innovative collagen implant has made substantial strides in enhancing aesthetics and reducing wrinkles, presenting the potential for revolutionary progress in the fields of skin rejuvenation and collagen regeneration.


Subject(s)
Biocompatible Materials , Collagen , Rejuvenation , Skin Aging , Animals , Humans , Mice , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Butylene Glycols/chemistry , Butylene Glycols/pharmacology , Cell Proliferation/drug effects , Chitosan/chemistry , Collagen/chemistry , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/pharmacology , Regeneration/drug effects , Skin/drug effects , Skin Aging/drug effects
13.
J Immunol ; 212(11): 1714-1721, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38598411

ABSTRACT

Ag-specific effector CD4+ T cells play a crucial role in defending against exogenous pathogens. However, the mechanisms governing the differentiation and function of IFN-γ-producing effector CD4+ Th1 cells in immune responses remain largely unknown. In this study, we elucidated the pivotal role of zinc finger protein 335 (Zfp335) in regulating effector Th1 cell differentiation and survival during acute bacterial infection. Mice with Zfp335 knockout in OT-II cells exhibited impaired Ag-specific CD4+ T cell expansion accompanied by a significant reduction in resistance to Listeria infection. Furthermore, Zfp335 deficiency restricted the effector CD4+ Th1 cell population and compromised their survival upon Listeria challenge. The expression of T-bet and IFN-γ was accordingly decreased in Zfp335-deficient Th1 cells. Mechanistically, Zfp335 directly bound to the promoter region of the Lmna gene and regulated its expression. Overexpression of Lmna was able to rescue the survival and function of Zfp335-deficient effector Th1 cells. Therefore, our study provides novel insights into the mechanisms governing effector Th1 cell differentiation and survival during acute infection.


Subject(s)
Cell Differentiation , DNA-Binding Proteins , Lamin Type A , Mice, Knockout , Th1 Cells , Transcription Factors , Animals , Mice , Cell Differentiation/immunology , Cell Differentiation/genetics , Cell Survival/genetics , Cell Survival/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Lamin Type A/genetics , Listeriosis/immunology , Mice, Inbred C57BL , Th1 Cells/immunology , Transcription Factors/genetics , Transcription Factors/metabolism
14.
J Gastrointest Surg ; 28(4): 538-547, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38583908

ABSTRACT

BACKGROUND: With the development of endoscopic technology, endoscopic submucosal dissection (ESD) has been widely used in the treatment of gastrointestinal tumors. It is necessary to evaluate the depth of tumor invasion before the application of ESD. The convolution neural network (CNN) is a type of artificial intelligence that has the potential to assist in the classification of the depth of invasion in endoscopic images. This meta-analysis aimed to evaluate the performance of CNN in determining the depth of invasion of gastrointestinal tumors. METHODS: A search on PubMed, Web of Science, and SinoMed was performed to collect the original publications about the use of CNN in determining the depth of invasion of gastrointestinal neoplasms. Pooled sensitivity and specificity were calculated using an exact binominal rendition of the bivariate mixed-effects regression model. I2 was used for the evaluation of heterogeneity. RESULTS: A total of 17 articles were included; the pooled sensitivity was 84% (95% CI, 0.81-0.88), specificity was 91% (95% CI, 0.85-0.94), and the area under the curve (AUC) was 0.93 (95% CI, 0.90-0.95). The performance of CNN was significantly better than that of endoscopists (AUC: 0.93 vs 0.83, respectively; P = .0005). CONCLUSION: Our review revealed that CNN is one of the most effective methods of endoscopy to evaluate the depth of invasion of early gastrointestinal tumors, which has the potential to work as a remarkable tool for clinical endoscopists to make decisions on whether the lesion is feasible for endoscopic treatment.


Subject(s)
Endoscopic Mucosal Resection , Gastrointestinal Neoplasms , Humans , Artificial Intelligence , Gastrointestinal Neoplasms/surgery , Gastrointestinal Neoplasms/pathology , Endoscopy, Gastrointestinal/methods , Neural Networks, Computer , Endoscopic Mucosal Resection/methods
15.
Front Immunol ; 15: 1333848, 2024.
Article in English | MEDLINE | ID: mdl-38596683

ABSTRACT

Excessive salt intake is a widespread health issue observed in almost every country around the world. A high salt diet (HSD) has a strong correlation with numerous diseases, including hypertension, chronic kidney disease, and autoimmune disorders. However, the mechanisms underlying HSD-promotion of inflammation and exacerbation of these diseases are not fully understood. In this study, we observed that HSD consumption reduced the abundance of the gut microbial metabolite L-fucose, leading to a more substantial inflammatory response in mice. A HSD led to increased peritonitis incidence in mice, as evidenced by the increased accumulation of inflammatory cells and elevated levels of inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and monocyte chemotactic protein-1 (MCP-1, also known as C-C motif chemokine ligand 2 or CCL2), in peritoneal lavage fluid. Following the administration of broad-spectrum antibiotics, HSD-induced inflammation was abolished, indicating that the proinflammatory effects of HSD were not due to the direct effect of sodium, but rather to HSD-induced alterations in the composition of the gut microbiota. By using untargeted metabolomics techniques, we determined that the levels of the gut microbial metabolite L-fucose were reduced by a HSD. Moreover, the administration of L-fucose or fucoidan, a compound derived from brown that is rich in L-fucose, normalized the level of inflammation in mice following HSD induction. In addition, both L-fucose and fucoidan inhibited LPS-induced macrophage activation in vitro. In summary, our research showed that reduced L-fucose levels in the gut contributed to HSD-exacerbated acute inflammation in mice; these results indicate that L-fucose and fucoidan could interfere with HSD-promotion of the inflammatory response.


Subject(s)
Fucose , Polysaccharides , Sodium Chloride, Dietary , Mice , Animals , Fucose/pharmacology , Inflammation/metabolism , Diet
16.
Article in English | MEDLINE | ID: mdl-38598316

ABSTRACT

Semiconductor nanofilm fabrication with advanced technology is of great importance for next-generation electronics/optoelectronics. Fabrication of high-quality and perfectly oriented semiconductor thin films and integration into high-performance electronic devices with low cost and high efficiency are huge challenges. Here we exquisitely utilized the Marangoni effect to perfectly guide tin disulfide (SnS2) nanocoins into an ordered assembly in milliseconds, resulting in an uniaxial-oriented monolayer semiconductor film. Further exploration revealed that the formed "crumple zone" at the interface caused by the Marangoni force endows the nanofilm with a rapid healable capability, which can be easily transferred to arbitrary substrates. As a proof of concept, the nanocoin-monolayer was transferred onto a micro-interdigitated electrode substrate to form a high-performance chemiresistive sensor that can effectively monitor the trace amounts of toxic gases. In addition, the assembled monolayer nanofilms can be conformally printed on freeform surfaces: both flat and nonflat substrates. This efficient and low-cost Marangoni force-assisted surface self-assembly (MFA-SSA) strategy is promising for advanced microelectronics and real industrial applications.

17.
Ecol Evol ; 14(4): e11269, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38654711

ABSTRACT

Limestone forests are an unusual habitat for primates, especially fragmented limestone habitats. However, while some research has been conducted on François' langurs (Trachypithecus francois) in these habitats, there is still a need to improve the understanding of their behavioral adaptations to the fragmented limestone habitat. We collected data on the diet of François' langurs in a fragmented limestone habitat in Encheng National Nature Reserve, southwestern Guangxi, China using instantaneous scanning sampling, and their feeding adaptations to the fragmented forest were examined. The results indicated that a total of 101 species of plants were consumed by the langurs. They also fed on two non-plant components, including cliff minerals and at least one species of insect. The langurs ate a higher number of food species in Encheng when compared with the other geographic populations, and they maintained a high level of food diversity and ate more vines. Moreover, they were highly selective in their use of vegetation in their home range, and fewer plants provided a high-quality food source. During the season when food resources were scarce, the consumption of fruits and young leaves decreased as their availability decreased. This led to the use of other food components, such as mature leaves and seeds. The findings support that François' langurs adjust their feeding behavior to cope with seasonal and micro-variations in their dietary requirements and to adapt to their particular environment.

18.
Cancer Biol Med ; 21(6)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38525901

ABSTRACT

OBJECTIVE: Abnormal metabolism is the underlying reason for breast cancer progression. Decreased lactate dehydrogenase B (LDHB) has been detected in breast cancer but the function of LDHB remains unknown. METHODS: Western blot was used to analyze LDHB expression in breast cancer cells. The impact of LDHB on tumor cell migration and invasion was determined using Transwell assays, wound healing assays, and a mouse lung metastasis model. Subcutaneous tumor formation, a natural killer (NK) cell cytotoxicity assay, and flow cytometry evaluated NK cell activation. Immunofluorescence and quantitative real-time PCR detected NK cell activation markers. Kaplan-Meier analysis evaluated the effect of immune cell infiltration on prognosis. Single-sample gene set enrichment analysis determined NK cell activation scores. A support vector machine predicted the role of LDHB in NK cell activation. RESULTS: In this study we showed that LDHB inhibits the breast cancer cell metastasis and orchestrates metabolic reprogramming within tumor cells. Our results revealed that LDHB-mediated lactic acid clearance in breast cancer cells triggers NK cell activation within the tumor microenvironment. Our findings, which were confirmed in a murine model, demonstrated that LDHB in tumor cells promotes NK cell activation and ultimately results in the eradication of malignant cells. Clinically, our study further validated that LDHB affects immune cell infiltration and function. Specifically, its expression has been linked to enhanced NK cell-mediated cytotoxicity and improved patient survival. Furthermore, we identified LDHB expression in tumors as an important predictor of NK cell activation, with strong predictive ability in some cancers. CONCLUSIONS: Our results suggest that LDHB is a promising target for activating the tumor immune microenvironment in breast cancer, where LDHB-associated lactic acid clearance leads to increased NK cell activity. This study highlights the critical role of LDHB in regulating immune responses and its potential as a therapeutic target for breast cancer.


Subject(s)
Breast Neoplasms , Disease Progression , Killer Cells, Natural , L-Lactate Dehydrogenase , Tumor Microenvironment , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Humans , Female , Animals , Mice , L-Lactate Dehydrogenase/metabolism , Tumor Microenvironment/immunology , Cell Line, Tumor , Lymphocyte Activation , Isoenzymes/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Cell Movement , Prognosis , Gene Expression Regulation, Neoplastic
19.
Int J Surg ; 110(5): 2776-2787, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38445460

ABSTRACT

BACKGROUND: Approximately 60% of patients with colorectal liver metastases (CRLM) experience relapse within 2 years after radical resection, previous studies have proven that repeat local treatment (LT) could prolong survival, however, it is difficult to seize the window for LT due to the lack of a high-sensitive surveillance method. In this study, the authors aim to examine the value of longitudinal circulating tumor DNA (ctDNA) in guiding adjuvant chemotherapy, optimizing clinical surveillance strategy, and thereby improving CRLM outcomes. MATERIALS AND METHODS: The authors conducted a prospective clinical trial using a personalized, tumor-informed ctDNA assay to monitor 60 CRLM patients undergoing resection with curative intent. Formalin-fixed paraffin-embedded tumor samples were collected after surgery. Blood samples were collected before surgery, 30 days after surgery (post-OP), and every third month until relapse or up to 2 years. RESULTS: A total of 394 plasma samples from 60 eligible patients were analyzed, with a median follow-up time of 31.3 months. Landmark analyses revealed that detectable ctDNA at post-OP (HR, 4.8), postadjuvant chemotherapy (HR, 6.0), and end-of-treatment (HR, 5.6) were associated with higher recurrence risk ( P <0.001). Post-OP ctDNA positivity served as the only independent prognostic marker in the multivariant analysis (HR, 5.1; P <0.001). Longitudinal ctDNA analysis identified relapsed patients at both sensitivity and specificity of 100%. Most (75%) patients were found with radiological relapse within 6 months after the first detectable ctDNA with a median lead time of 3.5 months. In relapsed patients, 73.2% had oligometastatic disease and 61% were liver-restricted, of which 72.0% received repeat LTs, and 60.0% achieved a secondary no evidence of disease status. CONCLUSIONS: Longitudinal ctDNA monitoring assists in early prediction of relapse, and thereby improves survival of CRLM patients by increased secondary resection rate and secondary no evidence of disease rate.


Subject(s)
Circulating Tumor DNA , Colorectal Neoplasms , Liver Neoplasms , Neoplasm Recurrence, Local , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/blood , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Prospective Studies , Male , Female , Liver Neoplasms/secondary , Liver Neoplasms/blood , Liver Neoplasms/surgery , Middle Aged , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/diagnosis , Aged , Adult , Hepatectomy , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Cohort Studies
20.
Hellenic J Cardiol ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38453013

ABSTRACT

BACKGROUND: Distal transradial access (dTRA) has recently emerged as a new vascular access alternative for coronary angiography (CAG) and/or percutaneous coronary intervention (PCI). However, published data on long-term mortality and major adverse cardiac events after PCI via dTRA are inconclusive. The aim of this study was to compare the long-term prognoses of PCI via dTRA and conventional transradial access (cTRA) for acute coronary syndrome (ACS) after 1-3 years of follow-up. METHODS: Patients who were diagnosed with ACS and underwent PCI between January 1, 2020 and December 31, 2021, were retrospectively enrolled. The patients were divided into two groups at a 1:1 ratio, subjected to propensity score matching (PSM), and then followed for 1-3 years after PCI. Cox proportional hazards regression was used to evaluate the relationship between the two access sites and clinical outcomes. RESULTS: Among the 550 patients in the dTRA and cTRA groups, 11 (4.0%) and 19 (6.9%) died during the observation period, respectively. dTRA and cTRA had similar risks of all-cause mortality [hazard ratio (HR) = 0.688; 95% CI = 0.323-1.463; P = 0.331] and major adverse cardiac events (MACEs, HR = 0.806, 95% CI = 0.515-1.263; P = 0.347) after PCI. The risk of cardiovascular mortality (HR = 0.330, 95% CI = 0.107-1.105; P = 0.053), TLR-MACEs (HR = 0.587, 95% CI = 0.339-1.109; P = 0.058), and unplanned revascularization (HR = 0.860, 95% CI = 0.483-1.529; P = 0.606) were not significantly different between the two groups. CONCLUSIONS: PCI via dTRA has the same long-term prognoses as PCI via cTRA in ACS patients, and the compression time and bleeding rate are lower than those in patients undergoing PCI via cTRA.

SELECTION OF CITATIONS
SEARCH DETAIL