Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.010
Filter
1.
Inflamm Res ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223320

ABSTRACT

BACKGROUND: Previous studies have shown that macrophage-mediated efferocytosis is involved in immunosuppression in acute myeloid leukemia (AML). However, the regulatory role of efferocytosis in AML remains unclear and needs further elucidation. METHODS: We first identified the key efferocytosis-related genes (ERGs) based on the expression matrix. Efferocytosis-related molecular subtypes were obtained by consensus clustering algorithm. Differences in immune landscape and biological processes among molecular subtypes were further evaluated. The efferocytosis score model was constructed to quantify molecular subtypes and evaluate its value in prognosis prediction and treatment decision-making in AML. RESULTS: Three distinct efferocytosis-related molecular subtypes were identified and divided into immune activation, immune desert, and immunosuppression subtypes based on the characteristics of the immune landscape. We evaluated the differences in clinical and biological features among different molecular subtypes, and the construction of an efferocytosis score model can effectively quantify the subtypes. A low efferocytosis score is associated with immune activation and reduced mutation frequency, and patients have a better prognosis. A high efferocytosis score reflects immune exhaustion, increased activity of tumor marker pathways, and poor prognosis. The prognostic predictive value of the efferocytosis score model was confirmed in six AML cohorts. Patients exhibiting high efferocytosis scores may derive therapeutic benefits from anti-PD-1 immunotherapy, whereas those with low efferocytosis scores tend to exhibit greater sensitivity towards chemotherapy. Analysis of treatment data in ex vivo AML cells revealed a group of drugs with significant differences in sensitivity between different efferocytosis score groups. Finally, we validated model gene expression in a clinical cohort. CONCLUSIONS: This study reveals that efferocytosis plays a non-negligible role in shaping the diversity and complexity of the AML immune microenvironment. Assessing the individual efferocytosis-related molecular subtype in individuals will help to enhance our understanding of the characterization of the AML immune landscape and guide the establishment of more effective clinical treatment strategies.

2.
J Photochem Photobiol B ; 259: 113005, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39126797

ABSTRACT

Light exposure significantly impacted the coloration and metabolism of Auricularia cornea, although the underlying mechanisms remain unclear. This study aimed to test the apparent color and pigment metabolic profiles of A. cornea in response to red (λp = 630 nm) and blue (λp = 463 nm) visible light exposure. Colorimeter analysis showed that fruiting bodies appeared bright-white under red-light and deeper-red under blue-light, both with a yellow tinge. On the 40th day of light-exposure, bodies were collected for metabolite detection. A total of 481 metabolites were targeted analysis, resulting in 18 carotenoids and 11 anthocyanins. Under red and blue light exposure, the total carotenoids levels were 1.1652 µg/g and 1.1576 µg/g, the total anthocyanins levels were 0.0799 µg/g and 0.1286 µg/g, respectively. Four differential metabolites and three putative gene linked to the visual coloration of A. cornea were identified. This pioneering study provides new insights into the role of light in regulating A. cornea pigmentation and metabolic profile.

3.
Sci Total Environ ; 951: 175514, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147039

ABSTRACT

Lake restoration usually focuses on reducing external nutrient sources. However, when sediments contain nutrients accumulated over multiple years, internal nutrient release can delay restoration progress. In lake restoration and management, it is important to understand the dynamic relationship between nutrient concentrations in a lake and internal and external nutrient sources. In this study, we quantified external nutrient inputs through measurements and compared them with internal sediment release from simulation using the PCLake+ model. Additionally, we evaluated alterations in the internal nutrient release, lake nutrient concentrations, and algae biomass (chlorophyll-a) within the lake following varying degrees of reduction in external nutrient loads. The results demonstrate that the PCLake+ effectively simulated the lake's nutrient concentration and algae biomass. Based on the PCLake+ estimates, internal nutrient loads accounted for 51 % of the total nitrogen (N) and 80 % of the total phosphorus (P) loadings in Lake Erhai in 2019. In 2020, the total contributions were 43 % for TN and 72 % for TP. We simulated four scenarios where external nutrient inputs were reduced to 25 %, 50 %, 75 %, and 99.99 % of their original levels. The 40-year simulation showed that the lake's ecological system initially exhibited a fast internal response but reached equilibrium after eight years. P concentrations took longer to reach equilibrium compared to N concentrations, probably due to the stronger binding characteristics of P. To meet the water quality target in the future, it is necessary to reduce external N and P inputs into Lake Erhai by at least 23 % and 15 %, respectively, under current conditions. Although reducing external nutrient loads can indirectly lower internal nutrient loads, water management should address both external and internal loads simultaneously, as internal release cannot be effectively reduced by external reductions alone. Additionally, the lake's internal release may continue for several years, even with reductions in external inputs.

4.
Zhonghua Nan Ke Xue ; 30(6): 531-539, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39212363

ABSTRACT

OBJECTIVE: To explore the mechanisms of Qianlie Jindan Tablets (QLJD) acting on chronic nonbacterial prostatitis (CNP) in rats based on non-targeted urine metabolomics. METHODS: According to the body mass index, we equally randomized 30 eight-week-old male SD rats into a blank control, a CNP model control and a QLJD medication group. We established the CNP model in the latter groups and, from the 4th day of modeling, treated the rats in the blank and model control groups intragastrically with normal saline and those in the QLJD medication group with QLJD suspension, qd, for 30 successive days. Then we detected the changes in the metabolites of the rats by ultra-high-performance liquid chromatography-tandem mass spectrometry, and identified the differential metabolites in different groups by multivariate statistical analysis, followed by functional annotation of the differential metabolites. RESULTS: Eight common metabolites were identified by metabolomics analysis, of which 5 were decreased in the CNP model controls and increased in the QLJD medication group, while the other 3 increased in the former and decreased in the latter group. Creatinine and genistein were important differential metabolites, and the arginine and proline metabolic pathways and isoflavone biosynthesis pathways were the main ones for QLJD acting on CNP. Compared with the blank controls, the model controls showed up-regulated arginine and proline metabolic pathways, increased production of creatinine, down-regulated isoflavone biosynthetic pathway and decreased production of genistein. The above changes in the model controls were all reversed in the QLJD medication group. CONCLUSION: QLJD acts effectively on CNP in male rats by regulating L-arginine and proline metabolic pathways, as well as the isoflavone biosynthesis pathway and naringenin metabolism.


Subject(s)
Drugs, Chinese Herbal , Metabolomics , Prostatitis , Rats, Sprague-Dawley , Male , Animals , Rats , Prostatitis/metabolism , Prostatitis/urine , Prostatitis/drug therapy , Metabolomics/methods , Tablets , Chromatography, High Pressure Liquid , Arginine/metabolism , Chronic Disease , Genistein/urine , Proline/urine , Proline/metabolism , Disease Models, Animal , Creatinine/urine , Creatinine/metabolism , Tandem Mass Spectrometry
5.
Int J Pharm ; 663: 124552, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39111355

ABSTRACT

Methamphetamine (METH) addiction can damage the central nervous system, resulting in cognitive impairment and memory deficits. Low target effects have limited the utility of anti-addiction drugs because the presence of the blood-brain barrier hinders the effective delivery of drugs to the brain. Angiopep-2 can recognize and target low-density lipoprotein receptor-associated protein 1 (LRP-1) on the surface of cerebral capillary endothelial cells, causing cross-cell phagocytosis, and thus has high blood-brain barrier transport capacity. Resveratrol (RSV) has been found to be a neuroprotective agent in many nervous system diseases. In our study, we modified Angiopep-2 on the surface of the erythrocyte membrane to obtain a modified erythrocyte membrane (Ang-RBCm) and coated RSV-loaded poly(ε-caprolactone)-poly(ethylene glycol) (PCL-PEG) nanoparticles with Ang-RBCm (Ang-RBCm@RSVNPs) to treat METH addiction. Our results showed that Ang-RBCm@RSVNPs can penetrate the blood-brain barrier and accumulate in the brain better than free RSV. Besides, mice treatetd with Ang-RBCm@RSVNPs showed less preference to METH-paired chamber and no noticeable tissue toxicity or abnormality was found in H&E staining images. Electrophysiological experiments demonstrated Ang-RBCm@RSVNPs could elevate synaptic plasticity impaired by METH. These indicated that Ang-RBCm@RSVNPs has better anti-addiction and neuroprotective effects. Therefore, Ang-RBCm@RSVNPs has great potential in the treatment of METH addiction.


Subject(s)
Blood-Brain Barrier , Methamphetamine , Nanoparticle Drug Delivery System , Resveratrol , Resveratrol/administration & dosage , Resveratrol/pharmacokinetics , Resveratrol/pharmacology , Resveratrol/chemistry , Animals , Methamphetamine/administration & dosage , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Mice , Nanoparticle Drug Delivery System/chemistry , Male , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Mice, Inbred C57BL , Peptides/administration & dosage , Peptides/chemistry , Nanoparticles/administration & dosage , Substance-Related Disorders/drug therapy , Brain/metabolism , Brain/drug effects , Drug Delivery Systems/methods
6.
Front Psychol ; 15: 1399343, 2024.
Article in English | MEDLINE | ID: mdl-39100562

ABSTRACT

Purpose: The learning subjective well-being of high school students has significant value for their academic achievement and future life development. A growth mindset is one of the key factors affecting the learning subjective well-being of high school students. However, research on the mechanism by which a growth mindset affects learning subjective well-being is still relatively limited. Therefore, the study aims to investigate the impact of a growth mindset on the learning subjective well-being of high school students, as well as the role that achievement motivation and grit play as serial mediators in this relationship. Methods: This study employed a convenience sampling method to select 708 high school students from Chinese public high schools as participants. The research utilized the Growth Mindset Scale, Achievement Motivation Scale, Grit Scale, and the Learning Subjective Well-being Questionnaire for High School Students to collect data. All data were analyzed using SPSS 26.0, employing Model 6 from Hayes' SPSS PROCESS macro to test the serial mediation model. Results: Our results found that (1) high school students' growth mindset positively predicted their learning subjective well-being. (2) Achievement motivation played a mediating role between a growth mindset and learning subjective well-being among high school students. (3) Grit acted as a mediator between learning subjective well-being and growth mindset among high school students. (4) Achievement motivation and grit served as serial mediators between a growth mindset and learning subjective well-being among high school students. Conclusion: A growth mindset can influence the learning subjective well-being of high school students through achievement motivation and grit. Educators can enhance the learning subjective well-being of high school students by implementing intervention strategies that foster a growth mindset, achievement motivation, and grit.

7.
J Infect Dis ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39171916

ABSTRACT

BTB and CNC homology 1 (BACH1) plays a crucial role in the pathogenesis of acute lung injury (ALI) caused by gram-negative bacteria. However, its exact mechanisms and roles in Staphylococcus aureus (SA)-induced ALI, a gram-positive bacterial infection, remain incompletely understood. In this study, we generated a BACH1-knockout mouse model (BACH1-/-) to investigate the role of BACH1 and its underlying mechanisms in regulating the development of sepsis-induced acute lung injury (ALI). Elevated levels of BACH1 were observed in both serum samples from septic patients and mouse models. Deletion of BACH1 alleviated ALI symptoms induced by sepsis. In bone marrow-derived macrophages, BACH1 deletion or knockdown suppressed NF-κB p65 phosphorylation and the induction of pro-inflammatory cytokines. Mechanistic studies demonstrated that BACH1 downregulated tumor necrosis factor-alpha-induced protein 3 (TNFAIP3) mRNA expression by binding to its promoter region. These findings uncover inhibiting BACH1 may be a promising therapeutic strategy for treating gram-positive bacteria-induced ALI.

8.
Transplant Proc ; 56(6): 1478-1482, 2024.
Article in English | MEDLINE | ID: mdl-39013746

ABSTRACT

BACKGROUND: The most common method of inducing brain death in rats is inflating an intracranially placed balloon of a Fogarty catheter inserted through a burr hole. However, because of the poor controllability of balloon position, the standardization and stability of the model are compromised. This study examined an improved technique in which the balloon is placed and fixed through double holes. METHODS: Forty adult male Sprague-Dawley (SD) rats were randomly and equally assigned into the single-hole (SH) group and the double-hole (DH) group. In each rat in the DH group, 2 holes were made, at the left frontal bone and parietal bone. A Fogarty catheter was inserted outside of the dura mater through the frontal hole, and its tip was guided out through the parietal hole using an arc-shaped needle. The SH group served as a control. In both groups, normal saline was injected into the balloon at 40 µL/minute until breathing stopped. Mechanical ventilation was instituted immediately and provided for another 6 hours after the determination of brain death. RESULTS: Typical blood pressure patterns were observed in both groups during the brain death induction period, whereas the fluctuation seemed relatively mild in the DH group. Stable brain death with normotension for 6 hours was induced successfully in 18 rats (90%) in the DH group and in 9 rats (45%) in the SH group (P = .002). The mean arterial pressure at 3 hours and thereafter was significantly higher in the DH group compared to the SH group (P < .05). CONCLUSIONS: Our results demonstrate that the DH method is a simple and effective technique to make the brain death model more stable and standardized, possibly due to precise control of the direction of the cannulation and the position of the balloon.


Subject(s)
Brain Death , Disease Models, Animal , Rats, Sprague-Dawley , Animals , Male , Rats
9.
Colloids Surf B Biointerfaces ; 242: 114112, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39047643

ABSTRACT

Allergic rhinitis (AR) is a chronic inflammatory disease of the nasal mucosa mediated by immunoglobulin E (IgE) after exposure to allergens. The bothersome symptoms of AR, such as runny nose and nasal congestion, affect millions of people worldwide. Ipratropium Bromide (IB), commonly used in clinical practice for treating AR, requires frequent administration through nasal spray and may cause significant irritation to the nasal mucosa. The induction of ROS is closely related to the initiation and symptoms of AR, and ROS will continue to accumulate during the onset of AR. To address these challenges, we have designed a drug delivery system that can be administered in liquid form and rapidly crosslink into a ROS-responsive gel in the nasal cavity. This system enables sustained ROS responsive release of IB in a high-concentration ROS environment at AR lesions, thereby alleviating AR symptoms. The gel demonstrated prolonged release of IB for up to 24 hours in rats. In the treatment of AR rat models, it improved their symptoms, reduced the expression of various inflammatory factors, suppressed MUC5AC protein expression, and decreased mucus secretion through a ROS responsive IB release pattern. Overall, this system holds promise as a better option for AR treatment and may inspire the design of nanogel-based nasal drug delivery systems.


Subject(s)
Hydrogels , Ipratropium , Mucin 5AC , Reactive Oxygen Species , Rhinitis, Allergic , Animals , Rhinitis, Allergic/drug therapy , Reactive Oxygen Species/metabolism , Rats , Mucin 5AC/metabolism , Mucin 5AC/antagonists & inhibitors , Hydrogels/chemistry , Ipratropium/pharmacology , Ipratropium/chemistry , Drug Delivery Systems , Rats, Sprague-Dawley , Nasal Mucosa/metabolism , Nasal Mucosa/drug effects , Nasal Mucosa/pathology , Male , Administration, Intranasal , Particle Size , Disease Models, Animal
10.
BMC Cardiovasc Disord ; 24(1): 339, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965461

ABSTRACT

BACKGROUND: Zolpidem is a non-benzodiazepine hypnotic widely used to manage insomnia. Zolpidem-triggered atrial fibrillation (AF) in patients with cardiomyopathy has never been reported before. CASE PRESENTATION: A 40-year-old man with Duchenne muscular dystrophy-related cardiomyopathy attempted suicide and developed new-onset AF after zolpidem overdose. One year before admission, the patient visited our clinic due to chest discomfort and fatigue after daily walks for 1 month; both electrocardiography (ECG) and 24-hour Holter ECG results did not detect AF. After administration of cardiac medication (digoxin 0.125 mg/day, spironolactone 40 mg/day, furosemide 20 mg/day, bisoprolol 5 mg/day, sacubitril/valsartan 12/13 mg/day), he felt better. AF had never been observed before this admission via continuous monitoring during follow-up. Sixteen days before admission, the patient saw a sleep specialist and started zolpidem tartrate tablets (10 mg/day) due to insomnia for 6 months; ECG results revealed no significant change. The night before admission, the patient attempted suicide by overdosing on 40 mg of zolpidem after an argument, which resulted in severe lethargy. Upon admission, his ECG revealed new-onset AF, necessitating immediate cessation of zolpidem. Nine hours into admission, AF spontaneously terminated into normal sinus rhythm. Results from the ECG on the following days and the 24-hour Holter ECG at 1-month follow-up showed that AF was not detected. CONCLUSIONS: This study provides valuable clinical evidence indicating that zolpidem overdose may induce AF in patients with cardiomyopathy. It serves as a critical warning for clinicians when prescribing zolpidem, particularly for patients with existing heart conditions. Further large-scale studies are needed to validate this finding and to explore the mechanisms between zolpidem and AF.


Subject(s)
Atrial Fibrillation , Cardiomyopathies , Zolpidem , Humans , Zolpidem/adverse effects , Male , Atrial Fibrillation/drug therapy , Atrial Fibrillation/diagnosis , Atrial Fibrillation/chemically induced , Adult , Cardiomyopathies/chemically induced , Cardiomyopathies/physiopathology , Cardiomyopathies/diagnosis , Suicide, Attempted , Drug Overdose/diagnosis , Heart Rate/drug effects , Pyridines/adverse effects
12.
J Chem Phys ; 161(3)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39007392

ABSTRACT

Silicon, renowned for its remarkable energy density, has emerged as a focal point in the pursuit of high-energy storage solutions for the next generation. Nevertheless, silicon electrodes are known to undergo significant volume expansion during the insertion of lithium ions, leading to structural deformation and the development of internal stresses, and causing a rapid decline in battery capacity and overall lifespan. To gain deeper insights into the intricacies of charge rate effects, this study employs a combination of in situ measurements and computational modeling to elucidate the cyclic performance of composite silicon electrodes. The findings derived from the established model and curvature measurement system unveil the substantial alterations in stress and deformation as a consequence of varying charge rates. Notably, the active layer experiences compressive forces that diminish as the charge rate decreases. At a charge rate of 0.2, the active layer endures a maximum stress of 89.145 MPa, providing a comprehensive explanation for the observed deterioration in cycling performance at higher charge rates. This study not only establishes a fundamental basis for subsequent stress analyses of silicon electrodes but also lays a solid foundation for further exploration of the impact of charge rates on composite silicon electrodes.

13.
J Magn Reson Imaging ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980200

ABSTRACT

BACKGROUND: Despite the advent of combination antiretroviral therapy, people living with human immunodeficiency virus (PLWH) are at an increased risk for cardiac disease. PURPOSE: To explore the presence and extent of diastolic atrial and left ventricular dysfunction in PLWH using cardiac MRI in correlation with clinical markers of disease activity. STUDY TYPE: Prospective. POPULATION: A total of 163 participants comprising 101 HIV-infected individuals (age: 52 years [42-62 years]; 92% male) and 62 age- and sex-matched healthy volunteers (age: 51 years [30-72 years]; 85% male). FIELD STRENGTH/SEQUENCE: 3.0 T, cardiac MRI including balanced steady-state free precession (SSFP) for the short-axis, two-, three-, and four-chamber views were performed. ASSESSMENT: Assessment of cardiac function and strain analysis were accomplished by CVI42 software. Blood samples for CD4+ T cells and cardiac risk factors were also collected before MRI. STATISTICAL TESTS: Independent t tests, Mann-Whitney U test, Pearson's correlation analysis, and multivariate linear analyses (significance level: P < 0.05). RESULTS: PLWH had a significantly larger left atrial volume maximum index (LAVImax: 32.6 ± 8.7 vs. 28.7 ± 8.1 mL/m2), minimum (LAVImin: 14.8 ± 5.5 vs. 11.5 ± 5.4 mL/m2,), and prior to atrial contraction (LAVIpre-a: 23.4 ± 6.7 vs. 19.7 ± 7.2 mL/m2) as compared to healthy volunteers. The LA reservoir (LAtEF: 55.0 ± 10.2 vs. 61.4 ± 10.4; Sls: 29.0 ± 8.1 vs. 33.8 ± 11.8), conduit (LApEF: 28.4 ± 8.2 vs. 32.3 ± 11.3, P = 0.01; Sle: 16.3 ± 6.5 vs. 18.9 ± 8.2), and booster pump function (LAaEF: 37.4 ± 12.4 vs. 42.7 ± 13.1, P = 0.01, Sla: 12.7 ± 5.1 vs. 14.9 ± 5.7) were all significant impaired in PLWH. Global circumferential left ventricular diastolic strain rate (LVGCS-d) was significantly lower in the HIV patients. Multivariate analysis results showed that Nadir CD4+ T cells had a significant adverse association with LVGCS-d (ß = 0.51). CONCLUSION: LA structure abnormalities and LV diastolic dysfunction were manifested in PLWH, with Nadir CD4+ T cell counts potentially serving as a risk factor for early cardiac diastolic dysfunction. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.

14.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38975893

ABSTRACT

The process of drug discovery is widely known to be lengthy and resource-intensive. Artificial Intelligence approaches bring hope for accelerating the identification of molecules with the necessary properties for drug development. Drug-likeness assessment is crucial for the virtual screening of candidate drugs. However, traditional methods like Quantitative Estimation of Drug-likeness (QED) struggle to distinguish between drug and non-drug molecules accurately. Additionally, some deep learning-based binary classification models heavily rely on selecting training negative sets. To address these challenges, we introduce a novel unsupervised learning framework called DrugMetric, an innovative framework for quantitatively assessing drug-likeness based on the chemical space distance. DrugMetric blends the powerful learning ability of variational autoencoders with the discriminative ability of the Gaussian Mixture Model. This synergy enables DrugMetric to identify significant differences in drug-likeness across different datasets effectively. Moreover, DrugMetric incorporates principles of ensemble learning to enhance its predictive capabilities. Upon testing over a variety of tasks and datasets, DrugMetric consistently showcases superior scoring and classification performance. It excels in quantifying drug-likeness and accurately distinguishing candidate drugs from non-drugs, surpassing traditional methods including QED. This work highlights DrugMetric as a practical tool for drug-likeness scoring, facilitating the acceleration of virtual drug screening, and has potential applications in other biochemical fields.


Subject(s)
Drug Discovery , Drug Discovery/methods , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/classification , Algorithms , Deep Learning , Artificial Intelligence
15.
Front Immunol ; 15: 1402669, 2024.
Article in English | MEDLINE | ID: mdl-39026664

ABSTRACT

Background: The relationship between ferroptosis and the progression and treatment of hematological tumors has been extensively studied, although its precise association with chronic myeloid leukemia (CML) remains uncertain. Methods: Multi-transcriptome sequencing data were utilized to analyze the ferroptosis level of CML samples and its correlation with the tumor microenvironment, disease progression, and treatment response. Machine learning algorithms were employed to identify diagnostic ferroptosis-related genes (FRGs). The consensus clustering algorithm was applied to identify ferroptosis-related molecular subtypes. Clinical samples were collected for sequencing to validate the results obtained from bioinformatics analysis. Cell experiments were conducted to investigate the therapeutic efficacy of induced ferroptosis in drug-resistant CML. Results: Ferroptosis scores were significantly lower in samples from patients with CML compared to normal samples, and these scores further decreased with disease progression and non-response to treatment. Most FRGs were downregulated in CML samples. A high ferroptosis score was also associated with greater immunosuppression and increased activity of metabolic pathways. Through support vector machine recursive feature elimination (SVM-RFE), least absolute shrinkage selection operator (LASSO), and random forest (RF) algorithms, we identified five FRGs (ACSL6, SLC11A2, HMOX1, SLC38A1, AKR1C3) that have high diagnostic value. The clinical diagnostic value of these five FRGs and their effectiveness in differentiating CML from other hematological malignancies were validated using additional validation cohorts and our real-world cohort. There are significant differences in immune landscape, chemosensitivity, and immunotherapy responsiveness between the two ferroptosis-related molecular subtypes. By conducting cellular experiments, we confirmed that CML-resistant cells are more sensitive to induction of ferroptosis and can enhance the sensitivity of imatinib treatment. Conclusion: Our study unveils the molecular signature of ferroptosis in samples from patients with CML. FRG identified by a variety of machine learning algorithms has reliable clinical diagnostic value. Furthermore, the characterization of different ferroptosis-related molecular subtypes provides valuable insights into individual patient characteristics and can guide clinical treatment strategies. Targeting and inducing ferroptosis holds great promise as a therapeutic approach for drug-resistant CML.


Subject(s)
Biomarkers, Tumor , Ferroptosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Ferroptosis/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Tumor Microenvironment , Drug Resistance, Neoplasm/genetics , Computational Biology/methods , Machine Learning
17.
Int J Biol Macromol ; 275(Pt 2): 133714, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977051

ABSTRACT

The synthesis mechanisms and function evaluation of selenium(Se)-enriched microorganism remain relatively unexplored. This study unveils that total Se content within A. oryzae A02 mycelium soared to an impressive 8462 mg/kg DCW, surpassing Se-enriched yeast by 2-3 times. Selenium exists in two predominant forms within A. oryzae A02: selenoproteins (SeMet 32.1 %, SeCys 14.4 %) and selenium nanoparticles (SeNPs; 53.5 %). The extensive quantitative characterization of the elemental composition, surface morphology, and size of SeNPs on A. oryzae A02 mycelium significantly differs from those reported for other microorganisms. Comparative RNA-Seq analysis revealed the upregulation of functional genes implicated in selenium transformation, activating multiple potential pathways for selenium reduction. The assimilatory and dissimilatory reductions of Se oxyanions engaged numerous parallel and interconnected pathways, manifesting a harmonious equilibrium in overall Se biotransformation in A. oryzae A02. Furthermore, selenium-enriched A. oryzae A02 was observed to primarily upregulate peroxisome activity while downregulating estrogen 2-hydroxylase activity in mice hepatocytes, suggesting its potential in fortifying antioxidant physiological functions and upholding metabolic balance.


Subject(s)
Aspergillus oryzae , Selenium , Aspergillus oryzae/metabolism , Aspergillus oryzae/genetics , Selenium/chemistry , Selenium/metabolism , Selenium/pharmacology , Animals , Mice , Selenoproteins/metabolism , Selenoproteins/biosynthesis , Mycelium/metabolism , Hepatocytes/metabolism , Hepatocytes/drug effects , Nanoparticles/chemistry
18.
Genomics ; 116(5): 110902, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053612

ABSTRACT

A pioneering pink cultivar of Auricularia cornea, first commercially cultivated in 2022, lacks genomic data, hindering research in genetic breeding, gene discovery, and product development. Here, we report the de novo assembly of the pink A. cornea Fen-A1 genome and provide a detailed functional annotation. The genome is 73.17 Mb in size, contains 86 scaffolds (N50 âˆ¼ 5.49 Mb), 59.09% GC content and encodes 19,120 predicted genes with a BUSCO completeness of 92.60%. Comparative genomic analysis reveals the phylogenetic relatedness of Fen-A1 and remarkable gene family dynamics. Putative genes were found mapped to 3 antibiotic-related, 36 light-dependent and 25 terpene metabolites. In addition, 789 CAZymes genes were classified, revealing the dynamics of quality loss due to postharvest refrigeration. Overall, our work is the first report on a pink A. cornea genome and provides a comprehensive insight into its complex functions.

19.
Food Res Int ; 191: 114704, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059912

ABSTRACT

This study investigates the metabolic responses of Auricularia cornea when cultured on de-oiled leaves of Cinnamomum longepaniculatum (DeCL), an underutilized waste product. The metabolic profiles of A. cornea cultured with four different quality ratios of DeCL substrate (0 %, 14 %, 28 % and 42 %) were analyzed by UHPLC-MS/MS-based metabolomics. A total of 516 metabolites were identified and classified into 78 categories, with phenols, alkaloids and flavonoids accounting for 26.7 % of the total. In addition, 32 metabolite biomarkers associated with eight major metabolic pathways were identified. This pioneering research provides valuable insights into the utilization of DeCL, and expands our knowledge of the metabolic dynamics underlying the growth of A. cornea on alternative substrates.


Subject(s)
Biomarkers , Camphor , Metabolome , Metabolomics , Plant Leaves , Tandem Mass Spectrometry , Plant Leaves/metabolism , Plant Leaves/chemistry , Biomarkers/metabolism , Biomarkers/analysis , Metabolomics/methods , Camphor/metabolism , Camphor/analysis , Chromatography, High Pressure Liquid , Cinnamomum/chemistry , Cinnamomum/metabolism , Phenols/analysis , Phenols/metabolism , Flavonoids/analysis , Flavonoids/metabolism , Alkaloids/analysis , Alkaloids/metabolism
20.
Front Oncol ; 14: 1411436, 2024.
Article in English | MEDLINE | ID: mdl-38983930

ABSTRACT

Background: This study aimed to establish a comprehensive clinical prognostic risk model based on pulmonary function tests. This model was intended to guide the evaluation and predictive management of patients with resectable stage I-III non-small cell lung cancer (NSCLC) receiving neoadjuvant chemoimmunotherapy. Methods: Clinical pathological characteristics and prognostic survival data for 175 patients were collected. Univariate and multivariate Cox regression analyses, and least absolute shrinkage and selection operator (LASSO) regression analysis were employed to identify variables and construct corresponding models. These variables were integrated to develop a ridge regression model. The models' discrimination and calibration were evaluated, and the optimal model was chosen following internal validation. Comparative analyses between the risk scores or groups of the optimal model and clinical factors were conducted to explore the potential clinical application value. Results: Univariate regression analysis identified smoking, complete pathologic response (CPR), and major pathologic response (MPR) as protective factors. Conversely, T staging, D-dimer/white blood cell ratio (DWBCR), D-dimer/fibrinogen ratio (DFR), and D-dimer/minute ventilation volume actual ratio (DMVAR) emerged as risk factors. Evaluation of the models confirmed their capability to accurately predict patient prognosis, exhibiting ideal discrimination and calibration, with the ridge regression model being optimal. Survival analysis demonstrated that the disease-free survival (DFS) in the high-risk group (HRG) was significantly shorter than in the low-risk group (LRG) (P=2.57×10-13). The time-dependent receiver operating characteristic (ROC) curve indicated that the area under the curve (AUC) values at 1 year, 2 years, and 3 years were 0.74, 0.81, and 0.79, respectively. Clinical correlation analysis revealed that men with lung squamous cell carcinoma or comorbid chronic obstructive pulmonary disease (COPD) were predominantly in the LRG, suggesting a better prognosis and potentially identifying a beneficiary population for this treatment combination. Conclusion: The prognostic model developed in this study effectively predicts the prognosis of patients with NSCLC receiving neoadjuvant chemoimmunotherapy. It offers valuable predictive insights for clinicians, aiding in developing treatment plans and monitoring disease progression.

SELECTION OF CITATIONS
SEARCH DETAIL