Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Nat Commun ; 15(1): 5378, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918369

ABSTRACT

Artificial intelligence transforms drug discovery, with phenotype-based approaches emerging as a promising alternative to target-based methods, overcoming limitations like lack of well-defined targets. While chemical-induced transcriptional profiles offer a comprehensive view of drug mechanisms, inherent noise often obscures the true signal, hindering their potential for meaningful insights. Here, we highlight the development of TranSiGen, a deep generative model employing self-supervised representation learning. TranSiGen analyzes basal cell gene expression and molecular structures to reconstruct chemical-induced transcriptional profiles with high accuracy. By capturing both cellular and compound information, TranSiGen-derived representations demonstrate efficacy in diverse downstream tasks like ligand-based virtual screening, drug response prediction, and phenotype-based drug repurposing. Notably, in vitro validation of TranSiGen's application in pancreatic cancer drug discovery highlights its potential for identifying effective compounds. We envisage that integrating TranSiGen into the drug discovery and mechanism research holds significant promise for advancing biomedicine.


Subject(s)
Deep Learning , Drug Discovery , Phenotype , Drug Discovery/methods , Humans , Drug Repositioning/methods , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Transcriptome , Gene Expression Profiling/methods , Antineoplastic Agents/pharmacology , Artificial Intelligence
2.
Biomolecules ; 14(6)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38927080

ABSTRACT

Disulfidptosis, a newly identified mode of programmed cell death, is yet to be comprehensively elucidated with respect to its multi-omics characteristics in tumors, specific pathogenic mechanisms, and antitumor functions in liver cancer. This study included 10,327 tumor and normal tissue samples from 33 cancer types. In-depth analyses using various bioinformatics tools revealed widespread dysregulation of disulfidptosis-related genes (DRGs) in pan-cancer and significant associations with prognosis, genetic variations, tumor stemness, methylation levels, and drug sensitivity. Univariate and multivariate Cox regression and LASSO regression were used to screen and construct prognosis-related hub DRGs and predictive models in the context of liver cancer. Subsequently, single cell analysis was conducted to investigate the subcellular localization of RPN1, a hub DRG, in various solid tumors. Western blotting was performed to validate the expression of RPN1 at both cellular and tissue levels. Additionally, functional experiments, including CCK8, EdU, clone, and transwell assays, indicated that RPN1 knockdown promoted the proliferative and invasive capacities of liver cancer cells. Therefore, this study elucidated the multi-omics characteristics of DRGs in pan-cancer and established a prognostic model for liver cancer. Additionally, this study revealed the molecular functions of RPN1 in liver cancer, suggesting its potential as a therapeutic target for this disease.


Subject(s)
Gene Expression Regulation, Neoplastic , Liver Neoplasms , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Prognosis , Apoptosis/genetics , Computational Biology/methods , Multiomics
3.
Cancer Rep (Hoboken) ; 7(6): e2085, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837682

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide. Long noncoding RNA (lncRNA) is involved in many malignant tumors. This study aimed to clarify the role of the lncRNA plasmacytoma variant translocation 1 (PVT1) in CRC growth and metastasis. METHODS: Differentially expressed lncRNAs in CRC were analyzed using the Cancer Genome Atlas. Gene expression profiling interactive analysis and a comprehensive resource for lncRNAs from cancer arrays databases were used to analyze lncRNA PVT1 expression and CRC prognosis, respectively. Cell counting kit-8, wound healing, colony formation, Transwell, and immunofluorescence assays were used to evaluate CRC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), respectively. Tumor growth and metastasis models were used to explore the PVT1 effect on the growth and metastasis of CRC in vivo. RESULTS: PVT1 was highly expressed in CRC, associated with a poor prognosis of CRC, and showed good diagnostic value. Transfection of sh-PVT1 or pcDNA3.1-PVT1 reduced or increased the proliferation, wound healing rate, colony formation, invasion, and EMT of CRC cells. PVT1 and miR-3619-5p were co-expressed in CRC cytoplasm, and PVT1 acted as a competitive endogenous RNA (ceRNA) by sponging miR-3619-5p to up-regulate tripartite motif containing 29 (TRIM29) expression. MiR-3619-5p overexpression and TRIM29 knockdown reduced proliferation, wound healing rate, invasion, and EMT of CRC cells. However, simultaneous PVT1 and miR-3619-5p overexpression or knockdown of miR-3619-5p and TRIM29 knockdown rescued the malignant phenotype of CRC cells. CONCLUSIONS: We first clarified the ceRNA mechanism of PVT1 in CRC, which induced growth and metastasis by sponging with miR-3619-5p to regulate TRIM29.


Subject(s)
Cell Movement , Cell Proliferation , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , MicroRNAs , RNA, Long Noncoding , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , RNA, Long Noncoding/genetics , MicroRNAs/genetics , Cell Proliferation/genetics , Mice , Animals , Prognosis , Epithelial-Mesenchymal Transition/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Male , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mice, Nude , Female , Cell Line, Tumor , Neoplasm Metastasis , Mice, Inbred BALB C , Xenograft Model Antitumor Assays
4.
Nucleic Acids Res ; 52(W1): W489-W497, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38752486

ABSTRACT

Kinase-targeted inhibitors hold promise for new therapeutic options, with multi-target inhibitors offering the potential for broader efficacy while minimizing polypharmacology risks. However, comprehensive experimental profiling of kinome-wide activity is expensive, and existing computational approaches often lack scalability or accuracy for understudied kinases. We introduce KinomeMETA, an artificial intelligence (AI)-powered web platform that significantly expands the predictive range with scalability for predicting the polypharmacological effects of small molecules across the kinome. By leveraging a novel meta-learning algorithm, KinomeMETA efficiently utilizes sparse activity data, enabling rapid generalization to new kinase tasks even with limited information. This significantly expands the repertoire of accurately predictable kinases to 661 wild-type and clinically-relevant mutant kinases, far exceeding existing methods. Additionally, KinomeMETA empowers users to customize models with their proprietary data for specific research needs. Case studies demonstrate its ability to discover new active compounds by quickly adapting to small dataset. Overall, KinomeMETA offers enhanced kinome virtual profiling capabilities and is positioned as a powerful tool for developing new kinase inhibitors and advancing kinase research. The KinomeMETA server is freely accessible without registration at https://kinomemeta.alphama.com.cn/.


Subject(s)
Internet , Polypharmacology , Protein Kinase Inhibitors , Protein Kinases , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinases/metabolism , Protein Kinases/chemistry , Protein Kinases/genetics , Humans , Software , Algorithms , Artificial Intelligence , Drug Discovery/methods
5.
Nat Immunol ; 25(3): 525-536, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38356061

ABSTRACT

Regulatory T (Treg) cells are critical for immune tolerance but also form a barrier to antitumor immunity. As therapeutic strategies involving Treg cell depletion are limited by concurrent autoimmune disorders, identification of intratumoral Treg cell-specific regulatory mechanisms is needed for selective targeting. Epigenetic modulators can be targeted with small compounds, but intratumoral Treg cell-specific epigenetic regulators have been unexplored. Here, we show that JMJD1C, a histone demethylase upregulated by cytokines in the tumor microenvironment, is essential for tumor Treg cell fitness but dispensable for systemic immune homeostasis. JMJD1C deletion enhanced AKT signals in a manner dependent on histone H3 lysine 9 dimethylation (H3K9me2) demethylase and STAT3 signals independently of H3K9me2 demethylase, leading to robust interferon-γ production and tumor Treg cell fragility. We have also developed an oral JMJD1C inhibitor that suppresses tumor growth by targeting intratumoral Treg cells. Overall, this study identifies JMJD1C as an epigenetic hub that can integrate signals to establish tumor Treg cell fitness, and we present a specific JMJD1C inhibitor that can target tumor Treg cells without affecting systemic immune homeostasis.


Subject(s)
Autoimmune Diseases , Humans , Cytokines , Epigenomics , Histone Demethylases , Homeostasis , Oxidoreductases, N-Demethylating , Jumonji Domain-Containing Histone Demethylases/genetics
6.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38390990

ABSTRACT

Enhancing cancer treatment efficacy remains a significant challenge in human health. Immunotherapy has witnessed considerable success in recent years as a treatment for tumors. However, due to the heterogeneity of diseases, only a fraction of patients exhibit a positive response to immune checkpoint inhibitor (ICI) therapy. Various single-gene-based biomarkers and tumor mutational burden (TMB) have been proposed for predicting clinical responses to ICI; however, their predictive ability is limited. We propose the utilization of the Text Graph Convolutional Network (GCN) method to comprehensively assess the impact of multiple genes, aiming to improve the predictive capability for ICI response. We developed TG468, a Text GCN model framing drug response prediction as a text classification task. By combining natural language processing (NLP) and graph neural network techniques, TG468 effectively handles sparse and high-dimensional exome sequencing data. As a result, TG468 can distinguish survival time for patients who received ICI therapy and outperforms single gene biomarkers, TMB and some classical machine learning models. Additionally, TG468's prediction results facilitate the identification of immune status differences among specific patient types in the Cancer Genome Atlas dataset, providing a rationale for the model's predictions. Our approach represents a pioneering use of a GCN model to analyze exome data in patients undergoing ICI therapy and offers inspiration for future research using NLP technology to analyze exome sequencing data.


Subject(s)
Immune Checkpoint Inhibitors , Immunotherapy , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Exome , Machine Learning , Biomarkers , Biomarkers, Tumor/genetics , Mutation
7.
Med Res Rev ; 44(3): 1147-1182, 2024 May.
Article in English | MEDLINE | ID: mdl-38173298

ABSTRACT

In the field of molecular simulation for drug design, traditional molecular mechanic force fields and quantum chemical theories have been instrumental but limited in terms of scalability and computational efficiency. To overcome these limitations, machine learning force fields (MLFFs) have emerged as a powerful tool capable of balancing accuracy with efficiency. MLFFs rely on the relationship between molecular structures and potential energy, bypassing the need for a preconceived notion of interaction representations. Their accuracy depends on the machine learning models used, and the quality and volume of training data sets. With recent advances in equivariant neural networks and high-quality datasets, MLFFs have significantly improved their performance. This review explores MLFFs, emphasizing their potential in drug design. It elucidates MLFF principles, provides development and validation guidelines, and highlights successful MLFF implementations. It also addresses potential challenges in developing and applying MLFFs. The review concludes by illuminating the path ahead for MLFFs, outlining the challenges to be overcome and the opportunities to be harnessed. This inspires researchers to embrace MLFFs in their investigations as a new tool to perform molecular simulations in drug design.


Subject(s)
Drug Design , Machine Learning , Humans , Computer Simulation , Molecular Structure
8.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38113075

ABSTRACT

Kinase inhibitors are crucial in cancer treatment, but drug resistance and side effects hinder the development of effective drugs. To address these challenges, it is essential to analyze the polypharmacology of kinase inhibitor and identify compound with high selectivity profile. This study presents KinomeMETA, a framework for profiling the activity of small molecule kinase inhibitors across a panel of 661 kinases. By training a meta-learner based on a graph neural network and fine-tuning it to create kinase-specific learners, KinomeMETA outperforms benchmark multi-task models and other kinase profiling models. It provides higher accuracy for understudied kinases with limited known data and broader coverage of kinase types, including important mutant kinases. Case studies on the discovery of new scaffold inhibitors for membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase and selective inhibitors for fibroblast growth factor receptors demonstrate the role of KinomeMETA in virtual screening and kinome-wide activity profiling. Overall, KinomeMETA has the potential to accelerate kinase drug discovery by more effectively exploring the kinase polypharmacology landscape.


Subject(s)
Antineoplastic Agents , Polypharmacology , Protein Serine-Threonine Kinases , Drug Discovery
9.
J Cheminform ; 15(1): 76, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37670374

ABSTRACT

Lipophilicity is a fundamental physical property that significantly affects various aspects of drug behavior, including solubility, permeability, metabolism, distribution, protein binding, and toxicity. Accurate prediction of lipophilicity, measured by the logD7.4 value (the distribution coefficient between n-octanol and buffer at physiological pH 7.4), is crucial for successful drug discovery and design. However, the limited availability of data for logD modeling poses a significant challenge to achieving satisfactory generalization capability. To address this challenge, we have developed a novel logD7.4 prediction model called RTlogD, which leverages knowledge from multiple sources. RTlogD combines pre-training on a chromatographic retention time (RT) dataset since the RT is influenced by lipophilicity. Additionally, microscopic pKa values are incorporated as atomic features, providing valuable insights into ionizable sites and ionization capacity. Furthermore, logP is integrated as an auxiliary task within a multitask learning framework. We conducted ablation studies and presented a detailed analysis, showcasing the effectiveness and interpretability of RT, pKa, and logP in the RTlogD model. Notably, our RTlogD model demonstrated superior performance compared to commonly used algorithms and prediction tools. These results underscore the potential of the RTlogD model to improve the accuracy and generalization of logD prediction in drug discovery and design. In summary, the RTlogD model addresses the challenge of limited data availability in logD modeling by leveraging knowledge from RT, microscopic pKa, and logP. Incorporating these factors enhances the predictive capabilities of our model, and it holds promise for real-world applications in drug discovery and design scenarios.

10.
Front Cell Dev Biol ; 11: 1240390, 2023.
Article in English | MEDLINE | ID: mdl-37745297

ABSTRACT

Background: Cuproptosis, as a recently discovered type of programmed cell death, occupies a very important role in hepatocellular carcinoma (HCC) and provides new methods for immunotherapy; however, the functions of cuproptosis in HCC are still unclear. Methods: We first analyzed the transcriptome data and clinical information of 526 HCC patients using multiple algorithms in R language and extensively described the copy number variation, prognostic and immune infiltration characteristics of cuproptosis related genes (CRGs). Then, the hub CRG related genes associated with prognosis through LASSO and Cox regression analyses and constructed a prognostic prediction model including multiple molecular markers and clinicopathological parameters through training cohorts, then this model was verified by test cohorts. On the basis of the model, the clinicopathological indicators, immune infiltration and tumor microenvironment characteristics of HCC patients were further explored via bioinformation analysis. Then, We further explored the key gene biological function by single-cell analysis, cell viability and transwell experiments. Meantime, we also explored the molecular docking of the hub genes. Results: We have screened 5 hub genes associated with HCC prognosis and constructed a prognosis prediction scoring model. And the model results showed that patients in the high-risk group had poor prognosis and the expression levels of multiple immune markers, including PD-L1, CD276 and CTLA4, were higher than those patients in the low-risk group. We found a significant correlation between risk score and M0 macrophages and memory CD4+ T cells. And the single-cell analysis and molecular experiments showed that BEX1 were higher expressed in HCC tissues and deletion inhibited the proliferation, invasion and migration and EMT pathway of HCC cells. Finally, it was observed that BEX1 could bind to sorafenib to form a stable conformation. Conclusion: The study not only revealed the multiomics characteristics of CRGs in HCC but also constructed a new high-accuracy prognostic prediction model. Meanwhile, BEX1 were also identified as hub genes that can mediate the cuproptosis of hepatocytes as potential therapeutic targets for HCC.

11.
J Appl Clin Med Phys ; 24(11): e14097, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37438966

ABSTRACT

PURPOSE: This study aimed to assess the effects of bladder filling during cervical cancer radiotherapy on target volume and organs at risk (OARs) dose based on daily computed tomography (daily-CT) images and provide bladder-volume-based dose prediction models. METHODS: Nineteen patients (475 daily-CTs) comprised the study group, and five patients comprised the validation set (25 daily-CTs). Target volumes and OARs were delineated on daily-CT images and the treatment plan was recalculated accordingly. The deviation from the planning bladder volume (DVB), the correlation between DVB and clinical (CTV)/planning (PTV) target volume in terms of prescribed dose coverage, and the relationship of small bowel volume and bladder dose with the ratio of bladder volume (RVB) were analyzed. RESULTS: In all cases, the prescribed dose coverage in the CTV was >95% when DVB was <200 cm3 , whereas that in the PTV was >95% when RVB was <160%. The ratio of bladder V45 Gy to the planning bladder V45 Gy (RBV45 ) exhibited a negative linear relationship with RVB (RBV45  = -0.18*RVB + 120.8; R2  = 0.80). Moreover, the ratio of small bowel volume to planning small bowel volume (RVS) exhibited a negative linear relationship with RVB (RVS = -1.06*RVB +217.59; R2  = 0.41). The validation set results showed that the linear model predicted well the effects of bladder volume changes on target volume coverage and bladder dose. CONCLUSIONS: This study assessed dosimetry and volume effects of bladder filling on target and OARs based on daily-CT images. We established a quantitative relationship between these parameters, providing dose prediction models for cervical cancer radiotherapy.


Subject(s)
Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Urinary Bladder/diagnostic imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Tomography, X-Ray Computed , Radiotherapy, Intensity-Modulated/methods , Organs at Risk
12.
J Cheminform ; 15(1): 57, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37287071

ABSTRACT

Three-dimensional (3D) conformations of a small molecule profoundly affect its binding to the target of interest, the resulting biological effects, and its disposition in living organisms, but it is challenging to accurately characterize the conformational ensemble experimentally. Here, we proposed an autoregressive torsion angle prediction model Tora3D for molecular 3D conformer generation. Rather than directly predicting the conformations in an end-to-end way, Tora3D predicts a set of torsion angles of rotatable bonds by an interpretable autoregressive method and reconstructs the 3D conformations from them, which keeps structural validity during reconstruction. Another advancement of our method over other conformational generation methods is the ability to use energy to guide the conformation generation. In addition, we propose a new message-passing mechanism that applies the Transformer to the graph to solve the difficulty of remote message passing. Tora3D shows superior performance to prior computational models in the trade-off between accuracy and efficiency, and ensures conformational validity, accuracy, and diversity in an interpretable way. Overall, Tora3D can be used for the quick generation of diverse molecular conformations and 3D-based molecular representation, contributing to a wide range of downstream drug design tasks.

13.
J Cheminform ; 15(1): 42, 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37031191

ABSTRACT

Artificial intelligence (AI)-based molecular design methods, especially deep generative models for generating novel molecule structures, have gratified our imagination to explore unknown chemical space without relying on brute-force exploration. However, whether designed by AI or human experts, the molecules need to be accessibly synthesized and biologically evaluated, and the trial-and-error process remains a resources-intensive endeavor. Therefore, AI-based drug design methods face a major challenge of how to prioritize the molecular structures with potential for subsequent drug development. This study indicates that common filtering approaches based on traditional screening metrics fail to differentiate AI-designed molecules. To address this issue, we propose a novel molecular filtering method, MolFilterGAN, based on a progressively augmented generative adversarial network. Comparative analysis shows that MolFilterGAN outperforms conventional screening approaches based on drug-likeness or synthetic ability metrics. Retrospective analysis of AI-designed discoidin domain receptor 1 (DDR1) inhibitors shows that MolFilterGAN significantly increases the efficiency of molecular triaging. Further evaluation of MolFilterGAN on eight external ligand sets suggests that MolFilterGAN is useful in triaging or enriching bioactive compounds across a wide range of target types. These results highlighted the importance of MolFilterGAN in evaluating molecules integrally and further accelerating molecular discovery especially combined with advanced AI generative models.

14.
J Med Chem ; 66(5): 3226-3249, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36802596

ABSTRACT

Small-molecule fibroblast growth factor receptor (FGFR) inhibitors have emerged as a promising antitumor therapy. Herein, by further optimizing the lead compound 1 under the guidance of molecular docking, we obtained a series of novel covalent FGFR inhibitors. After careful structure-activity relationship analysis, several compounds were identified to exhibit strong FGFR inhibitory activity and relatively better physicochemical and pharmacokinetic properties compared with those of 1. Among them, 2e potently and selectively inhibited the kinase activity of FGFR1-3 wildtype and high-incidence FGFR2-N549H/K-resistant mutant kinase. Furthermore, it suppressed cellular FGFR signaling, exhibiting considerable antiproliferative activity in FGFR-aberrant cancer cell lines. In addition, the oral administration of 2e in the FGFR1-amplified H1581, FGFR2-amplified NCI-H716, and SNU-16 tumor xenograft models demonstrated potent antitumor efficacy, inducing tumor stasis or even tumor regression.


Subject(s)
Antineoplastic Agents , Receptor, Fibroblast Growth Factor, Type 2 , Humans , Molecular Docking Simulation , Cell Line, Tumor , Receptors, Fibroblast Growth Factor , Receptor, Fibroblast Growth Factor, Type 1 , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
15.
Neural Regen Res ; 18(5): 1062-1066, 2023 May.
Article in English | MEDLINE | ID: mdl-36254994

ABSTRACT

Multi-target neural circuit-magnetic stimulation has been clinically shown to improve rehabilitation of lower limb motor function after spinal cord injury. However, the precise underlying mechanism remains unclear. In this study, we performed double-target neural circuit-magnetic stimulation on the left motor cortex and bilateral L5 nerve root for 3 successive weeks in a rat model of incomplete spinal cord injury caused by compression at T10. Results showed that in the injured spinal cord, the expression of the astrocyte marker glial fibrillary acidic protein and inflammatory factors interleukin 1ß, interleukin-6, and tumor necrosis factor-α had decreased, whereas that of neuronal survival marker microtubule-associated protein 2 and synaptic plasticity markers postsynaptic densification protein 95 and synaptophysin protein had increased. Additionally, neural signaling of the descending corticospinal tract was markedly improved and rat locomotor function recovered significantly. These findings suggest that double-target neural circuit-magnetic stimulation improves rat motor function by attenuating astrocyte activation, thus providing a theoretical basis for application of double-target neural circuit-magnetic stimulation in the clinical treatment of spinal cord injury.

16.
Med Rev (2021) ; 3(6): 465-486, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38282802

ABSTRACT

Compound-protein interactions (CPIs) are critical in drug discovery for identifying therapeutic targets, drug side effects, and repurposing existing drugs. Machine learning (ML) algorithms have emerged as powerful tools for CPI prediction, offering notable advantages in cost-effectiveness and efficiency. This review provides an overview of recent advances in both structure-based and non-structure-based CPI prediction ML models, highlighting their performance and achievements. It also offers insights into CPI prediction-related datasets and evaluation benchmarks. Lastly, the article presents a comprehensive assessment of the current landscape of CPI prediction, elucidating the challenges faced and outlining emerging trends to advance the field.

17.
Nat Comput Sci ; 3(10): 860-872, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38177766

ABSTRACT

Structure-based lead optimization is an open challenge in drug discovery, which is still largely driven by hypotheses and depends on the experience of medicinal chemists. Here we propose a pairwise binding comparison network (PBCNet) based on a physics-informed graph attention mechanism, specifically tailored for ranking the relative binding affinity among congeneric ligands. Benchmarking on two held-out sets (provided by Schrödinger and Merck) containing over 460 ligands and 16 targets, PBCNet demonstrated substantial advantages in terms of both prediction accuracy and computational efficiency. Equipped with a fine-tuning operation, the performance of PBCNet reaches that of Schrödinger's FEP+, which is much more computationally intensive and requires substantial expert intervention. A further simulation-based experiment showed that active learning-optimized PBCNet may accelerate lead optimization campaigns by 473%. Finally, for the convenience of users, a web service for PBCNet is established to facilitate complex relative binding affinity prediction through an easy-to-operate graphical interface.


Subject(s)
Drug Discovery , Molecular Dynamics Simulation , Protein Binding , Molecular Docking Simulation , Ligands
18.
Food Chem Toxicol ; 169: 113420, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36108981

ABSTRACT

Serious eye damage and eye irritation have been authenticated to be significant human health issues in various fields such as ophthalmic pharmaceuticals. Due to the shortcomings of traditional animal testing methods, in silico methods have advanced to study eye toxicity. The models for predicting serious eye damage and eye irritation potential of compounds were developed using 2299 and 5214 compounds, respectively. The 40 global single models and 40 local models were developed by combining 5 molecular description methods and 4 machine learning methods. The 40 active learning models were developed by adopting uncertainty-based active learning strategies and taking local models as initial models. The 110 global consensus models based on 40 global single models were developed using a consensus strategy. Active learning models and global consensus models performed high prediction accuracy. The test accuracy of the best serious eye damage model and eye irritation model reached 0.972 and 0.959, respectively. The applicability domains for all models were calculated to verify the rationality of prediction effect. In addition, 8 structural alerts probably causing serious eye damage or eye irritation were sought out. The prediction models and structural alerts contributed to providing hazard identification and assessing chemical safety.


Subject(s)
Animal Testing Alternatives , Eye Diseases , Eye , Irritants , Ophthalmic Solutions , Animals , Humans , Computer Simulation , Eye/drug effects , Eye Diseases/chemically induced , Irritants/toxicity , Machine Learning , Ophthalmic Solutions/toxicity , Toxicity Tests/methods , Uncertainty
20.
Nat Commun ; 13(1): 4318, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35882867

ABSTRACT

PROteolysis TArgeting Chimeras (PROTACs) has been exploited to degrade putative protein targets. However, the antitumor performance of PROTACs is impaired by their insufficient tumour distribution. Herein, we present de novo designed polymeric PROTAC (POLY-PROTAC) nanotherapeutics for tumour-specific protein degradation. The POLY-PROTACs are engineered by covalently grafting small molecular PROTACs onto the backbone of an amphiphilic diblock copolymer via the disulfide bonds. The POLY-PROTACs self-assemble into micellar nanoparticles and sequentially respond to extracellular matrix metalloproteinase-2, intracellular acidic and reductive tumour microenvironment. The POLY-PROTAC NPs are further functionalized with azide groups for bioorthogonal click reaction-amplified PROTAC delivery to the tumour tissue. For proof-of-concept, we demonstrate that tumour-specific BRD4 degradation with the bioorthogonal POLY-PROTAC nanoplatform combine with photodynamic therapy efficiently regress tumour xenografts in a mouse model of MDA-MB-231 breast cancer. This study suggests the potential of the POLY-PROTACs for precise protein degradation and PROTAC-based cancer therapy.


Subject(s)
Nanoparticles , Neoplasms , Animals , Humans , Mice , Cell Cycle Proteins/metabolism , Matrix Metalloproteinase 2/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Nuclear Proteins/metabolism , Proteolysis , Transcription Factors/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...