Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.441
Filter
1.
Nano Lett ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109989

ABSTRACT

Organic solvent nanofiltration (OSN) membranes with high separation performance and excellent stability in aggressive organic solvents are urgently desired for chemical separation. Herein, we utilized a polyfunctional arylamine tetra-(4-aminophenyl) ethylene (TAPE) to prepare a highly cross-linked polyamide membrane with a low molecular weight cut-off (MWCO) of 312 Da. Owing to its propeller-like conformation, TAPE formed micropores within the polyamide membrane and provided fast solvent transport channels. Importantly, the rigid conjugated skeleton and high connectivity between micropores effectively prevented the expansion of the polyamide matrix in aggressive organic solvents. The membrane maintained high separation performance even immersed in N,N-dimethylformamide for 90 days. Based on the aggregation-induced emission (AIE) effect of TAPE, the formation of polyamide membrane can be visually monitored by fluorescence imaging technology, which achieved visual guidance for membrane fabrication. This work provides a vital foundation for utilizing polyfunctional monomers in the interfacial polymerization reaction to prepare high-performance OSN membranes.

2.
Neurosurg Rev ; 47(1): 417, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39123083

ABSTRACT

Glioma, especially glioblastoma patients, present highly heterogeneous and immunosuppressive microenvironment, leading to their poor response to treatment and survival. Targeting the tumor microenvironment is considered a promising therapeutic strategy. M2 macrophages are highly infiltrated in glioma tissue, even up to 50% of the total number of bulk tissue cells. Here, we identified GPR65 as the hub gene of the M2 macrophage-related module in glioma through WGCNA analysis. The expression and prognosis analysis suggested that GPR65 was positively correlated with the malignancy and poor prognosis of glioma, and the heterogeneity analysis found that GPR65 was highly expressed in the vascular proliferation area of glioma, which matched the spatial expression characteristics of M2 macrophages. We further verified that GPR65 was highly expressed in macrophages but not tumor cells in the glioma microenvironment by single-cell data analysis and immunofluorescence. Most importantly, we found that inhibition of GPR65 was sufficient to reduce macrophages' polarization response to glioma cell and break the malignant cooperation with glioma cells. Our study reports the expression characteristics and malignant behavior of GPR65 in the glioma microenvironment, which provides a new alternative target of treatment to glioma microenvironment.


Subject(s)
Brain Neoplasms , Glioma , Macrophages , Receptors, G-Protein-Coupled , Tumor Microenvironment , Tumor Microenvironment/physiology , Humans , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Glioma/pathology , Glioma/genetics , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cell Line, Tumor
3.
J Biomed Semantics ; 15(1): 14, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39123237

ABSTRACT

BACKGROUND: Vaccines have revolutionized public health by providing protection against infectious diseases. They stimulate the immune system and generate memory cells to defend against targeted diseases. Clinical trials evaluate vaccine performance, including dosage, administration routes, and potential side effects. CLINICALTRIALS: gov is a valuable repository of clinical trial information, but the vaccine data in them lacks standardization, leading to challenges in automatic concept mapping, vaccine-related knowledge development, evidence-based decision-making, and vaccine surveillance. RESULTS: In this study, we developed a cascaded framework that capitalized on multiple domain knowledge sources, including clinical trials, the Unified Medical Language System (UMLS), and the Vaccine Ontology (VO), to enhance the performance of domain-specific language models for automated mapping of VO from clinical trials. The Vaccine Ontology (VO) is a community-based ontology that was developed to promote vaccine data standardization, integration, and computer-assisted reasoning. Our methodology involved extracting and annotating data from various sources. We then performed pre-training on the PubMedBERT model, leading to the development of CTPubMedBERT. Subsequently, we enhanced CTPubMedBERT by incorporating SAPBERT, which was pretrained using the UMLS, resulting in CTPubMedBERT + SAPBERT. Further refinement was accomplished through fine-tuning using the Vaccine Ontology corpus and vaccine data from clinical trials, yielding the CTPubMedBERT + SAPBERT + VO model. Finally, we utilized a collection of pre-trained models, along with the weighted rule-based ensemble approach, to normalize the vaccine corpus and improve the accuracy of the process. The ranking process in concept normalization involves prioritizing and ordering potential concepts to identify the most suitable match for a given context. We conducted a ranking of the Top 10 concepts, and our experimental results demonstrate that our proposed cascaded framework consistently outperformed existing effective baselines on vaccine mapping, achieving 71.8% on top 1 candidate's accuracy and 90.0% on top 10 candidate's accuracy. CONCLUSION: This study provides a detailed insight into a cascaded framework of fine-tuned domain-specific language models improving mapping of VO from clinical trials. By effectively leveraging domain-specific information and applying weighted rule-based ensembles of different pre-trained BERT models, our framework can significantly enhance the mapping of VO from clinical trials.


Subject(s)
Biological Ontologies , Clinical Trials as Topic , Vaccines , Vaccines/immunology , Humans , Natural Language Processing , Unified Medical Language System
4.
Cell Metab ; 36(8): 1696-1710.e10, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39111285

ABSTRACT

Patients with high ALDH1A3-expressing glioblastoma (ALDH1A3hi GBM) show limited benefit from postoperative chemoradiotherapy. Understanding the mechanisms underlying such resistance in these patients is crucial for the development of new treatments. Here, we show that the interaction between ALDH1A3 and PKM2 enhances the latter's tetramerization and promotes lactate accumulation in glioblastoma stem cells (GSCs). By scanning the lactylated proteome in lactate-accumulating GSCs, we show that XRCC1 undergoes lactylation at lysine 247 (K247). Lactylated XRCC1 shows a stronger affinity for importin α, allowing for greater nuclear transposition of XRCC1 and enhanced DNA repair. Through high-throughput screening of a small-molecule library, we show that D34-919 potently disrupts the ALDH1A3-PKM2 interaction, preventing the ALDH1A3-mediated enhancement of PKM2 tetramerization. In vitro and in vivo treatment with D34-919 enhanced chemoradiotherapy-induced apoptosis of GBM cells. Together, our findings show that ALDH1A3-mediated PKM2 tetramerization is a potential therapeutic target to improve the response to chemoradiotherapy in ALDH1A3hi GBM.


Subject(s)
Glioblastoma , Thyroid Hormone-Binding Proteins , X-ray Repair Cross Complementing Protein 1 , Glioblastoma/metabolism , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Animals , Cell Line, Tumor , Mice , X-ray Repair Cross Complementing Protein 1/metabolism , X-ray Repair Cross Complementing Protein 1/genetics , Drug Resistance, Neoplasm/drug effects , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Membrane Proteins/metabolism , Carrier Proteins/metabolism , Thyroid Hormones/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Aldehyde Oxidoreductases , Oxidoreductases Acting on CH-NH Group Donors
5.
Nat Commun ; 15(1): 6509, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095354

ABSTRACT

Microtubule organization in cells relies on targeting mechanisms. Cytoplasmic linker proteins (CLIPs) and CLIP-associated proteins (CLASPs) are key regulators of microtubule organization, yet the underlying mechanisms remain elusive. Here, we reveal that the C-terminal domain of CLASP2 interacts with a common motif found in several CLASP-binding proteins. This interaction drives the dynamic localization of CLASP2 to distinct cellular compartments, where CLASP2 accumulates in protein condensates at the cell cortex or the microtubule plus end. These condensates physically contact each other via CLASP2-mediated competitive binding, determining cortical microtubule targeting. The phosphorylation of CLASP2 modulates the dynamics of the condensate-condensate interaction and spatiotemporally navigates microtubule growth. Moreover, we identify additional CLASP-interacting proteins that are involved in condensate contacts in a CLASP2-dependent manner, uncovering a general mechanism governing microtubule targeting. Our findings not only unveil a tunable multiphase system regulating microtubule organization, but also offer general mechanistic insights into intricate protein-protein interactions at the mesoscale level.


Subject(s)
Microtubule-Associated Proteins , Microtubules , Protein Binding , Microtubules/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Humans , Phosphorylation , Binding, Competitive , HeLa Cells , Biomolecular Condensates/metabolism , HEK293 Cells , Animals
6.
J Ultrasound ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102104

ABSTRACT

Intracerebral hemorrhage (ICH) is a common neurosurgical emergency that is associated with high morbidity and mortality. Minimally invasive or endoscopic hematoma evacuation has emerged in recent years as a viable alternative to conventional large craniotomies. However, accurate trajectory planning and placement of the tubular retractor remains a challenge. We describe a novel technique for handheld portable ultrasound-guided minimally invasive endoscopic evacuation of supratentorial hematomas. A 64-year-old male diagnosed right hematoma (48.5 mL) at the basal ganglia was treated with emergent ultrasound-guided endoscopic transtubular evacuation through a small craniotomy. Ultrasound-guidance facilitated optimal placement of the tubular retractor into the long axis of the hematoma, and allowed for near-total evacuation, reducing iatrogenic tissue damage by mitigating the need for wanding or repositioning of the retractor. The emergence of a new generation of small portable phased array ultrasound probes with improved resolution and clarity has broadened ultrasound's clinical applications.

7.
Small ; : e2404432, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973075

ABSTRACT

Long-term epidermal recording of bioelectricity is of paramount importance for personal health monitoring. It requires stretchable and dry film electrodes that can be seamlessly integrated with skin. The simultaneous achievement of high conductivity and skin-like ductility of conducting materials is a prerequisite for reliable signal transduction at the dynamic interface, which is also the bottleneck of epidermal electrophysiology. Here, carbon nanotubes (CNTs) are introduced as "conjugation linkers" into a topologically plasticized conducting polymer (PEDOT:PSS). A thin-film electrode with high conductivity (≈3250 S cm-1) and high stretchability (crack-onset strain>100%) is obtained. In particular, the conjugation linker enables the high volumetric capacitance and the low film resistance, both of which synergically reduce the interfacial impedance. The capabilities of this electrode is further demonstrated in the precise recording of various electrophysiological signals.

8.
Chem Biodivers ; : e202401165, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973453

ABSTRACT

Bisindole compounds constitute a significant class of natural compounds distinguished by their characteristic bisindole structure and renowned for their anticancer properties. Over the past four decades, researchers have isolated 229 animal-derived bisindole compounds (ADBCs) from various animals. These compounds demonstrate a wide range of pharmacological properties, including cytotoxicity, antibacterial, antifungal, antiviral, and other activities. Notably, among these activities, cytotoxicity emerges as the most prominent characteristic of ADBCs. This review also summarizes the structureactivity relationship (SAR) studies associated with the cytotoxicity of these compounds and explores the druggability of these compounds. In summary, our objective is to provide an overview of the research progress concerning ADBCs, with the aim of fostering their continued development and utilization.

9.
Diabetologia ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985161

ABSTRACT

AIMS/HYPOTHESIS: The aim of this study was to assess the efficacy and safety of oral semaglutide vs sitagliptin in a predominantly Chinese population with type 2 diabetes inadequately controlled with metformin treatment. METHODS: The Peptide Innovation for Early Diabetes Treatment (PIONEER) 12 trial was a randomised, double-dummy, active-controlled, parallel-group, Phase IIIa trial conducted over 26 weeks at 90 sites across the China region (including mainland China, Taiwan and Hong Kong) and five other countries. Adults aged ≥18 years (≥20 years in Taiwan) with a diagnosis of type 2 diabetes, HbA1c between 53 and 91 mmol/mol (inclusive) and treated with a stable daily dose of metformin were eligible for inclusion. Participants were randomised (1:1:1:1) using a web-based randomisation system to either once-daily oral semaglutide (3 mg, 7 mg or 14 mg) or once-daily oral sitagliptin 100 mg. Treatment allocation was masked to both participants and investigators. Randomisation was stratified according to whether participants were from the China region or elsewhere. The primary endpoint was change in HbA1c from baseline to week 26. The confirmatory secondary endpoint was change in body weight (kg) from baseline to week 26. All randomised participants were included in the full analysis set (FAS). All participants exposed to at least one dose of trial product were included in the safety analysis (SAS). RESULTS: Of 1839 participants screened, 1441 were randomly assigned to oral semaglutide 3 mg (n=361), 7 mg (n=360), 14 mg (n=361) or sitagliptin 100 mg (n=359) and included in the FAS. A total of 1438 participants were included in the SAS. In total, 75.2% of participants were from the China region. A total of 1372 (95.2%) participants completed the trial and 130 participants prematurely discontinued treatment (8.3%, 8.6% and 15.0% for oral semaglutide 3 mg, 7 mg and 14 mg, respectively; 4.2% for sitagliptin 100 mg). Significantly greater reductions in HbA1c from baseline to week 26 were reported for all doses of oral semaglutide vs sitagliptin 100 mg. For oral semaglutide 3 mg, 7 mg and 14 mg vs sitagliptin 100 mg, the estimated treatment differences (ETDs [95% CI]) were -2 (-4, -1) mmol/mol, -8 (-9, -6) mmol/mol and -11 (-12, -9) mmol/mol, respectively. The corresponding ETDs (95% CI) in percentage points vs sitagliptin 100 mg were -0.2 (-0.3, -0.1), -0.7 (-0.8, -0.6) and -1.0 (-1.1, -0.8), respectively. Reductions in body weight were significantly greater for all doses of oral semaglutide vs sitagliptin 100 mg (ETD [95% CI] -0.9 [-1.4, -0.4] kg, -2.3 [-2.8, -1.8] kg and -3.3 [-3.8, -2.8] kg for 3 mg, 7 mg and 14 mg, respectively). In the subpopulation of participants from the China region (75.2% of trial participants), reductions in HbA1c and body weight from baseline to week 26 were similar to those seen in the overall population. The most frequent adverse events in the semaglutide treatment arms were gastrointestinal, although these were mostly transient and mild/moderate in severity. CONCLUSIONS/INTERPRETATION: Significantly greater reductions in both HbA1c and body weight over 26 weeks were seen with oral semaglutide 3 mg, 7 mg and 14 mg than with sitagliptin 100 mg in a predominantly Chinese population with type 2 diabetes inadequately controlled with metformin treatment. Oral semaglutide was generally well tolerated, with a safety profile consistent with that seen in the global PIONEER trials. TRIAL REGISTRATION: ClinicalTrials.gov NCT04017832. FUNDING: This trial was funded by Novo Nordisk A/S, Søborg, Denmark.

10.
JMIR Public Health Surveill ; 10: e51007, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008362

ABSTRACT

BACKGROUND: The COVID-19 pandemic, caused by SARS-CoV-2, has had a profound impact worldwide, leading to widespread morbidity and mortality. Vaccination against COVID-19 is a critical tool in controlling the spread of the virus and reducing the severity of the disease. However, the rapid development and deployment of COVID-19 vaccines have raised concerns about potential adverse events following immunization (AEFIs). Understanding the temporal and spatial patterns of these AEFIs is crucial for an effective public health response and vaccine safety monitoring. OBJECTIVE: This study aimed to analyze the temporal and spatial characteristics of AEFIs associated with COVID-19 vaccines in the United States reported to the Vaccine Adverse Event Reporting System (VAERS), thereby providing insights into the patterns and distributions of the AEFIs, the safety profile of COVID-19 vaccines, and potential risk factors associated with the AEFIs. METHODS: We conducted a retrospective analysis of administration data from the Centers for Disease Control and Prevention (n=663,822,575) and reports from the surveillance system VAERS (n=900,522) between 2020 and 2022. To gain a broader understanding of postvaccination AEFIs reported, we categorized them into system organ classes (SOCs) according to the Medical Dictionary for Regulatory Activities. Additionally, we performed temporal analysis to examine the trends of AEFIs in all VAERS reports, those related to Pfizer-BioNTech and Moderna, and the top 10 AEFI trends in serious reports. We also compared the similarity of symptoms across various regions within the United States. RESULTS: Our findings revealed that the most frequently reported symptoms following COVID-19 vaccination were headache (n=141,186, 15.68%), pyrexia (n=122,120, 13.56%), and fatigue (n=121,910, 13.54%). The most common symptom combination was chills and pyrexia (n=56,954, 6.32%). Initially, general disorders and administration site conditions (SOC 22) were the most prevalent class reported. Moderna exhibited a higher reporting rate of AEFIs compared to Pfizer-BioNTech. Over time, we observed a decreasing reporting rate of AEFIs associated with COVID-19 vaccines. In addition, the overall rates of AEFIs between the Pfizer-BioNTech and Moderna vaccines were comparable. In terms of spatial analysis, the middle and north regions of the United States displayed a higher reporting rate of AEFIs associated with COVID-19 vaccines, while the southeast and south-central regions showed notable similarity in symptoms reported. CONCLUSIONS: This study provides valuable insights into the temporal and spatial patterns of AEFIs associated with COVID-19 vaccines in the United States. The findings underscore the critical need for increasing vaccination coverage, as well as ongoing surveillance and monitoring of AEFIs. Implementing targeted monitoring programs can facilitate the effective and efficient management of AEFIs, enhancing public confidence in future COVID-19 vaccine campaigns.


Subject(s)
COVID-19 Vaccines , Humans , United States/epidemiology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Retrospective Studies , Male , Female , Middle Aged , Adult , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Drug-Related Side Effects and Adverse Reactions/epidemiology , Aged , COVID-19/prevention & control , COVID-19/epidemiology , Spatial Analysis , Spatio-Temporal Analysis , Young Adult , Adolescent
11.
Sci Rep ; 14(1): 16428, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39013961

ABSTRACT

Studies investigating the relationship between dietary vitamin B1 intake and risk of Hyperuricemia (HU) are scarce, the present study aimed to examine the association of dietary vitamin B1 intake and HU among adults. This cross-sectional study included 5750 adults whose data derived from National Health and Nutrition Examination Survey (NHANES) from March 2017 to March 2020. The dietary intake of vitamin B1 was assessed using 24-h dietary recall interviews. The characteristics of study participants were grouped into five levels according to the levels of vitamin B1 quintile. Multivariate logistic regression analysis was used to estimate the odds ratio (OR) and 95% confidence interval (CI) of HU, according to the vitamin B1 intake quintile for male and female separately. The dose-response relationship was determined by the restricted cubic spline (RCS). Smoothed curve fitting was used to assess serum uric acid concentration versus dietary vitamin B1 intake in the study population. The prevalence of hyperuricemia was 18.90% (20.15% and 17.79% for males and females, respectively) in the United States from March 2017 to March 2020. Multiple logistic regression analyses showed that in the male population, the HU ratio (OR) of vitamin B1 intake in Q2 to Q5 compared with the lowest quintile (Q1) was 0.75 (95% CI 0.52, 1.09), 0.70 (95% CI 0.48, 1.02), 0.66 (95% CI 0.44, 0.99) and 0.55 (95% CI 0.34, 0.90). The P for trend was 0.028. In women, the ORs for vitamin B1 intake Q2 to Q5 were 0.87 (95% CI 0.64, 1.19), 0.97 (0.68-1.38), 1.05 (0.69-1.60) and 0.75 (0.42-1.34), respectively. The P for trend was 0.876. The RCS curve revealed a linear relationship between vitamin B1 intake and the risk of hyperuricemia in men (P nonlinear = 0.401). Smoothed curve fitting demonstrated a negative association between vitamin B1 intake and serum uric acid concentration in men, whereas there was no significant association between dietary vitamin B1 intake and the risk of hyperuricemia in women. In the US adult population, dietary vitamin B1 intake was negatively associated with hyperuricemia in males.


Subject(s)
Hyperuricemia , Nutrition Surveys , Thiamine , Uric Acid , Humans , Hyperuricemia/epidemiology , Hyperuricemia/blood , Hyperuricemia/etiology , Male , Female , Middle Aged , Adult , Cross-Sectional Studies , Uric Acid/blood , Thiamine/administration & dosage , Thiamine/blood , Prevalence , Diet , Odds Ratio , Risk Factors , Aged , United States/epidemiology
12.
Sci Adv ; 10(30): eado5716, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058769

ABSTRACT

The three-dimensional (3D) organization of chromatin within the nucleus is crucial for gene regulation. However, the 3D architectural features that coordinate the activation of an entire chromosome remain largely unknown. We introduce an omics method, RNA-associated chromatin DNA-DNA interactions, that integrates RNA polymerase II (RNAPII)-mediated regulome with stochastic optical reconstruction microscopy to investigate the landscape of noncoding RNA roX2-associated chromatin topology for gene equalization to achieve dosage compensation. Our findings reveal that roX2 anchors to the target gene transcription end sites (TESs) and spreads in a distinctive boot-shaped configuration, promoting a more open chromatin state for hyperactivation. Furthermore, roX2 arches TES to transcription start sites to enhance transcriptional loops, potentially facilitating RNAPII convoying and connecting proximal promoter-promoter transcriptional hubs for synergistic gene regulation. These TESs cluster as roX2 compartments, surrounded by inactive domains for coactivation of multiple genes within the roX2 territory. In addition, roX2 structures gradually form and scaffold for stepwise coactivation in dosage compensation.


Subject(s)
Chromatin , RNA Polymerase II , X Chromosome , Chromatin/metabolism , Chromatin/genetics , X Chromosome/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Animals , RNA, Untranslated/genetics , Gene Expression Regulation , Dosage Compensation, Genetic , Promoter Regions, Genetic , Transcription Initiation Site
13.
Sci Total Environ ; 946: 174360, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38960190

ABSTRACT

Increasing attention is being paid to the toxic physiological effects of nanoplastics (NPs) on aquatic organisms. However, few studies have systematically evaluated the regulatory mechanisms of NPs on immune response in crustaceans. In this study, a 28-day chronic exposure experiment was conducted in which shrimps were exposed to various 80-nm polystyrene NPs concentrations (0, 0.1, 1, 5 and 10 mg/L). Transcriptomic analysis was used to investigate the regulatory mechanisms of NPs in immune response of Litopenaeus vannamei. With increasing NPs concentration, the total hemocyte count (THC) content decreased, while phagocytosis rate (PR) and respiratory burst (RB) showed trends of first rising and then falling. High concentration (10 mg/L) of NPs caused the destruction of hepatopancreas tissue structure, the shedding of microvilli, the increase number of hepatocyte apoptosis and autophagy structure. With increasing NPs concentration, the lysozyme (Lys), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities first increased and then decrease, while contents of lipid peroxidation and malondialdehyde increased; the expression levels of Toll, MyD88, GPx, SOD, proPO, Lys, and ALF generally increased at first and then decreased. Transcriptional sequencing analysis showed that the pathway of differentially expressed genes in KEGG enrichment mainly included lysosome (ko04142), apoptosis (ko04210) pathways, indicating that the NPs mainly affected the immune regulatory mechanism. Further analysis by Gene Set Enrichment Analysis (GSEA) showed that the up-regulation pathways of NPs activation mainly included immune response-related pathways such as mitochondrial autophagy, DNA repair, autophagosomes signaling pathway. Our results indicated that NPs exposure induced oxidative stress, apoptosis and autophagy in shrimps. This study provides a basis for further understanding of the mechanisms of antioxidant immune regulation by NPs in shrimp and may serve as a reference for healthy ecological culture of shrimp.


Subject(s)
Apoptosis , Autophagy , Penaeidae , Water Pollutants, Chemical , Animals , Penaeidae/drug effects , Penaeidae/immunology , Penaeidae/physiology , Penaeidae/genetics , Autophagy/drug effects , Apoptosis/drug effects , Water Pollutants, Chemical/toxicity , Gene Expression Profiling , Transcriptome/drug effects , Microplastics/toxicity , Immunity, Innate/drug effects , Nanoparticles/toxicity
14.
Fish Shellfish Immunol ; 151: 109746, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964435

ABSTRACT

5-aminolevulinic acid (5-ALA) is an endogenous non-protein amino acid that is frequently used in modern agriculture. This study set out to determine how dietary 5-ALA affected the nonspecific immunity and growth performance of Litopenaeus vannamei. The shrimp were supplemented with dietary 5-ALA at 0, 15, 30, 45, and 60 mg/kg for three months. Transcriptome data of the control group and the group supplemented with 45 mg/kg dietary 5-ALA were obtained using transcriptome sequencing. 592 DEGs were identified, of which 426 were up-regulated and 166 were down-regulated. The pathways and genes associated with growth performance and nonspecific immunity were confirmed using qRT-PCR. The highest survival rate, body length growth rate, and weight gain values were observed in shrimp fed diets containing 45 mg/kg 5-ALA. L. vannamei in this group had a significantly higher total hemocyte count, phagocytosis rate and respiratory burst value than those in the control group. High doses of dietary 5-ALA (45 mg/kg, 60 mg/kg) significantly increased the activities of catalase, superoxide dismutase, oxidized glutathione, glutathione-peroxidase, phenoloxidase, lysozyme, acid phosphatase, and alkaline phosphatase. At the transcriptional level, dietary 5-ALA significantly up-regulated the expression levels of antioxidant immune-related genes. The optimal concentration of 5-ALA supplementation was 39.43 mg/kg, as indicated by a broken line regression. Our study suggested that dietary 5-ALA positively impacts the growth and nonspecific immunity of L. vannamei, providing a novel theoretical basis for further research into 5-ALA as a dietary supplement.


Subject(s)
Aminolevulinic Acid , Animal Feed , Diet , Dietary Supplements , Gene Expression Profiling , Immunity, Innate , Penaeidae , Animals , Penaeidae/immunology , Penaeidae/growth & development , Penaeidae/genetics , Aminolevulinic Acid/administration & dosage , Aminolevulinic Acid/pharmacology , Animal Feed/analysis , Dietary Supplements/analysis , Diet/veterinary , Immunity, Innate/drug effects , Immunity, Innate/genetics , Transcriptome , Random Allocation , Dose-Response Relationship, Drug
15.
Cell Death Dis ; 15(7): 473, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956064

ABSTRACT

Damage to renal tubular epithelial cells (RTECs) signaled the onset and progression of sepsis-associated acute kidney injury (SA-AKI). Recent research on mitochondria has revealed that mitophagy plays a crucial physiological role in alleviating injury to RTECs and it is suppressed progressively by the inflammation response in SA-AKI. However, the mechanism by which inflammation influences mitophagy remains poorly understood. We examined how macrophage migration inhibitory factor (MIF), a pro-inflammatory protein, influences the PINK1-Parkin pathway of mitophagy by studying protein-protein interactions when MIF was inhibited or overexpressed. Surprisingly, elevated levels of MIF were found to directly bind to PINK1, disrupting its interaction with Parkin. This interference hindered the recruitment of Parkin to mitochondria and impeded the initiation of mitophagy. Furthermore, this outcome led to significant apoptosis of RTECs, which could, however, be reversed by an MIF inhibitor ISO-1 and/or a new mitophagy activator T0467. These findings highlight the detrimental impact of MIF on renal damage through its disruption of the interaction between PINK1 and Parkin, and the therapeutic potential of ISO-1 and T0467 in mitigating SA-AKI. This study offers a fresh perspective on treating SA-AKI by targeting MIF and mitophagy.


Subject(s)
Acute Kidney Injury , Macrophage Migration-Inhibitory Factors , Mitophagy , Protein Kinases , Sepsis , Ubiquitin-Protein Ligases , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Kinases/metabolism , Sepsis/complications , Sepsis/metabolism , Animals , Humans , Mitochondria/metabolism , Kidney Tubules/metabolism , Kidney Tubules/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Apoptosis , Protein Binding , Male , Intramolecular Oxidoreductases/metabolism
16.
J Hazard Mater ; 477: 135235, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39053054

ABSTRACT

Sediment, as the destination of marine pollutants, often bears much more serious petroleum pollution than water. Biochar is increasingly utilized for remediating organic pollutant-laden sediments, yet its long-term impacts on oil-contaminated sediment remain poorly understood. In this study, simulation experiments adding 2.5 wt% biochars (corn straw and wood chips biochar at different pyrolysis temperatures) were conducted. The effects on petroleum hydrocarbon attenuation, enzyme activities, and microbial community structure were systematically investigated. Results showed enhanced degradation of long-chain alkanes in certain biochar-treated groups. Biochar species and PAH characteristics together lead to the PAHs' attenuation, with low-temperature corn straw biochar facilitating the degradation of phenanthrene, fluorene, and chrysene. Initially, biochars reduced polyphenol oxidase activity but increased urease and dehydrogenase activities. However, there was a noticeable rise in polyphenol oxidase activity for a long time. Biochars influenced bacterial community succession and abundance, likely due to nutrient release stimulating microbial activity. The structural equations model (SEM) reveals that DON affected the enzyme activity by changing the microbial community and thus regulated the degradation of PAHs. These findings shed light on biochar's role in bacterial communities and petroleum hydrocarbon degradation over extended periods, potentially enhancing biochar-based remediation for petroleum-contaminated sediments.

17.
J Pharm Biomed Anal ; 248: 116329, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38959759

ABSTRACT

A protocol for efficiently identifying ligands directly interacting with a target protein in complex extracts of medicinal herbs was proposed by combining an adapted 2D perfect-echo Carr-Purcell-Meiboom-Gill heteronuclear single quantum correlation (PE-CPMG HSQC) spectrum with metabolomic analysis. PE-CPMG HSQC can suppress the signal interference from the target protein, allowing more accurate peak quantification than conventional HSQC. Inspired from untargeted metabolomics, regions of interest (ROIs) are constructed and quantified for the mixture or complex extract samples with and without a target protein, and then a binding index (BI) of each ROI is determined. ROIs or corresponding peaks significantly perturbed by the presence of the target protein (BI ≥1.5) are detected as differential features, and potential binding ligands identified from the differential features can be equated with bioactive markers associated with the 'treatment' of the target protein. Quantifying ROI can inclusively report the ligand bindings to a target protein in fast, intermediate and slow exchange regimes on nuclear magnetic resonance (NMR) time scale. The approach was successfully implemented and identified Angoroside C, Cinnamic acid and Harpagoside from the extract of Scrophularia ningpoensis Hemsl. as ligands binding to peroxisome proliferator-activated receptor γ. The proposed 2D NMR-based approach saves excess steps for sample processing and has a higher chance of detecting the weaker ligands in the complex extracts of medicinal herbs. We expect that this approach can be applied as an alternative to mining the potential ligands binding to a variety of target proteins from traditional Chinese medicines and herbal extracts.


Subject(s)
Metabolomics , Plants, Medicinal , Ligands , Metabolomics/methods , Plants, Medicinal/chemistry , PPAR gamma/metabolism , Plant Extracts/chemistry , Plant Extracts/analysis , Protein Binding
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 724-730, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948280

ABSTRACT

Objective: Recurrent pregnancy loss (RPL) presents a formidable challenge for individuals undergoing in vitro fertilization-embryo transfer (IVF-ET), forming both a clinical dilemma and a focal point for scientific inquiry. This study endeavors to investigate the intricate interplay between clinical features, such as age, body mass index (BMI), and waist-to-hip ratio (WHR), and routine laboratory parameters, including sex hormones, blood composition, liver and thyroid functions, thyroid antibodies, and coagulation indicators, in RPL patients undergoing IVF-ET. By meticulously analyzing these variables, we aim to uncover the latent risk factors predisposing individuals to RPL. Identifying potential factors such as advanced maternal age, obesity, and insulin resistance will provide clinicians with vital insights and empirical evidence to strengthen preventive strategies aimed at reducing miscarriage recurrence. Methods: This retrospective case-controlled study included RPL patients who underwent IVF-ET treatment at Sun Yat-sen Memorial Hospital, Sun Yat-sen University, between January 2012 and March 2021 as the case cohort, compared with women receiving assisted reproductive treatment due to male infertility as the control cohort. The fasting peripheral blood was collected 5 days before the first menstrual cycle at least 12 weeks after the last abortion. The clinical characteristics and relevant laboratory indexes of the two groups were compared. Employing both univariate and multivariate logistic regression analyses, we sought to unearth potential high-risk factors underlying RPL. Additionally, a linear trend analysis was conducted to assess the linear relationship between total testosterone (TT) levels and the number of miscarriages. Results: In contrast to the control cohort, the RPL cohort exhibited significant increases in age, BMI, and WHR (P<0.05). Notably, TT levels were markedly lower in the RPL cohort (P=0.022), while no significant differences were observed between the two groups concerning basal follicle-stimulating hormone, luteinizing hormone, estradiol, progesterone, prolactin levels, and anti-Müllerian hormone levels (P>0.05). Moreover, fasting insulin (FINS) levels and HOMA-IR index were notably elevated in the RPL cohort relative to the control cohort (P<0.001), although no significant differences were observed in fasting blood glucose levels (P>0.05). Furthermore, the neutrophil (NEU) count and NEU-to-lymphocyte ratio were notably higher in the RPL cohort (P<0.01). Univariate logistic regression analysis identified several factors, including age≥35 years old, BMI≥25 kg/m2, WHR>0.8, FINS>10 mU/L, HOMA-IR>2.14, NEU count>6.3×109 L-1, and an elevated NEU/lymphocyte ratio (NLR), as significantly increasing the risk of RPL (P<0.05). Although TT levels were within the normal range for both cohorts, higher TT levels were associated with a diminished RPL risk (odds ratio [OR]=0.67, 95% confidence interval [CI]: 0.510-0.890, P=0.005). After adjustments for confounding factors, age≥35 years old (OR=1.91, 95% CI: 1.06-3.43), WHR>0.8 (OR=2.30, 95% CI: 1.26-4.19), and FINS>10 mU/L (OR=4.50, 95% CI: 1.30-15.56) emerged as potent risk factors for RPL (P<0.05). Conversely, higher TT levels were associated with a reduced RPL risk (OR=0.59, 95% CI: 0.38-0.93, P=0.023). Furthermore, the linear trend analysis unveiled a discernible linear association between TT levels and the number of miscarriages (P trend=0.003), indicating a declining trend in TT levels with escalating miscarriage occurrences. Conclusion: In patients undergoing IVF-ET, advanced maternal age, lower TT levels, increased WHR, and elevated FINS levels emerged as potent risk factors for RPL. These findings provide clinicians with valuable insights and facilitate the identification of patients who are at high risks and the formulation of preventive strategies to reduce the recurrence of miscarriages.


Subject(s)
Abortion, Habitual , Embryo Transfer , Fertilization in Vitro , Humans , Female , Fertilization in Vitro/methods , Abortion, Habitual/etiology , Abortion, Habitual/blood , Embryo Transfer/methods , Risk Factors , Retrospective Studies , Pregnancy , Case-Control Studies , Adult , Body Mass Index , Insulin Resistance , Obesity , Maternal Age , Male
19.
Sci Total Environ ; 946: 174267, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38936730

ABSTRACT

Nano-plastics (NPs) have emerged as prevalent contaminants in aquatic ecosystems, gaining significant research interest. Nonetheless, limited research has addressed the toxicity mechanisms associated with PS-NPs (polystyrene nanoplastics) of varying particle sizes. In this investigation, genotoxicity, growth patterns, hepatopancreatic damage, and intestinal flora alterations in freshwater shrimp Neocaridina palmata (Shen 1948), subjected to 35 days PS-NPs exposure (two size PS-NPs: 75 nm and 200 nm were used for this experiment, and five concentrations were set: 0 mg/L, 0.5 mg/L, 2.5 mg/L, 5 mg/L, and 10 mg/L concentrations PS-NP concentrations were examined using RNA sequencing, histopathological analyses, enzyme activity assessments, and 16S rRNA sequencing. Noteworthy variations in differentially expressed genes (DEGs) were identified across groups exposed to different PS-NPs sizes. We observed that PS-NPs predominantly instigated cellular component-related processes and induced apoptosis and oxidative stress across tissues via the mitochondrial pathway. Although the 200 nm-PS-NPs are stronger than the 75 nm-PS-NPs in terms of fluorescence intensity, 75 nm-PS-NPs are more likely to promote apoptosis than 200 nm-PS-NPs. PS-NPs impeded standard energy provision in N. palmata, potentially contributing to decreased body length and weight. Moreover, PS-NPs inflicted damage on intestinal epithelial and hepatopancreatic tissues and significantly modified intestinal microbial community structures. Specifically, PS-NPs-induced intestinal damage was marked by a decline in some probiotics (notably Lactobacilli) and a surge in pathogenic bacteria. Moreover, supplementing N. palmata with Lactobacilli appeared ameliorate oxidative stress and strengthen energy metabolism. Our findings provided valuable insights into crustacean toxicity mechanisms when subjected to PS-NPs and the potential risks that different PS-NPs sizes posed to terrestrial ecosystems.


Subject(s)
Hepatopancreas , Particle Size , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Hepatopancreas/drug effects , Intestines/drug effects , Nanoparticles/toxicity , Gastrointestinal Microbiome/drug effects , Microplastics/toxicity , Oxidative Stress/drug effects , Crustacea/drug effects , Multiomics
20.
Front Immunol ; 15: 1337384, 2024.
Article in English | MEDLINE | ID: mdl-38827745

ABSTRACT

Fibroblastic reticular cells (FRCs) are a subpopulation of stromal cells modulating the immune environments in health and disease. We have previously shown that activation of TLR9 signaling in FRC in fat-associated lymphoid clusters (FALC) regulate peritoneal immunity via suppressing immune cell recruitment and peritoneal resident macrophage (PRM) retention. However, FRCs are heterogeneous across tissues and organs. The functions of each FRC subset and the regulation of TLR9 in distinct FRC subsets are unknown. Here, we confirmed that specific deletion of TLR9 in FRC improved bacterial clearance and survival during peritoneal infection. Furthermore, using single-cell RNA sequencing, we found two subsets of FRCs (CD55hi and CD55lo) in the mesenteric FALC. The CD55hi FRCs were enriched in gene expression related to extracellular matrix formation. The CD55lo FRCs were enriched in gene expression related to immune response. Interestingly, we found that TLR9 is dominantly expressed in the CD55lo subset. Activation of TLR9 signaling suppressed proliferation, cytokine production, and retinoid metabolism in the CD55lo FRC, but not CD55hi FRC. Notably, we found that adoptive transfer of Tlr9 -/-CD55lo FRC from mesenteric FALC more effectively improved the survival during peritonitis compared with WT-FRC or Tlr9 -/-CD55hi FRC. Furthermore, we identified CD55hi and CD55lo subsets in human adipose tissue-derived FRC and confirmed the suppressive effect of TLR9 on the proliferation and cytokine production in the CD55lo subset. Therefore, inhibition of TLR9 in the CD55lo FRCs from adipose tissue could be a useful strategy to improve the therapeutic efficacy of FRC-based therapy for peritonitis.


Subject(s)
Fibroblasts , Peritonitis , Signal Transduction , Toll-Like Receptor 9 , Animals , Humans , Male , Mice , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/immunology , Immunomodulation , Mice, Inbred C57BL , Mice, Knockout , Peritonitis/immunology , Peritonitis/metabolism , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics
SELECTION OF CITATIONS
SEARCH DETAIL