Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.548
Filter
1.
J Environ Sci (China) ; 148: 221-229, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095159

ABSTRACT

Polychlorinated naphthalenes (PCNs) are detrimental to human health and the environment. With the commercial production of PCNs banned, unintentional releases have emerged as a significant environmental source. However, relevant information is still scarce. In this study, provincial emissions for eight PCNs homologues from 37 sources in the Chinese mainland during the period of 1960-2019 were estimated based on a source-specific and time-varying emission factor database. The results showed that the total PCNs emissions in 2019 reached 757.0 kg with Hebei ranked at the top among all the provinces and iron & steel industry as the biggest source. Low-chlorinated PCNs comprised 90% of emissions by mass, while highly chlorinated PCNs dominated in terms of toxicity, highlighting divergent priorities for mitigating emissions and safeguarding human health. The emissions showed an overall upward trend from 1960 to 2019 driven by emission increase from iron & steel industry in terms of source, and from North China and East China in terms of geographic area. Per-capita emissions followed an inverted U-shaped environmental Kuznets curve while emission intensities decreased with increasing per-capita Gross Domestic Product (GDP) following a nearly linear pattern when log-transformed.


Subject(s)
Air Pollutants , Environmental Monitoring , Naphthalenes , China , Naphthalenes/analysis , Air Pollutants/analysis , Air Pollution/statistics & numerical data
2.
ACS Nano ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172516

ABSTRACT

Fibrosarcoma, a malignant mesenchymal tumor, is characterized by aggressive invasiveness and a high recurrence rate, leading to poor prognosis. Anthracycline drugs, such as doxorubicin (DOX), represent the frontline chemotherapy for fibrosarcoma, but often exhibit suboptimal efficacy. Recently, exploiting the stimulator of interferon genes (STING)-mediated innate immunity has emerged as a hopeful strategy for cancer treatment. Integrating chemotherapy with immunomodulators in chemo-immunotherapy has shown potential for enhancing treatment outcomes. Herein, we introduce an advanced dendritic cell (DC) nanovaccine, cGAMP@PLGA@CRTM (GP@CRTM), combined with low-dose DOX to enhance fibrosarcoma chemo-immunotherapy. The nanovaccine consists of poly(lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating the STING agonist 2,3-cGAMP (cGAMP@PLGA, GP) as its core, and a calreticulin (CRT) high-expressing fibrosarcoma cell membrane (CRTM) as the shell. Exposing CRT on the vaccine surface aids in recruiting DCs and stimulating uptake, facilitating efficient simultaneous delivery of STING agonists and tumor antigens to DCs. This dual delivery method effectively activates the STING pathway in DCs, triggering sustained immune stimulation. Simultaneously, low-dose DOX reduces chemotherapy-related side effects, directly kills a subset of tumor cells, and increases tumor immunogenicity, thus further amplifying immune therapeutic performance. Hence, these findings demonstrate the potential of DC nanovaccine GP@CRTM as a booster for chemotherapy. Synergistically combining low-dose DOX with the DC nanovaccine emerges as a powerful chemo-immunotherapy strategy, optimizing systemic fibrosarcoma therapy.

3.
Mol Cell ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39173636

ABSTRACT

Stress granules (SGs) are conserved reversible cytoplasmic condensates enriched with aggregation-prone proteins assembled in response to various stresses. How plants regulate SG dynamics is unclear. Here, we show that 26S proteasome is a stable component of SGs, promoting the overall clearance of SGs without affecting the molecular mobility of SG components. Increase in either temperature or duration of heat stress reduces the molecular mobility of SG marker proteins and suppresses SG clearance. Heat stress induces dramatic ubiquitylation of SG components and enhances the activities of SG-resident proteasomes, allowing the degradation of SG components even during the assembly phase. Their proteolytic activities enable the timely disassembly of SGs and secure the survival of plant cells during the recovery from heat stress. Therefore, our findings identify the cellular process that de-couples macroscopic dynamics of SGs from the molecular dynamics of its constituents and highlights the significance of the proteasomes in SG disassembly.

4.
Opt Lett ; 49(16): 4650-4653, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146126

ABSTRACT

In this paper, we propose leveraging null subcarriers in discrete multi-tone modulation (DMT) to process the DMT signal in both time and frequency domains. Additionally, we employ discrete memory enhanced chaos (DMEC) to scramble the signal in the frequency domain, thereby achieving physical layer signal encryption while ensuring a more uniform power distribution in the time-domain waveform. In our experimental demonstration, we achieved high-security transmission of a DSM-based 65536-QAM signal at a data rate of 16.01 Gb/s over a 25 km single-mode fiber (SMF) in an intensity-modulation direct-detection (IMDD) system. Additionally, in the transmission experiments for 13684-QAM and 65536-QAM signals, the proposed method demonstrated a receiver sensitivity gain of over 0.5 dB compared to the traditional DSM-based ultrahigh-order transmission.

5.
Lung Cancer ; 195: 107930, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39146624

ABSTRACT

BACKGROUND: With the popularization of computed tomography, more and more pulmonary nodules (PNs) are being detected. Risk stratification of PNs is essential for detecting early-stage lung cancer while minimizing the overdiagnosis of benign nodules. This study aimed to develop a circulating tumor DNA (ctDNA) methylation-based, non-invasive model for the risk stratification of PNs. METHODS: A blood-based assay ("LUNG-TRAC") was designed to include novel lung cancer ctDNA methylation markers identified from in-house reduced representative bisulfite sequencing data and known markers from the literature. A stratification model was trained based on 183 ctDNA samples derived from patients with benign or malignant PNs and validated in 62 patients. LUNG-TRAC was further single-blindly tested in a single- and multi-center cohort. RESULTS: The LUNG-TRAC model achieved an area under the curve (AUC) of 0.810 (sensitivity = 74.4 % and specificity = 73.7 %) in the validation set. Two test sets were used to evaluate the performance of LUNG-TRAC, with an AUC of 0.815 in the single-center test (N = 61; sensitivity = 67.5 % and specificity = 76.2 %) and 0.761 in the multi-center test (N = 95; sensitivity = 50.7 % and specificity = 80.8 %). The clinical utility of LUNG-TRAC was further assessed by comparing it to two established risk stratification models: the Mayo Clinic and Veteran Administration models. It outperformed both in the validation and the single-center test sets. CONCLUSION: The LUNG-TRAC model demonstrated accuracy and consistency in stratifying PNs for the risk of malignancy, suggesting its utility as a non-invasive diagnostic aid for early-stage peripheral lung cancer. CLINICAL TRIAL REGISTRATION: www. CLINICALTRIALS: gov (NCT03989219).

6.
Biomed Pharmacother ; 179: 117295, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39146765

ABSTRACT

Despite considerable research efforts, inflammatory diseases remain a heavy burden on human health, causing significant economic losses annually. Histone deacetylases (HDACs) play a significant role in regulating inflammation (via histone and non-histone protein deacetylation) and chromatin structure and gene expression regulation. Herein, we present a detailed description of the different HDACs and their functions and analyze the role of HDACs in inflammatory diseases, including pro-inflammatory cytokine production reduction, immune cell function modulation, and anti-inflammatory cell activity enhancement. Although HDAC inhibitors have shown broad inflammatory disease treatment potentials, their clinical applicability remains limited because of their non-specific effects, adverse effects, and drug resistance. With further research and insight, these inhibitors are expected to become important tools for the treatment of a wide range of inflammatory diseases. This review aims to explore the mechanisms and application prospects of HDACs and their inhibitors in multiple inflammatory diseases.

7.
Small ; : e2404142, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148197

ABSTRACT

As of the present time, the in-depth study of the structure-activity relationship between electronic configuration and CO2 photoreduction performance is often overlooked. Herein, a series of Cux species modified CeO2 nanodots are constructed in situ by flame spray pyrolysis (FSP) to achieve an efficient photocatalytic CO2-to-C2 conversion with an electron utilization of up to 142.5 µmol g-1. Through an in-depth study of the electronic behavior and catalytic pathways, it is found that the Cu0/Cu+ species in the coexistence state of Cu0/Cu+/Cu2+ can optimize the energy band structure, photocurrent stability, and provide a kinetic basis for the active surface catalytic reaction process that requires the conversion of multiple electrons into C2 products, which ultimately enhances the CO2-to-C2H6 photoreduction by 3.8-fold and that for CO2-to-C2H4 photoreduction by 5.2-fold. Besides, the Cu2+ species in the coexistence state of Cu0/Cu+/Cu2+ are able to regulate the electronic behavior and the choice of the catalytic pathway, enabling the transitions between CO2-to-C2H6 and CO2-to-C2H4. This work indicates that electronic configuration optimization is an effective strategy to significantly enhance the CO2 photoreduction performance and provides new ideas for the design and synthesis of high-performance heterostructure photocatalysts.

8.
Food Chem ; 461: 140845, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39154467

ABSTRACT

Protein glutaminase (PG; EC 3.5.1.44) is a class of food-grade enzyme with the potential to significantly improve protein functionality. However, its low catalytic activity and stability greatly hindered industrial application. In this study, we employed structural-based engineering and computational-aided design strategies to target the engineering of protein glutaminase PG5, which led to the development of a combinatorial mutant, MT8, exhibiting a specific activity of 31.1 U/mg and a half-life of 216.2 min at 55 °C. The results indicated that the flexible region in MT8 shifted from the C-terminus to the N-terminus, with increased N-terminal flexibility positively correlating with its catalytic activity. Additionally, MT8 notably boosted fish myofibrillar proteins (MPs) solubility under the absence of NaCl conditions and enhanced their foaming and emulsifying properties. Key residues like Asp31, Ser72, Asn121, Asp471, and Glu485 were crucial for maintaining PG5-myosin interaction, with Ser72 and Asn121 making significant energy contributions.

9.
Biosens Bioelectron ; 263: 116631, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39111252

ABSTRACT

With significant advancements in understanding gene functions and therapy, the potential misuse of gene technologies, particularly in the context of sports through gene doping (GD), has come to the forefront. This raises concerns regarding the need for point-of-care testing of various GD candidates to counter illicit practices in sports. However, current GD detection techniques, such as PCR, lack the portability required for on-site multiplexed detection. In this study, we introduce an integrated microfluidics-based chip for multiplexed gene doping detection, termed MGD-Chip. Through the strategic design of hydrophilic and hydrophobic channels, MGD-Chip enables the RPA and CRISPR-Cas12a assays to be sequentially performed on the device, ensuring minimal interference and cross-contamination. Six potential GD candidates were selected and successfully tested simultaneously on the platform within 1 h. Demonstrating exceptional specificity, the platform achieved a detection sensitivity of 0.1 nM for unamplified target plasmids and 1 aM for amplified ones. Validation using mouse models established by injecting IGFI and EPO transgenes confirmed the platform's efficacy in detecting gene doping in real samples. This technology, capable of detecting multiple targets using portable elements, holds promise for real-time GD detection at sports events, offering a rapid, highly sensitive, and user-friendly solution to uphold the integrity of sports competitions.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Doping in Sports , Hydrophobic and Hydrophilic Interactions , Lab-On-A-Chip Devices , CRISPR-Cas Systems/genetics , Doping in Sports/prevention & control , Animals , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Mice , Humans , Erythropoietin/genetics , Erythropoietin/analysis , Equipment Design , CRISPR-Associated Proteins/genetics , Bacterial Proteins , Endodeoxyribonucleases
10.
Biol Trace Elem Res ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177724

ABSTRACT

High invasiveness mesothelioma is a malignant tumor of the peritoneum or pleura. The effect of cuproptosis on mesothelioma (MESO) is still unknown, though. The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) datasets were used to identify differential genes linked to cuproptosis in mesothelioma. Multigene features were then created to assess the course of the disease. Use single-cell data and in vitro validation to uncover crucial gene regulation mechanisms. In MESO, we found nine differentially expressed genes linked to cuproptosis. Using univariate Cox and LASSO regression techniques, a 3-gene feature (P < 0.05) was created, showing a good predictive potential for survival time. According to the risk score, patients in the low-risk subset had a considerably greater survival rate than those in the high-risk subset (P = 0). The similar survival pattern and prediction performance are also seen in the validation queue. The findings of the drug sensitivity research indicate that in high-risk patients, vinblastine, paclitaxel, gefitinib, and erlotinib are sensitive medications (P < 0.05). Classical monocytes were identified as core cells connected to cuproptosis by the CellChat results. SLC31A1 is implicated in the positive regulation of M2 macrophage polarization, according to cell subtype analysis and in vitro confirmation. Genes linked to cuproptosis have a major influence on tumor immunity and can predict how MESO will progress.

11.
Oncogene ; 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39154122

ABSTRACT

The dysregulation of long non-coding RNAs (lncRNAs) are involved in regulating tumor progression in multiple manner. However, little is known about whether lncRNA is involved in the translation regulation of proteins. Here, we identified that the suppressor of inflammatory macrophage apoptosis lncRNA (SIMALR) was highly expressed in nasopharyngeal carcinoma (NPC) tissues by analyzing the lncRNA microarray. Clinically, the high expression of SIMALR served as an independent predictor for inferior prognosis in NPC patients. SIMALR functioned as an oncogenic lncRNA that promoted the proliferation and metastasis of NPC cells in vitro and in vivo. Mechanistically, SIMALR served as a critical accelerator of protein synthesis by binding to eEF1A2 (eukaryotic translation elongation factor 1 alpha 2), one of the most crucial regulators in the translation machinery of the eukaryotic cells, and enhancing its endogenous GTPase activity. Furthermore, SIMALR mediated the activation of eEF1A2 phosphorylation to accelerate the translation of ITGB4/ITGA6, ultimately promoting the malignant phenotype of NPC cells. In addition, N-acetyltransferase 10 (NAT10) enhanced the stability of SIMALR and caused its overexpression in NPC through the N4-acetylcytidine (ac4C) modification. In sum, our results illustrate SIMALR functions as an accelerator for protein translation and highlight the oncogenic role of NAT10-SIMALR-eEF1A2-ITGB4/6 axis in NPC.

12.
Clin Cosmet Investig Dermatol ; 17: 1827-1839, 2024.
Article in English | MEDLINE | ID: mdl-39155883

ABSTRACT

Background: Emerging evidence links gut microbiota and their by-products, notably short-chain fatty acids (SCFAs), to urticaria. This study employs multiple Mendelian Randomization (MR) analyses to unravel the complex interactions among gut microbiota, SCFAs, and different subtypes of urticaria, aiming to elucidate the underlying mechanisms and enhance future clinical research. Methods: We analyzed published genome-wide association study (GWAS) summary statistics to identify associations between gut microbiota and three common subtypes of urticaria: spontaneous, dermatographic, and temperature-triggered. Initial two-sample and reverse MR analyses explored the causality in these relationships. Subsequent multivariate MR analyses investigated the role of SCFAs in modulating these interactions, with multiple sensitivity analyses to ensure robustness. Findings: Specific taxa were differently associated with various urticaria subtypes. From microbiota to urticaria: one taxon was negatively associated with dermatographic urticaria; seven taxa were negatively associated and four positively associated with temperature-triggered urticaria; four taxa were negatively associated and six positively associated with spontaneous urticaria. Conversely, from urticaria to microbiota: five taxa were negatively associated with dermatographic urticaria; four were negatively and two positively associated with temperature-triggered urticaria; and two were negatively associated with spontaneous urticaria. These associations were observed at a nominal significance level (P < 0.05). After applying Bonferroni correction for multiple testing, these associations did not reach statistical significance. The observed trends, however, provide insights into potential microbiota-urticaria interactions. Multivariate MR analyses elucidated the role of SCFAs, particularly acetate, which plays a crucial role in modulating immune response. Adjusting for acetate revealed direct effects of Actinobacteria, Bifidobacteriales, and Bifidobacteriaceae on spontaneous urticaria, with corresponding mediation effects of -22%, -24.9%, and -24.9% respectively. Similarly, adjustments for Alcaligenaceae and Betaproteobacteria indicated significant negative effects of acetate on dermatographic and spontaneous urticaria, with mediation effects of -21.7% and -23.7%, respectively. Conclusion: This study confirms the interconnected roles of gut microbiota, SCFAs, and urticaria. It highlights SCFAs' potential mediating role in influencing urticaria through microbiota, providing insights for future therapeutic strategies.

13.
Geosci Lett ; 11(1): 36, 2024.
Article in English | MEDLINE | ID: mdl-39157275

ABSTRACT

The Indonesian seas, with their complex passages and vigorous mixing, constitute the only route and are critical in regulating Pacific-Indian Ocean interchange, air-sea interaction, and global climate events. Previous research employing remote sensing and numerical simulations strongly suggested that this mixing is tidally driven and localized in narrow channels and straits, with only a few direct observations to validate it. The current study offers the first comprehensive temporal microstructure observations in the south of Lombok Strait with a radius of 0.05° and centered on 115.54oE and 9.02oS. Fifteen days of tidal mixing observations measured potential temperature and density, salinity, and turbulent energy dissipation rate. The results revealed significant mixing and verified the remotely sensed technique. The south Lombok temporal and depth averaged of the turbulent kinetic energy dissipation rate, and the diapycnal diffusivity from 20 to 250 m are ε  = 4.15 ± 15.9) × 10-6 W kg-1 and K ρ = (1.44 ± 10.7) × 10-2 m2s-1, respectively. This K ρ is up to 104 times larger than the Banda Sea [ K ρ  = (9.2 ± 0.55) × 10-6 m2s-1] (Alford et al. Geophys Res Lett 26:2741-2744, 1999) or the "open ocean" K ρ = 0.03 × 10-4 m2s-1 within 2° of the equator to (0.4-0.5) × 10-4 m2s-1 at 50°-70° (Kunze et al. J Phys Oceanogr 36:1553-1576, 2006). Therefore, nonlinear interactions between internal tides, tidally induced mixing, and ITF plays a critical role regulating water mass transformation and have strong implications to longer-term variations and change of Pacific-Indian Ocean water circulation and climate. Supplementary Information: The online version contains supplementary material available at 10.1186/s40562-024-00349-3.

14.
Bioorg Med Chem ; 111: 117847, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39121679

ABSTRACT

Pyridazine, as a privileged scaffold, has been extensively utilized in drug development due to its multiple biological activities. Especially around its distinctive anticancer property, a massive number of pyridazine-containing compounds have been synthesized and evaluated that target a diverse array of biological processes involved in cancer onset and progression. These include glutaminase 1 (GLS1) inhibitors, tropomyosin receptor kinase (TRK) inhibitors, and bromodomain containing protein (BRD) inhibitors, targeting aberrant tumor metabolism, cell signal transduction and epigenetic modifications, respectively. Pyridazine moieties functioned as either core frameworks or warheads in the above agents, exhibiting promising potential in cancer treatment. Therefore, the review aims to summarize the recent contributions of pyridazine derivatives as potent anticancer agents between 2020 and 2024, focusing mainly on their structure-activity relationships (SARs) and development strategies, with a view to show that the application of the pyridazine scaffold by different medicinal chemists provides new insights into the rational design of anticancer drugs.


Subject(s)
Antineoplastic Agents , Pyridazines , Pyridazines/chemistry , Pyridazines/pharmacology , Pyridazines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Humans , Structure-Activity Relationship , Chemistry, Pharmaceutical , Molecular Structure , Neoplasms/drug therapy , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor
15.
Ann Intensive Care ; 14(1): 127, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162882

ABSTRACT

BACKGROUND: A combination of prone positioning (PP) and venovenous extracorporeal membrane oxygenation (VV-ECMO) is safe, feasible, and associated with potentially improved survival for severe acute respiratory distress syndrome (ARDS). However, whether ARDS patients, especially non-COVID-19 patients, placed in PP before VV-ECMO should continue PP after a VV-ECMO connection is unknown. This study aimed to test the hypothesis that early use of PP during VV-ECMO could increase the proportion of patients successfully weaned from ECMO support in severe ARDS patients who received PP before ECMO. METHODS: In this prospective observational study, patients with severe ARDS who were treated with VV-ECMO were divided into two groups: the prone group and the supine group, based on whether early PP was combined with VV-ECMO. The proportion of patients successfully weaned from VV-ECMO and 60-day mortality were analyzed before and after propensity score matching. RESULTS: A total of 165 patients were enrolled, 50 in the prone and 115 in the supine group. Thirty-two (64%) and 61 (53%) patients were successfully weaned from ECMO in the prone and the supine groups, respectively. The proportion of patients successfully weaned from VV-ECMO in the prone group tended to be higher, albeit not statistically significant. During PP, there was a significant increase in partial pressure of arterial oxygen (PaO2) without a change in ventilator or ECMO settings. Tidal impedance shifted significantly to the dorsal region, and lung ultrasound scores significantly decreased in the anterior and posterior regions. Forty-five propensity score-matched patients were included in each group. In this matched sample, the prone group had a higher proportion of patients successfully weaned from VV-ECMO (64.4% vs. 42.2%; P = 0.035) and lower 60-day mortality (37.8% vs. 60.0%; P = 0.035). CONCLUSIONS: Patients with severe ARDS placed in PP before VV-ECMO should continue PP after VV-ECMO support. This approach could increase the probability of successful weaning from VV-ECMO. TRIAL REGISTRATION: ClinicalTrials.Gov: NCT04139733. Registered 23 October 2019.

16.
J Diabetes ; 16(8): e13599, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39155680

ABSTRACT

BACKGROUND: Beta 2-microglobulin (ß2-MG) is a component of the class I major histocompatibility complex (MHCI) and has recently been reported to be involved in type 2 diabetes mellitus (T2DM) and cardiovascular disease. However, the association of ß2-MG with left ventricular hypertrophy (LVH) in T2DM patients remains unknown. This study aims to investigate the correlation between serum ß2-MG and LVH in T2DM patients. METHODS: The retrospective analysis included 4602 eligible T2DM patients, divided into LVH and non-LVH groups based on echocardiography results. Serum ß2-MG levels were measured, and participants were categorized into four groups (Q1-Q4) by their serum ß2-MG quartile. The relationship of serum ß2-MG level with LVH was evaluated using logistic regression, restricted cubic spline (RCS), subgroup analysis, and machine learning. RESULTS: The prevalence of LVH in T2DM patients was 31.12%. Each standard deviation increase in serum ß2-MG level corresponded to a 1.17-fold increase in the prevalence of LVH [OR = 1.17, (95% CI: 1.05-1.31); p = 0.006]. When considering ß2-MG as a categorical variable (quartile), Q3 [OR = 1.36, (95% CI: 1.09-1.69); p = 0.007] and Q4 [OR = 1.77, (95% CI: 1.36-2.31); p < 0.001] had a significantly higher prevalence of LVH than Q1. RCS analysis found a nonlinear association between ß2-MG and LVH prevalence (p for nonlinearity <0.05). Additionally, machine learning results confirmed the importance of ß2-MG for LVH in T2DM patients. CONCLUSION: Elevated serum ß2-MG levels were likely to be associated with an increased prevalence of LVH in T2DM patients, suggesting its potential role in LVH development.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertrophy, Left Ventricular , beta 2-Microglobulin , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Hypertrophy, Left Ventricular/blood , Hypertrophy, Left Ventricular/epidemiology , Hypertrophy, Left Ventricular/etiology , beta 2-Microglobulin/blood , Cross-Sectional Studies , Female , Male , Middle Aged , Retrospective Studies , Aged , Prevalence , Echocardiography , Biomarkers/blood , Risk Factors
17.
Front Bioeng Biotechnol ; 12: 1429605, 2024.
Article in English | MEDLINE | ID: mdl-39161355

ABSTRACT

Introduction: The ankle-foot exoskeleton has been demonstrated to help users resist anterior perturbation in the horizontal pelvis plane. However, its effects on perturbations in other directions remain unclear. This paper focuses on how the ankle-foot exoskeleton helps people resist perturbations coming from forward directions within the fan-shaped region in the pelvis horizontal plane. Methods: Firstly, we proposed and validated a hypothesis that the human torque ratio of inversion to plantar flexion torque would change with the perturbation directions of anterior (dir0) and 45° deviating from anterior to left (dir45). Subsequently, based on the regulation demand, we developed an ankle-foot exoskeleton that can adjust the torque ratio delivered to the human body by controlling the forces on two cross-arranged cables. Finally, we evaluated and compared the assistance performance of three powered assistive modes (NM, medBD, and latBD) with the unpowered one (UN) by setting different force pairs in two cables. Results: The results showed that, with the assistance, the margin of stability was increased and the standard deviations of ankle-foot segmental movements were decreased. Meanwhile, the biological inversion torque has a significant difference among the three assistive modes. Compared to the UN, the latBD was shown to reduce the biological inversion torque by 15.8 % and 13.7 % in response to the dir0 and dir45 perturbations, respectively, while the reductions for the NM and medBD were smaller. It was also observed that the torque ratios, generated by the human and the exoskeleton in latBD mode, differed by about 0.1 under dir0 and 0.08 under dir45, while the physiologically similarity of the exoskeleton torque ratio in NM and medBD modes were smaller. Based on the above results, we found that the more physiologically similar the exoskeleton torque ratio, the better the assistive performance. Discussion: The findings demonstrated that the torque-ratio-adjustable exoskeleton could support human resistance to perturbations coming from forward directions within a fan-shaped region in the pelvis horizontal plane and indicated that the exoskeleton's torque ratio should be carefully modulated to match the ratio of the human under various environmental conditions for better assistive performance.

18.
Diabetes Obes Metab ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39165042

ABSTRACT

AIM: To assess the association of Life's Essential 8 (LE8) and the presence of abdominal aortic calcification (AAC) with mortality among middle-aged and older individuals. METHODS: Participants aged older than 40 years were enrolled from the National Health and Nutrition Examination Survey 2013-2014. AAC was assessed using dual-energy X-ray absorptiometry. Mortality data were ascertained through linkage with the National Death Index until 31 December 2019. The LE8 score incorporates eight components: diet, physical activity, nicotine exposure, sleep health, body mass index, blood lipids, blood glucose and blood pressure. The total LE8 score, an unweighted average of all components, was categorized into low (0-49), medium (50-79) and high (80-100) scores. RESULTS: This study included 2567 individuals, with a mean LE8 score of 67.28 ± 0.48 and an AAC prevalence of 28.28%. Participants with low LE8 scores showed a significantly higher prevalence of AAC (odds ratio = 2.12 [1.12-4.19]) compared with those with high LE8 scores. Over a median 6-year follow-up, there were 222 all-cause deaths, and 55 cardiovascular deaths occurred. Participants with AAC had an increased risk of all-cause (hazard ratio [HR] = 2.17 [1.60-2.95]) and cardiovascular (HR = 2.35 [1.40-3.93]) mortality. Moreover, individuals with AAC and low or medium LE8 scores exhibited a 137% (HR = 2.37 [1.58-3.54]) and 119% (HR = 2.19 [1.61-2.99]) higher risk of all-cause mortality, as well as a 224% (HR = 3.24 [1.73-6.04]) and 125% (HR = 2.25 [1.24-4.09]) increased risk of cardiovascular mortality, respectively. CONCLUSIONS: The LE8 score correlates with AAC prevalence in middle-aged and older individuals and serves as a valuable tool for evaluating the risk of all-cause and cardiovascular mortality in individuals with AAC.

19.
World J Psychiatry ; 14(8): 1267-1284, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39165557

ABSTRACT

BACKGROUND: Overweight/obesity combined with depression among children and adolescents (ODCA) is a global concern. The bidirectional relationship between depression and overweight/obesity often leads to their comorbidity. Childhood and adolescence represent critical periods for physical and psychological development, during which the comorbidity of overweight/obesity and depression may increase the risk of adverse health outcomes. AIM: To evaluate the relationship between ODCA, we conduct a bibliometric analysis to aid in formulating prevention and treatment strategies. METHODS: From 2004 to 2023, articles related to ODCA were selected using the Science Citation Index Expanded from the Web of Science Core Collection. Bibliometric analysis of relevant publications, including countries/regions, institutions, authors, journals, references, and keywords, was conducted using the online bibliometric analysis platforms, CiteSpace, VOSviewer, and bibliometrix. RESULTS: Between 2004 and 2023, a total of 1573 articles were published on ODCA. The United States has made leading contributions in this field, with Harvard University emerging as the leading contributor in terms of research output, and Tanofsky being the most prolific author. The J Adolescent Health has shown significant activity in this domain. Based on the results of the keyword and reference analyses, inequality, adverse childhood experiences, and comorbidities have become hot topics in ODCA. Moreover, the impact of balanced-related behavior and exploration of the biological mechanisms, including the potential role of key adipocytokines and lipokines, as well as inflammation in ODCA, have emerged as frontier topics. CONCLUSION: The trend of a significant increase in ODCA publications is expected to continue. The research findings will contribute to elucidating the pathogenic mechanisms of ODCA and its prevention and treatment.

20.
Heliyon ; 10(15): e35429, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39165970

ABSTRACT

Background: Ticks are ectoparasites that feed on blood and pose a threat to both the livestock industry and public health due to their ability to transmit pathogens through biting. However, the impact of factors such as bloodmeal and geographic regions on the bacterial microbiota of Haemaphysalis qinghaiensis remains poorly understood. Methods: In this study, we used the v3-v4 region of the 16S rRNA gene to sequence the microbiota of Haemaphysalis qinghaiensis from eight groups (HY_M, YS_M, XH_M, LD_M, BM_M, LD_F_F, LD_F, and BM_F_F) in Qinghai Province. Results: Significant differences in bacterial richness were observed between LD_F_F, BM_F_F, and LD_F (P < 0.01), and among the five groups (HY_M, YS_M, XH_M, BM_M, and LD_M) (P < 0.05). The bacterial diversity also differed significantly between LD_F_F, LD_F, and BM_F_F (P < 0.01), as well as among the five groups (HY_M, YS_M, XH_M, LD_M, and BM_M) (P < 0.01). The group with the highest number of operational taxonomic units (OTUs) was LD_F, accounting for 23.93 % (419/1751), while BM_F_F accounted for at least 0.80 % (14/1751). At the phylum level, Firmicutes was the most abundant, with relative abundance ranging from 7.44 % to 96.62 %. At the genus level, Staphylococcus had the highest abundance, ranging from 1.67 % to 97.53 %. The endosymbiotic bacteria Coxiella and Rickettsia were predominantly enriched in LD_F_F. Additionally, the 16S gene of Coxiella showed the highest identity of 99.07 % with Coxiella sp. isolated from Xinxiang hl9 (MG9066 71.1), while the 16S gene of Rickettsia had 100 % identity with Candidatus Rickettsia hongyuanensis strains (OK 662395.1). Functional predictions for the prokaryotic microbial community indicated that the main functional categories were Metabolic, Genetic information processing, and Environmental information processing across the eight groups. Conclusion: This study provides a theoretical basis for the prevention and treatment of tick-borne diseases, which is of great significance for public health.

SELECTION OF CITATIONS
SEARCH DETAIL