Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.606
Filter
1.
BMC Genomics ; 25(1): 794, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39169310

ABSTRACT

BACKGROUND: PSEUDO RESPONSE REGULATOR (PRR) genes are essential components of circadian clock, playing vital roles in multiple processes including plant growth, flowering and stress response. Nonetheless, little is known about the evolution and function of PRR family in Rosaceae species. RESULTS: In this study, a total of 43 PRR genes in seven Rosaceae species were identified through comprehensive analysis. The evolutionary relationships were analyzed with phylogenetic tree, duplication events and synteny. PRR genes were classified into three groups (PRR1, PRR5/9, PRR3/7). The expansion of PRR family was mainly derived from dispersed and whole-genome duplication events. Purifying selection was the major force for PRR family evolution. Synteny analysis indicated the existence of multiple orthologous PRR gene pairs between pear and other Rosaceae species. Moreover, the conserved motifs of eight PbPRR proteins supported the phylogenetic relationship. PRR genes showed diverse expression pattern in various tissues of pear (Pyrus bretschneideri). Transcript analysis under 12-h light/ dark cycle and constant light conditions revealed that PRR genes exhibited distinct rhythmic oscillations in pear. PbPRR59a and PbPRR59b highly homologous to AtPRR5 and AtPRR9 were cloned for further functional verification. PbPRR59a and PbPRR59b proteins were localized in the nucleus. The ectopic overexpression of PbPRR59a and PbPRR59b significantly delayed flowering in Arabidopsis transgenic plants by repress the expression of AtGI, AtCO and AtFT under long-day conditions. CONCLUSIONS: These results provide information for exploring the evolution of PRR genes in plants, and contribute to the subsequent functional studies of PRR genes in pear and other Rosaceae species.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Rosaceae , Flowers/genetics , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Rosaceae/genetics , Pyrus/genetics , Arabidopsis/genetics , Evolution, Molecular , Synteny , Multigene Family
2.
World J Gastrointest Oncol ; 16(8): 3585-3599, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39171181

ABSTRACT

BACKGROUND: Gastrointestinal stromal tumors (GISTs) are typical gastrointestinal tract neoplasms. Imatinib is the first-line therapy for GIST patients. Drug resistance limits the long-term effectiveness of imatinib. The regulatory effect of insulin-like growth factor 2 (IGF2) has been confirmed in various cancers and is related to resistance to chemotherapy and a worse prognosis. AIM: To further investigate the mechanism of IGF2 specific to GISTs. METHODS: IGF2 was screened and analyzed using Gene Expression Omnibus (GEO: GSE225819) data. After IGF2 knockdown or overexpression by transfection, the phenotypes (proliferation, migration, invasion, apoptosis) of GIST cells were characterized by cell counting kit 8, Transwell, and flow cytometry assays. We used western blotting to evaluate pathway-associated and epithelial-mesenchymal transition (EMT)-associated proteins. We injected transfected cells into nude mice to establish a tumor xenograft model and observed the occurrence and metastasis of GIST. RESULTS: Data from the GEO indicated that IGF2 expression is high in GISTs, associated with liver metastasis, and closely related to drug resistance. GIST cells with high expression of IGF2 had increased proliferation and migration, invasiveness and EMT. Knockdown of IGF2 significantly inhibited those activities. In addition, OE-IGF2 promoted GIST metastasis in vivo in nude mice. IGF2 activated IGF1R signaling in GIST cells, and IGF2/IGF1R-mediated glycolysis was required for GIST with liver metastasis. GIST cells with IGF2 knockdown were sensitive to imatinib treatment when IGF2 overexpression significantly raised imatinib resistance. Moreover, 2-deoxy-D-glucose (a glycolysis inhibitor) treatment reversed IGF2 overexpression-mediated imatinib resistance in GISTs. CONCLUSION: IGF2 targeting of IGF1R signaling inhibited metastasis and decreased imatinib resistance by driving glycolysis in GISTs.

3.
Ultrasonics ; 144: 107396, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39173277

ABSTRACT

Ultrasound shear wave elastography is an imaging modality that noninvasively assesses mechanical properties of tissues. The results of elastic imaging are obtained by accurately estimating the propagation velocity of shear wave fronts. However, the acquisition rate of the shear wave acquisition device is limited by the hardware of the system. Therefore, increasing the collection rate of shear waves can directly improve the quality of shear wave velocity images. In addition, the problem of velocity reconstruction with relatively small elastic inclusions has always been a challenge in elastic imaging and a very important and urgent issue in early disease diagnosis. For the problem of elastography detection of the shape and boundary of inclusions in tissues, Time-sharing latency excitation frame composite imaging (TS-FCI) method is proposed for tissue elasticity measurement. The method fuses the shear wave motion data generated by time sharing and latency excitation to obtain a set of composite shear wave motion data. Based on the shear wave motion data, the local shear wave velocity image is reconstructed in the frequency domain to obtain the elastic information of the tissue. The experimental results show that the TS-FCI method has a velocity estimation error of 11 % and a contrast to noise ratio (CNR) of 3.81 when estimating inclusions with smaller dimensions (2.53 mm). Furthermore, when dealing with inclusions with small elastic changes (10 kPa), the velocity estimation error is 3 % and the CNR is 3.21. Compared to conventional time-domain and frequency-domain analysis methods, the proposed method has advantages. Results and analysis have shown that this method has potential promotional value in the quantitative evaluation of organizational elasticity.

4.
Water Res ; 265: 122283, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39173361

ABSTRACT

Periodic oxygen permeation is critical for pollutant removal within intertidal sediments. However, tidal effects on the vertical redox profile associated with cable bacterial activity is not well understood. In this study, we simulated and quantified the effects of tidal flooding, exposing, and their periodic alternation on vertical redox reactions and phenanthrene removal driven by cable bacteria in the riverbank sediment. Results show that electrogenic sulfur oxidation (e-SOx) mediated by cable bacteria during exposing process drove the vertical permeation of oxidation potential characterized by a decrease in Fe(II) and sulfide concentrations. The sulfate produced was observed in deep sediment (5-10 mm) and served as an electron acceptor for anaerobic oxidation, thereby triggering the functional succession of microbial community. About 78.2 % and 80.8 % of phenanthrene was degraded in deep sediment where cable bacteria grew well under exposing and tidal conditions. Anaerobic processes during tidal flood were also found to be important for the survival of cable bacteria. Higher cable bacteria abundance (up to 1.5 %) was observed under tidal conditions compared to that under continuous exposing conditions and flooding conditions. This might be attributed to lower oxidation stress and sulfide replenishment via sulfate reduction while flooding. Under tidal conditions, the cable bacteria interacted with sulfate reduction bacteria (e.g. Desulfobacca spp. and Desulfatiglans spp.) and maintained the dynamic balance of HS- and SO42- in sediment profiles. This HS--SO42- cycle could serve as a "redox connector" that continuously delivers oxidation potential to deep sediments, resulting in the removal of organic pollutants. The findings provide preliminary evidence of the self-purification mechanisms within intertidal sediments and suggest a potential strategy for sediment remediation.

5.
Sci Total Environ ; : 175645, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173757

ABSTRACT

Bis-(2-ethylhexyl)-phenyl phosphate (BEHPP) and its structural analog, 2-ethylhexyl diphenyl phosphate (EHDPP), are widely present in the environment. However, their toxic effects, particularly developmental toxicity, remain poorly understood. In this study, we evaluated the impacts of BEHPP and EHDPP on multiple developmental endpoints in zebrafish. BEHPP did not lead to mortality and malformations of embryos within the test concentration range (0.5-4.0 µM). In contrast, EHDPP had significant lethal effects, with an LC50 of 2.44 µM, and induced malformations, notably pericardial edema (PE), with an EC50 of 1.77 µM. In addition, BEHPP induced cardiac dysfunctions in embryos to a similar degree as EHDPP. Both stroke volume and cardiac output were significantly increased at BEHPP concentrations of 1.8 nM and above and at EHDPP concentrations of 4.3 nM and above. Transcriptomic analysis further corroborated the similar disturbance at the molecular level for both substances and revealed the Key Events (KEs) in the cardiac toxic regulation, including the focal adhesions, ECM-receptor interaction, cardiac muscle contraction, and the adrenergic signaling in cardiomyocytes. Taken together, the present study provided novel insights into the adverse effects of these emerging organophosphate esters and highlighted their potential risks to embryonic development in both ecosystems and humans.

6.
Quant Imaging Med Surg ; 14(8): 6147-6160, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39144001

ABSTRACT

Pulmonary artery aneurysm (PAA) is a rare pulmonary vascular disease with nonspecific symptoms and various etiologies. As the disease progresses, in addition to the dilation of the pulmonary arteries, it may be accompanied by remodeling of the cardiac structure and changes in the morphology of the aorta. Recognizing the cause of PAA is therefore a clinically challenging task. In this review article, we provide an overview of various causes of PAA with the support of corresponding imaging findings on computed tomography pulmonary angiography (CTPA) examination. Firstly, from the perspective of hemodynamics, a logical diagnosis is provided according to whether the main pulmonary artery (MPA) is dilated, and whether the PA is dilated locally or diffusely. Secondly, for the imaging examination of vascular wall lesions, due to the limitations of ultrasound examination and interventional procedures, the irreplaceability of dual-phase CTPA examination in disease assessment is especially emphasized. Finally, for highly suspected disorders, it is necessary to comprehensively check with the patient whether there is a family history or past medical history. For patients with PAA, especially those with Marfan syndrome (MFS) or arteritis, adequate preoperative imaging evaluation, regular postoperative radiographic follow-up, and concurrent treatment of the underlying disease (if necessary) are crucial, which are related to the prognosis and long-term quality of life of such patients. Despite the nonspecific features of PAA presentation, a thorough examination of the patient's clinical history and imaging characteristics will play an important role in diagnosing PAA and planning patient management strategies.

7.
Environ Res ; : 119796, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147183

ABSTRACT

In recent years, with the global rise in awareness regarding carbon neutrality, the treatment of wastewater in rural areas is increasingly oriented towards energy conservation, emission reduction, low-carbon output, and resource utilization. This paper provides an analysis of the advantages and disadvantages of the current low-carbon treatment process of low-carbon treatment for rural wastewater. Constructed wetlands (CWs) are increasingly being considered as a viable option for treating wastewater in rural regions. In pursuit of carbon neutrality, advanced carbon-neutral bioprocesses are regarded as the prospective trajectory for achieving carbon-neutral treatment of rural wastewater. The incorporation of CWs with emerging biotechnologies such as sulfur-based autotrophic denitrification (SAD), pyrite-based autotrophic denitrification (PAD), and anaerobic ammonia oxidation (anammox) enables efficient removal of nitrogen and phosphorus from rural wastewater. The advancement of CWs towards improved removal of organic and inorganic pollutants, sustainability, minimal energy consumption, and low carbon emissions is widely recognized as a viable low-carbon approach for achieving carbon-neutral treatment of rural wastewater. This study offers novel perspectives on the sustainable development of wastewater treatment in rural areas within the framework of achieving carbon neutrality in the future.

8.
Nat Commun ; 15(1): 7208, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174565

ABSTRACT

Catalytic peroxymonosulfate (PMS) activation processes don't solely rely on electron transfer from dominant metal centers due to the complicated composition and interface environment of catalysts. Herein the synthesis of a cobalt based metal-organic framework containing polyvanadate [V4O12]4- cluster, Co2(V4O12)(bpy)2 (bpy = 4,4'-bipyridine), is presented. The catalyst demonstrates superior degradation activity toward various micropollutants, with higher highest occupied molecular orbital (HOMO), via nonradical attack. The X-ray absorption spectroscopy and density functional theory (DFT) calculations demonstrate that Co sites act as both PMS trapper and electron donor. In situ spectral characterizations and DFT calculations reveal that the terminal oxygen atoms in the [V4O12]4- electron sponge could interact with the terminal hydrogen atoms in PMS to form hydrogen bonds, promoting the generation of SO5* intermediate via both dynamic pull and direct electron transfer process. Further, Co2(V4O12)(bpy)2 exhibits long-term water purification ability, up to 40 h, towards actual wastewater discharged from an ofloxacin production factory. This work not only presents an efficient catalyst with an electron sponge for water environmental remediation via nonradical pathway, but also provides fundamental insights into the Fenton-like reaction mechanism.

9.
Sci Total Environ ; 951: 175398, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39128516

ABSTRACT

Liquid crystal monomers (LCMs) are identified as emerging organic contaminations with largely unexplored health impacts. To elucidate their toxic mechanisms, support the establishment of environmental discharge and management standards, and promote effective LCMs control, this study constructs a database covering 20,545 potential targets of 1431 LCMs, highlighting 9 key toxic target proteins that disrupt the nervous system and metabolic functions. GO and KEGG pathway analysis suggests LCMs severely affect nervous system, linked to neurodegenerative diseases and mental health disorders, with toxicity variations driven by electronegativity and structural complexity of LCM terminal groups. To achieve tiered control of LCMs, construct toxicity risk control lists for 9 key toxic target proteins, suitable for the graded control of LCMs, management recommendations are provided based on toxicity levels. These lists were validated for reliability and offer reliable toxicity predictions for LCMs. SHAP analysis points to electronic properties, molecular shape, and structural characteristics of LCMs as primary health impact factors. As the first study integrating machine learning with computational toxicology to outline LCMs health impacts, it aims to enhance public understanding of LCM toxicity risks and support the development of environmental standards, effective management of LCM production and emissions, and reduction of public exposure risks.

10.
Angew Chem Int Ed Engl ; : e202408426, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177728

ABSTRACT

Isodesmic reactions, in which chemical bonds are redistributed between substrates and products, provide a general and powerful strategy for both biological and chemical synthesis. However, most isodesmic reactions involve either metathesis or functional-group transfer. Here, we serendipitously discovered a novel isodesmic reaction of indoles and anilines that proceeds intramolecularly under weakly acidic conditions. In this process, the five-membered ring of the indole motif is broken and a new indole motif is constructed on the aniline side, accompanied by the formation of a new aniline motif. Mechanistic studies revealed the pivotal role of σ→π* hyperconjugation on the nitrogen atom of the indole motif in driving this unusual isodesmic reaction. Furthermore, we successfully synthesized a diverse series of polycyclic indole derivatives; among quinolines, potential antitumor agents were identified using cellular and in vivo experiments, thereby demonstrating the synthetic utility of the developed methodology.

11.
J Orthop Surg Res ; 19(1): 485, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152460

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is a malignant bone tumor that commonly occurs in children and adolescents under the age of 20. Dysregulation of microRNAs (miRNAs) is an important factor in the occurrence and progression of OS. MicroRNA miR-744-5p is aberrantly expressed in various tumors. However, its roles and molecular targets in OS remain unclear. METHODS: Differentially expressed miRNAs in OS were analyzed using the Gene Expression Omnibus dataset GSE65071, and the potential hub miRNA was identified through weighted gene co-expression network analysis. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of miR-744-5p in OS cell lines. In vitro experiments, including CCK-8 assays, colony formation assays, flow cytometry apoptosis assays, and tube formation assays, were performed to explore the effects of miR-744-5p on OS cell biological behaviors. The downstream target genes of miR-744-5p were predicted through bioinformatics, and the binding sites were validated by a dual-luciferase reporter assay. RESULTS: The lowly expressed miRNA, miR-744-5p, was identified as a hub miRNA involved in OS progression through bioinformatic analysis. Nuclear factor I X (NFIX) was confirmed as a direct target for miR-744-5p in OS. In vitro studies revealed that overexpression of miR-744-5p could restrain the growth of OS cells, whereas miR-744-5p inhibition showed the opposite effect. It was also observed that treatment with the conditioned medium from miR-744-5p-overexpressed OS cells led to poorer proliferation and angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, NFIX overexpression restored the suppression effects of miR-744-5p overexpression on OS cell growth and HUVECs angiogenesis. CONCLUSION: Our results indicated that miR-744-5p is a potential tumor-suppressive miRNA in OS progression by targeting NFIX to restrain the growth of OS cells and angiogenesis in HUVECs.


Subject(s)
Bone Neoplasms , Cell Proliferation , MicroRNAs , NFI Transcription Factors , Neovascularization, Pathologic , Osteosarcoma , Humans , Apoptosis/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Neovascularization, Pathologic/genetics , NFI Transcription Factors/genetics , NFI Transcription Factors/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology
12.
Cell Death Dis ; 15(8): 597, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154024

ABSTRACT

The metastasis-associated protein (MTA) family plays a crucial role in the development of breast cancer, a common malignancy with a high incidence rate among women. However, the mechanism by which each member of the MTA family contributes to breast cancer progression is poorly understood. In this study, we aimed to investigate the roles of MTA1, MTA3, and tripartite motif-containing 21 (TRIM21) in the proliferation, invasion, epithelial-mesenchymal transition (EMT), and stem cell-like properties of breast cancer cells in vivo and in vitro. The molecular mechanisms of the feedback loop between MTA1 and MTA3/TRIM21 regulated by estrogen were explored using Chromatin immunoprecipitation (ChIP), luciferase reporter, immunoprecipitation (IP), and ubiquitination assays. These findings demonstrated that MTA1 acts as a driver to promote the progression of breast cancer by repressing the transcription of tumor suppressor genes, including TRIM21 and MTA3. Conversely, MTA3 inhibited MTA1 transcription and TRIM21 regulated MTA1 protein stability in breast cancer. Estrogen disrupted the balance between MTA1 and MTA3, as well as between MTA1 and TRIM21, thereby affecting stemness and the EMT processes in breast cancer. These findings suggest that MTA1 plays a vital role in stem cell fate and the hierarchical regulatory network of EMT through negative feedback loops with MTA3 or TRIM21 in response to estrogen, supporting MTA1, MTA3, and TRIM21 as potential prognostic biomarkers and MTA1 as a treatment target for future breast cancer therapies.


Subject(s)
Breast Neoplasms , Epithelial-Mesenchymal Transition , Estrogens , Histone Deacetylases , Neoplastic Stem Cells , Repressor Proteins , Trans-Activators , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Repressor Proteins/metabolism , Repressor Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Estrogens/pharmacology , Estrogens/metabolism , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Animals , Gene Expression Regulation, Neoplastic/drug effects , Mice , Cell Proliferation/drug effects , Cell Line, Tumor , Feedback, Physiological/drug effects , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Mice, Nude , MCF-7 Cells , Mice, Inbred BALB C , Neoplasm Proteins
13.
Front Neurosci ; 18: 1435185, 2024.
Article in English | MEDLINE | ID: mdl-39156629

ABSTRACT

Introduction: The activation of cerebral endothelial cells (CECs) has recently been reported to be the earliest acute neuroinflammation event in the CNS during sepsis-associated encephalopathy (SAE). Importantly, adenosine-to-inosine (A-to-I) RNA editing mediated by ADARs has been associated with SAE, yet its role in acute neuroinflammation in SAE remains unclear. Methods: Our current study systematically analyzed A-to-I RNA editing in cerebral vessels, cerebral endothelial cells (CECs), and microglia sampled during acute neuroinflammation after treatment in a lipopolysaccharide (LPS)-induced SAE mouse model. Results: Our results showed dynamic A-to-I RNA editing activity changes in cerebral vessels during acute neuroinflammation. Differential A-to-I RNA editing (DRE) associated with acute neuroinflammation were identified in these tissue or cells, especially missense editing events such as S367G in antizyme inhibitor 1 (Azin1) and editing events in lincRNAs such as maternally expressed gene 3 (Meg3), AW112010, and macrophage M2 polarization regulator (Mm2pr). Importantly, geranylgeranyl diphosphate synthase 1 (Ggps1) and another three genes were differentially edited across cerebral vessels, CECs, and microglia. Notably, Spearman correlation analysis also revealed dramatic time-dependent DRE during acute neuroinflammation, especially in GTP cyclohydrolase1 (Gch1) and non-coding RNA activated by DNA damage (Norad), both with the editing level positively correlated with both post-LPS treatment time and edited gene expression in cerebral vessels and CECs. Discussion: The findings in our current study demonstrate substantial A-to-I RNA editing changes during acute neuroinflammation in SAE, underlining its potential role in the disease.

14.
Int Immunopharmacol ; 141: 112928, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39159566

ABSTRACT

Psoriasis is a prevalent chronic inflammatory and immunological disorder. Its lesions are present as scaly erythema or plaques. Disruptions in the body's immune system play a significant role in developing psoriasis. Recent evidence suggests a potential role of the gut microbiome in autoimmune diseases. Short-chain fatty acids (SCFAs) are the primary metabolites created by gut microbes and play a crucial fuction in autoimmunity. SCFAs act on various cells by mediating signaling to participate in host physiological and pathological processes. These processes encompass body metabolism, maintenance of intestinal barrier function, and immune system modulation. SCFAs can regulate immune cells to enhance the body's immune function, potentially influencing the prevention and treatment of psoriasis. However, the mechanisms underlying the role of SCFAs in psoriasis remain incompletely understood. This paper examines the relationship between SCFAs and psoriasis, elucidating how SCFAs influence the immune system, inflammatory response, and gut barrier in psoriasis. According to the study, in psoriasis, SCFAs have been shown to regulate neutrophils, macrophages, and dendritic cells in the adaptive immune system, as well as T and B cells in the innate immune system. Additionally, we explore the role of SCFAs in psoriasis by maintaining intestinal barrier function, restoring intestinal ecological homeostasis, and investigating the potential therapeutic benefits of SCFAs for psoriasis.

15.
J Nat Prod ; 87(8): 2034-2044, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39126395

ABSTRACT

Ten new drimane meroterpenoids talarines A-J (1-10), along with six known analogues (11-16), were isolated from desert soil-derived fungus Talaromyces pinophilus LD-7. Their 2D structures were elucidated by comprehensive interpretation of NMR and HRESIMS data. Electronic circular dichroism calculation was used to establish their absolute configurations. Compounds 2, 10, and 11 showed antiviral activities toward vesicular stomatitis virus with IC50 values of 18, 15, and 23 nM, respectively. The structure-bioactivity relationship indicated that chlorine substitution at C-5 contributed greatly to their antiviral activities. Finally, we identified a new halogenase outside the biosynthetic gene cluster, which was responsible for C-5 halogenation of the precursor isocoumarin 17 as a tailoring step in chlorinated meroterpenoids assembly.


Subject(s)
Antiviral Agents , Talaromyces , Talaromyces/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Molecular Structure , Terpenes/pharmacology , Terpenes/chemistry , Terpenes/isolation & purification , Biosynthetic Pathways , Structure-Activity Relationship , Halogenation , Polycyclic Sesquiterpenes/pharmacology
16.
Org Lett ; 26(33): 7037-7042, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39141560

ABSTRACT

α-Silyl alcohols are powerful structural motifs for pharmaceutical chemistry, materials chemistry, and organic synthesis. The limitations of current synthetic techniques encompass a requirement for difficult-to-obtain silyl precursors, noble-metal catalysts, and narrow substrate scopes. Here, we developed a general synthetic method for α-silyl alcohols through electroreductive cross-coupling of aldehydes and chlorosilane. This method features easily available reagents, mild conditions, and a wide substrate scope. The establishment of this protocol will provide an alternative for access to α-silyl alcohols.

17.
BMC Cardiovasc Disord ; 24(1): 432, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152369

ABSTRACT

BACKGROUND: Heart failure (HF), which is caused by cardiac overload and injury, is linked to significant mortality. Writers of RNA modification (WRMs) play a crucial role in the regulation of epigenetic processes involved in immune response and cardiovascular disease. However, the potential roles of these writers in the immunological milieu of HF remain unknown. METHODS: We comprehensively characterized the expressions of 28 WRMs using datasets GSE145154 and GSE141910 to map the cardiac immunological microenvironment in HF patients. Based on the expression of WRMs, the immunological cells in the datasets were scored. RESULTS: Single-cell transcriptomics analysis (GSE145154) revealed immunological dysregulation in HF as well as differential expression of WRMs in immunological cells from HF and non-HF (NHF) samples. WRM-scored immunological cells were positively correlated with the immunological response, and the high WRM score group exhibited elevated immunological cell infiltration. WRMs are involved in the differentiation of T cells and myeloid cells. WRM scores of T cell and myeloid cell subtypes were significantly reduced in the HF group compared to the NHF group. We identified a myogenesis-related resident macrophage population in the heart, Macro-MYL2, that was characterized by an increased expression of cardiomyocyte structural genes (MYL2, TNNI3, TNNC1, TCAP, and TNNT2) and was regulated by TRMT10C. Based on the WRM expression pattern, the transcriptomics data (GSE141910) identified two distinct clusters of HF samples, each with distinct functional enrichments and immunological characteristics. CONCLUSION: Our study demonstrated a significant relationship between the WRMs and immunological microenvironment in HF, as well as a novel resident macrophage population, Macro-MYL2, characterized by myogenesis. These results provide a novel perspective on the underlying mechanisms and therapeutic targets for HF. Further experiments are required to validate the regulation of WRMs and Macro-MYL2 macrophage subtype in the cardiac immunological milieu.


Subject(s)
Gene Expression Profiling , Heart Failure , Macrophages , Single-Cell Analysis , Transcriptome , Humans , Heart Failure/genetics , Heart Failure/immunology , Heart Failure/metabolism , Macrophages/metabolism , Macrophages/immunology , Databases, Genetic , Cellular Microenvironment , RNA Processing, Post-Transcriptional , Animals , Case-Control Studies , Gene Expression Regulation
18.
Fitoterapia ; 178: 106189, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39154852

ABSTRACT

Swertia Mussotti is used as febrifuge, analgesic and to treat calculous cholecystitis, however, the underling mechanism remains unclear. This study investigates the therapeutic effect of the active fraction named iridoid and xanthone glycoside (IXG) extracted from S. mussotii on six animal models related to calculous cholecystitis and its complications, and to explore its potential target proteins. Four main compounds including swertiamarin (STR), sweroside (SRS), gentiopicroside (GPS) and mangiferin (MGR) were identified from the IXG by UHPLC-TOF-MS. The in vivo experiments results confirmed that IXG significantly decreased the level of total bilirubin (TBIL), direct bilirubin (DBIL) and cyclooxygenase-2 (COX2) in calculous cholecystitis. IXG treatment dramatically reduced the number of twists and the time of clicking foot in 2nd phase induced by glacial acetic acid and formalin, however, no effect was showed on central pain established by hot plate test. IXG also significantly decreased the anal temperature induced by yeast and 2,4-dinitrophenol. These results indicated that IXG alleviate calculous cholecystitis and its clinical symptom. In addition, IXG suppressed the expression of Prostaglandin E2 (PGE2) in vitro. Mechanistically, COX2 was identified as the direct target of IXG in RAW264.7 cells, and downregulated the protein levels of COX2. The results confirmed that IXG ameliorates calculous cholecystitis and its clinical symptom (pain and fever) by suppressing the production of PGE2 through targeting COX2.

19.
Mediators Inflamm ; 2024: 8828367, 2024.
Article in English | MEDLINE | ID: mdl-39144184

ABSTRACT

Background: Bladder cancer (BC) is one of the most common malignancies of the urogenital system. This study assessed the nucleotide-binding oligomerization domain and leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) in BC as well as the effects of cryptotanshinone on changes in BC malignant behaviors and NLRP3 expression under a lipopolysaccharide (LPS)-induced inflammatory microenvironment. Methods: BC tissue specimens from 62 patients were collected for immunohistochemical detection of NLRP3 protein. BC and normal urothelial cell lines were cultured for the detection of NLRP3 mRNA and protein. Then, BC cells were pretreated with LPS to mimic the inflammatory tumor microenvironment. Next, these cells were incubated with a low or high dose of cryptotanshinone to assess its effects on tumor cell malignant behaviors as well as transfected with NLRP3 cDNA to confirm the role of NLRP3 in BC cells in vitro. Results: High NLRP3 expression was associated with larger tumor diameters (>2 cm), muscle invasion, and metastasis. The levels of NLRP3 mRNA and protein were greater in BC cells than in normal urothelial cells. LPS pretreatment significantly promoted NLRP3 and inflammatory cytokine expression in BC cells, and induced cell viability, migration, and invasion. However, cryptotanshinone was able to reduce the LPS-induced increase of NLRP3 and inflammatory cytokine expression as well as the BC cell malignant progression. NLRP3 overexpression using NLRP3 cDNA further promoted BC cell malignant progression after LPS stimulation and reversed cryptotanshinone-reduced LPS-induced BC cell malignant behaviors. Conclusion: NLRP3 might possess oncogenic activity in BC, and the antitumor activity of cryptotanshinone in BC in vitro might be related to its inhibition of NLRP3 expression.


Subject(s)
Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Phenanthrenes , Urinary Bladder Neoplasms , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Phenanthrenes/pharmacology , Male , Cell Line, Tumor , Female , Middle Aged , Tumor Microenvironment/drug effects , Aged , Cell Movement/drug effects , Cell Survival/drug effects , Inflammation/metabolism
20.
Sci Rep ; 14(1): 18994, 2024 08 16.
Article in English | MEDLINE | ID: mdl-39152194

ABSTRACT

As the burgeoning field of Artificial Intelligence (AI) continues to permeate the fabric of healthcare, particularly in the realms of patient surveillance and telemedicine, a transformative era beckons. This manuscript endeavors to unravel the intricacies of recent AI advancements and their profound implications for reconceptualizing the delivery of medical care. Through the introduction of innovative instruments such as virtual assistant chatbots, wearable monitoring devices, predictive analytic models, personalized treatment regimens, and automated appointment systems, AI is not only amplifying the quality of care but also empowering patients and fostering a more interactive dynamic between the patient and the healthcare provider. Yet, this progressive infiltration of AI into the healthcare sphere grapples with a plethora of challenges hitherto unseen. The exigent issues of data security and privacy, the specter of algorithmic bias, the requisite adaptability of regulatory frameworks, and the matter of patient acceptance and trust in AI solutions demand immediate and thoughtful resolution .The importance of establishing stringent and far-reaching policies, ensuring technological impartiality, and cultivating patient confidence is paramount to ensure that AI-driven enhancements in healthcare service provision remain both ethically sound and efficient. In conclusion, we advocate for an expansion of research efforts aimed at navigating the ethical complexities inherent to a technology-evolving landscape, catalyzing policy innovation, and devising AI applications that are not only clinically effective but also earn the trust of the patient populace. By melding expertise across disciplines, we stand at the threshold of an era wherein AI's role in healthcare is both ethically unimpeachable and conducive to elevating the global health quotient.


Subject(s)
Artificial Intelligence , Precision Medicine , Telemedicine , Artificial Intelligence/ethics , Humans , Precision Medicine/methods , Delivery of Health Care
SELECTION OF CITATIONS
SEARCH DETAIL