Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 336
Filter
1.
Chronobiol Int ; : 1-10, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953516

ABSTRACT

Shift work is a recognized work pattern for nurses worldwide. The disruption of shift workers' biological clocks usually leads to sleep disorders and affects their awareness at work. Eveningness and occupational stress might be effective in causing burnout syndrome. Therefore, this study aimed to evaluate the chronotype, job burnout and perceived stress among Chinese tertiary hospital nurses, and understand the predictors of circadian rhythm in this group. Between July and September 2020, 23 hospitals were randomly selected from 113 tertiary hospitals in Hunan Province. Twenty-five percent of the nurses working in each hospital were targeted for selection. 28.1% and 17.6% of nurses reported eveningness type and morningness type, respectively. The scores for emotional exhaustion, depersonalization, and perceived stress of eveningness nurses were higher than those of morningness counterparts. Eveningness nurses also reported a lower sense of personal accomplishment. Risk factors of eveningness included being under 30 years old, never exercising, having the stressors of late-night shifts and career development, higher levels of emotional exhaustion, sleep latency, sleep duration, and hypnotic use. Shifts may be unavoidable for nurses, nevertheless, understanding the predictors and related factors of chronotype for nurses is necessary for nursing educators and managers to develop a reasonable shift system and appropriate measures to assist nurses in adjusting their work.

2.
Anal Chem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957093

ABSTRACT

It is well-known that the bacterial microenvironment imposes restrictions on the growth and behavior of bacteria. The localized monitoring of microenvironmental factors is appreciated when consulting bacterial adaptation and behavior in the presence of chemical or mechanical stimuli. Herein, we developed a novel liquid crystal (LC) biosensor in a microsphere configuration for real-time 3D monitoring of the bacteria microenvironment, which was implemented by a microfluidic chip. As a proof of concept, a LC gel (LC-Gel) microsphere biosensor was prepared and employed in the localized pH changes of bacteria by observing the configuration change of LC under polarized optical microscopy. Briefly, the microsphere biosensor was constructed in core-shell configuration, wherein the core contained LCE7 (a nematic LC) doped with 4-pentylbiphenyl-4'-carboxylic acid (PBA), and the shell encapsulated the bacteria. The protonation of carboxyl functional groups of the PBA induced a change in charge density on the surface of LCE7 and the orientation of E7 molecules, resulting in the transitions of the LC nucleus from axial to bipolar. The developed LC-Gel microspheres pH sensor exhibited its dominant performance on localized pH real-time sensing with a resolution of 0.1. An intriguing observation from the prepared pH biosensor was that the diverse bacteria impelled distinct acidifying or alkalizing effects. Overall, the facile LC-Gel microsphere biosensor not only provides a versatile tool for label-free, localized pH monitoring but also opens avenues for investigating the effects of chemical and mechanical stimuli on cellular metabolism within bacterial microenvironments.

3.
Nat Mater ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951651

ABSTRACT

Solution-processed colloidal nanocrystals of lead halide perovskites have been intensively investigated in recent years in the context of optoelectronic devices, during which time their quantum properties have also begun to attract attention. Their unmatched ease of synthetic tunability and unique structural, optical and electronic properties, in conjunction with the confinement of carriers in three dimensions, have motivated studies on observing and controlling coherent light-matter interaction in these materials for quantum information technologies. This Review outlines the recent efforts and achievements in this direction. Particularly notable examples are the observation of coherent single-photon emission, evidence for superfluorescence and the realization of room-temperature coherent spin manipulation for ensemble samples, which have not been achieved for prototypical colloidal CdSe nanocrystals that have been under investigation for decades. This Review aims to highlight these results, point out the challenges ahead towards realistic applications and bring together the efforts of multidisciplinary communities in this nascent field.

4.
Nat Commun ; 15(1): 5465, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937478

ABSTRACT

Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges.

5.
Transplant Cell Ther ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838781

ABSTRACT

Preemptive therapy (PET) historically has been the primary strategy to reduce early-onset cytomegalovirus (CMV) reactivation after allogeneic hematopoietic cell transplantation (HCT) but is associated with antiviral-associated toxicities and increases in healthcare resource utilization and cost. Despite its high cost, letermovir (LTV) prophylaxis has largely supplanted PET due to its effectiveness and tolerability. Direct comparisons between LTV and PET approaches on economic and clinical outcomes after allogeneic HCT remain limited. Objective: To compare total cost of care (inpatient and outpatient) between LTV prophylaxis and PET through day+180 after allogeneic HCT. Adult allogeneic CMV seropositive (R+) HCT recipients who initiated LTV <30 days after HCT between 01/01/18 and 12/31/18 were matched 1:1 to allogeneic CMV R+ HCT recipients between 01/01/15 and 12/31/17 (PET cohort). Patients were grouped into high-risk (HR) or standard-risk (SR) for CMV to compare the LTV and PET cohorts. Direct costs for each patient's index HCT admission and all subsequent inpatient and outpatient care through day+180 after HCT were determined and converted into 2021 US dollars and then to Medicare proportional dollars (MPD). A secondary analysis using 2019 average wholesale price was conducted to specifically evaluate anti-CMV medication costs. There were a total of 176 patients with 54 HR CMV pairs and 34 SR CMV pairs. No differences in survival between LTV and PET for both HR and SR CMV groups were observed. The rate of clinically significant CMV infection decreased for both HR CMV (11/54, 20.4% versus 38/54, 70.4%, P < .001) and SR CMV (1/34, 2.9% versus 12/34, 35.3%, P < .001) patients who were given LTV prophylaxis with corresponding reductions in val(ganciclovir) and foscarnet (HR CMV only) use. Among HR CMV patients, LTV prophylaxis was associated with reductions in CMV-related readmissions (3/54, 5.6% versus 18/54, 33.3%, P < .001) and outpatient visits within the first 100 days after HCT (20 versus 25, P = .002), and a decreased median total cost of care ($36,018 versus $75,525, P < .001) in MPD was observed. For SR CMV patients on LTV, a significant reduction in the median inpatient cost ($15,668 versus $27,818, P < .001) was found, but this finding was offset by a higher median outpatient cost ($26,145 versus $20,307, P = .030) that was not CMV-driven. LTV prophylaxis is highly effective in reducing clinically significant CMV reactivations for both HR and SR HCT recipients. In this study, LTV prophylaxis was associated with a decreased total cost of care for HR CMV patients through day+180. Specifically, reductions in CMV-related readmissions, exposure to CMV-directed antiviral agents, and outpatient visits in the first 100 days after HCT were observed. SR CMV patients receiving LTV prophylaxis benefited by having a reduced inpatient cost of care due to lowered room and pharmacy costs.

6.
Biomed Pharmacother ; 176: 116902, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870626

ABSTRACT

Drug resistance in hepatocellular carcinoma has posed significant obstacles to effective treatment. Recent evidence indicates that, in addition to traditional gene mutations, epigenetic recoding plays a crucial role in HCC drug resistance. Unlike irreversible gene mutations, epigenetic changes are reversible, offering a promising avenue for preventing and overcoming drug resistance in liver cancer. This review focuses on various epigenetic modifications relevant to drug resistance in HCC and their underlying mechanisms. Additionally, we introduce current clinical epigenetic drugs and clinical trials of these drugs as regulators of drug resistance in other solid tumors. Although there is no clinical study to prevent the occurrence of drug resistance in liver cancer, the development of liquid biopsy and other technologies has provided a bridge to achieve this goal.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Drug Resistance, Neoplasm , Epigenesis, Genetic , Liver Neoplasms , Humans , Epigenesis, Genetic/drug effects , Drug Resistance, Neoplasm/genetics , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , Animals , Gene Expression Regulation, Neoplastic/drug effects , DNA Methylation/drug effects , DNA Methylation/genetics
7.
Biofabrication ; 16(4)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38914075

ABSTRACT

Accurate reproduction of human intestinal structure and functionin vitrois of great significance for understanding the development and disease occurrence of the gut. However, mostin vitrostudies are often confined to 2D models, 2.5D organ chips or 3D organoids, which cannot fully recapitulate the tissue architecture, microenvironment and cell compartmentalization foundin vivo. Herein, a centimeter-scale intestine tissue that contains intestinal features, such as hollow tubular structure, capillaries and tightly connected epithelium with invivo-likering folds, crypt-villi, and microvilli is constructed by 3D embedding bioprinting. In our strategy, a novel photocurable bioink composed of methacrylated gelatin, methacrylated sodium alginate and poly (ethylene glycol) diacrylate is developed for the fabrication of intestinal model. The Caco-2 cells implanted in the lumen are induced by the topological structures of the model to derive microvilli, crypt-villi, and tight junctions, simulating the intestinal epithelial barrier. The human umbilical vein endothelial cells encapsulated within the model gradually form microvessels, mimicking the dense capillary network in the intestine. This intestine-like tissue, which closely resembles the structure and cell arrangement of the human gut, can act as a platform to predict the therapeutic and toxic side effects of new drugs on the intestine.


Subject(s)
Bioprinting , Capillaries , Human Umbilical Vein Endothelial Cells , Intestines , Printing, Three-Dimensional , Humans , Caco-2 Cells , Capillaries/cytology , Intestines/cytology , Tissue Engineering , Alginates/chemistry , Polyethylene Glycols/chemistry , Tissue Scaffolds/chemistry , Intestinal Mucosa/cytology , Gelatin/chemistry
8.
Elife ; 132024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896455

ABSTRACT

Microbes strongly affect invasive plant growth. However, how phyllosphere and rhizosphere soil microbes distinctively affect seedling mortality and growth of invaders across ontogeny under varying soil nutrient levels remains unclear. In this study, we used the invader Ageratina adenophora to evaluate these effects. We found that higher proportions of potential pathogens were detected in core microbial taxa in leaf litter than rhizosphere soil and thus leaf inoculation had more adverse effects on seed germination and seedling survival than soil inoculation. Microbial inoculation at different growth stages altered the microbial community and functions of seedlings, and earlier inoculation had a more adverse effect on seedling survival and growth. The soil nutrient level did not affect microbe-mediated seedling growth and the relative abundance of the microbial community and functions involved in seedling growth. The effects of some microbial genera on seedling survival are distinct from those on growth. Moreover, the A. adenophora seedling-killing effects of fungal strains isolated from dead seedlings by non-sterile leaf inoculation exhibited significant phylogenetic signals, by which strains of Allophoma and Alternaria generally caused high seedling mortality. Our study stresses the essential role of A. adenophora litter microbes in population establishment by regulating seedling density and growth.


Subject(s)
Ageratina , Plant Leaves , Rhizosphere , Seedlings , Soil Microbiology , Ageratina/microbiology , Seedlings/microbiology , Seedlings/growth & development , Plant Leaves/microbiology , Plant Leaves/growth & development , Microbiota , Introduced Species , Germination
9.
Inflammation ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904871

ABSTRACT

Recent evidence has highlighted the functions of enhancers in modulating transcriptional machinery and affecting the development of human diseases including rheumatoid arthritis (RA). Enhancer RNAs (eRNAs) are RNA molecules transcribed from active enhancer regions. This study investigates the specific function of eRNA in gene transcription and osteoclastogenesis in RA. Regulator of G protein signaling 1 (RGS1)-associated eRNA was highly activated in osteoclasts according to bioinformatics prediction. RGS1 mRNA was increased in mice with collagen-induced arthritis as well as in M-CSF/soluble RANKL-stimulated macrophages (derived from monocytes). This was ascribed to increased RGS1 eRNA activity. Silencing of 5'-eRNA blocked the binding between forkhead box J3 (FOXJ3) and the RGS1 promoter, thus suppressing RGS1 transcription. RGS1 accelerated osteoclastogenesis through PLC-IP3R-dependent Ca2+ response. Knockdown of either FOXJ3 or RGS1 ameliorated arthritis severity, improved pathological changes, and reduced osteoclastogenesis and bone erosion in vivo and in vitro. However, the effects of FOXJ3 silencing were negated by RGS1 overexpression. In conclusion, this study demonstrates that the RGS1 eRNA-driven transcriptional activation of the FOXJ3/RGS1 axis accelerates osteoclastogenesis through PLC-IP3R dependent Ca2+ response in RA. The finding may offer novel insights into the role of eRNA in gene transcription and osteoclastogenesis in RA.

10.
Am J Cancer Res ; 14(5): 2055-2071, 2024.
Article in English | MEDLINE | ID: mdl-38859850

ABSTRACT

Thyroid cancer (THCA) is the most common endocrine malignancy, mainly affecting women's unilateral glandular lobes. However, for relapsed and distant metastasis of THCA patients, the existing early diagnosis and treatment methods were still insufficient, and a new method was urgently needed to diagnose and treat them. Nucleolar and coiled-body phosphoprotein 1 (NOLC1) was one of the most phosphorylated proteins in the cell, which was located mainly in the nucleolus. In addition, more and more studies have confirmed that NOLC1 plays a crucial role in various pathological processes, such as the occurrence and progression of cancer and viral infection. A previous study showed that NOLC1, as a member of RNA-binding protein, was significantly correlated with the prognosis of THCA patients. However, further exploration of NOLC1 in THCA is limited. To further explore the role of NOLC1 in THCA, we conducted expression and survival prognosis analysis of NOLC1 using multiple databases. We also evaluated the correlation between NOLC1 gene expression and clinical characteristics of THCA patients. Furthermore, we analyzed the relationship between NOLC1 and other genes, followed by enrichment analysis to investigate its metabolic pathways and molecular metabolism processes. Additionally, we examined the association between immune cell infiltration in tumor microenvironment and NOLC1. Notably, through vitro experiments, we confirmed the tumor suppressive effect of NOLC1 on the proliferation and migration of human THCA cells, providing evidence for clinical diagnosis of THCA. Furthermore, we confirmed the tumor suppressive effect of NOLC1 in vivo xenograft assay. To sum up, our results suggest that NOLC1 is a tumor suppressor gene for THCA.

11.
Eur J Med Chem ; 275: 116541, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38851056

ABSTRACT

Psammaplin A (PsA), a symmetrical bromotyrosine-derived disulfide marine metabolite, has been reported could inhibit HDAC1/2/3 through its thiol monomer. Inspired by the disuflide bond structure of this marine natural product, we designed and synthesized a series of PsA analogues, in which the disulfide bond of PsA was replaced with diselenide bond or cyclic disulfide/diselenide/selenenylsulfide motifs. We also studied the HDAC inhibition, cell growth inhibition, and apoptosis induction of these PsA analogues. The results showed that, all the synthetic diselenide analogues and cyclic selenenyl sulfide compounds exhibited better antiproferative activity than their counterpart of disulfide analogues. Among the prepared analogues, diselenide analogue P-503 and P-116 significantly increased the ability of inhibiting HDAC6 and induced apoptosis and G2/M cell cycle arrest. However, cyclic selenenylsulfides analogues P-111 lost its HDAC inhibitory ability and exhibited no effect on cell cycle and apoptosis, indicating that the anti-proliferative mechanism of cyclic selenenylsulfides analogues has changed.

12.
BMJ Open ; 14(6): e086489, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925704

ABSTRACT

INTRODUCTION: Depression is a major global health problem, with high prevalence rates of depressive symptoms observed among the elderly population in China, particularly exacerbating in rural areas. Due to a lack of professional mental health training and inadequate psychotherapy capacity within primary medical staff, rural elderly individuals grappling with depressive symptoms often encounter challenges in receiving timely diagnosis and treatment. In this landscape, the modified behavioural activation treatment (MBAT) emerges as a promising approach due to its practicality, ease of therapist training and application, patient acceptability, and broad applicability. However, existing evidence for MBAT mainly hails from developed countries, leaving a gap in its adaptation and implementation within rural China. This study aims to develop an MBAT training programme for primary medical staff to manage depressive symptoms among rural elderly and evaluate its effectiveness. METHODS AND ANALYSIS: A cluster randomised controlled trial will be conducted in 10 randomly selected township hospitals in Lengshuijiang and Lianyuan, Hunan Province. We aim to recruit 150 participants, with 5 township hospitals selected for each group, each consisting of 15 participants. The intervention group will implement the MBAT training programme, while the control group will receive usual care training programme. Depressive symptoms, psychosocial functioning, quality of life and satisfaction will be measured at baseline, immediately post-intervention, and at 3 and 6 months post-intervention. Effectiveness will be assessed using linear or generalised linear mixed models. ETHICS AND DISSEMINATION: This study has obtained approval from the Institutional Review Board of the Third Xiangya Hospital, Centre South University (No.: 2022-S261). Results will be disseminated through publication in international peer-reviewed journals and presentations at national and international conferences. TRIAL REGISTRATION NUMBER: ChiCTR2300074544.


Subject(s)
Depression , Rural Population , Humans , China , Depression/therapy , Aged , Randomized Controlled Trials as Topic , Female , Male , Quality of Life , Health Personnel/education , Health Personnel/psychology , Behavior Therapy/methods , Primary Health Care
13.
J Colloid Interface Sci ; 671: 354-373, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38815372

ABSTRACT

Berberine (Ber), an isoquinoline alkaloid, is a potential drug therapy for ulcerative colitis (UC) because of its anti-inflammatory activity, high biological safety, and few side effects. Nevertheless, its clinical application is hindered by its limited water solubility and low bioavailability. Currently, compared to synthetic nanocarriers, exosomes as carriers possess advantages such as low toxicity, high stability, and high specificity. Human placental mesenchymal stem cell-derived exosomes (HplMSC-Exos) have emerged as a promising drug delivery system, offering intrinsic anti-inflammatory and antioxidant activities. Therefore, we engineered MSC-Exos loaded with Ber (Exos-Ber) to enhance the solubility and bioavailability of Ber and for colon targeting, revealing a novel approach for treating UC with natural compounds. Structurally and functionally, Exos-Ber closely resembled unmodified Exos. Both in vitro and in vivo investigations confirmed the antioxidant and anti-inflammatory properties of Exos-Ber. Notably, Exos-Ber exhibited reparative effects on injured epithelial cells and reduced cellular apoptosis. Furthermore, Exos-Ber concurrently demonstrated anti-inflammatory and antioxidant activities, contributing to the mitigation of UC, possibly through its modulation of the MAPK signaling pathway. Overall, our findings demonstrate the potential of Exos-Ber as a promising therapeutic option for alleviating UC, highlighting its capacity to enhance the clinical applicability of Ber.


Subject(s)
Berberine , Colitis, Ulcerative , Exosomes , Mesenchymal Stem Cells , Exosomes/metabolism , Exosomes/chemistry , Colitis, Ulcerative/therapy , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Berberine/pharmacology , Berberine/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Humans , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Apoptosis/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Cells, Cultured , Female , Particle Size , Cell Survival/drug effects
14.
Chin J Cancer Res ; 36(2): 114-123, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38751440

ABSTRACT

Objective: Unresectable hepatocellular carcinoma (uHCC) continues to pose effective treatment options. The objective of this study was to assess the efficacy and safety of combining low-dose cyclophosphamide with lenvatinib, pembrolizumab and transarterial chemoembolization (TACE) for the treatment of uHCC. Methods: From February 2022 to November 2023, a total of 40 patients diagnosed with uHCC were enrolled in this small-dose, single-center, single-arm, prospective study. They received a combined treatment of low-dose cyclophosphamide with lenvatinib, pembrolizumab, and TACE. Study endpoints included progression-free survival (PFS), objective response rate (ORR), and safety assessment. Tumor response was assessed using the modified Response Evaluation Criteria in Solid Tumors (mRECIST), while survival analysis was conducted through Kaplan-Meier curve analysis for overall survival (OS) and PFS. Adverse events (AEs) were evaluated according to the National Cancer Institute Common Terminology Criteria for Adverse Events (version 5.0). Results: A total of 34 patients were included in the study. The median follow-up duration was 11.2 [95% confidence interval (95% CI), 5.3-14.6] months, and the median PFS (mPFS) was 15.5 (95% CI, 5.4-NA) months. Median OS (mOS) was not attained during the study period. The ORR was 55.9%, and the disease control rate (DCR) was 70.6%. AEs were reported in 27 (79.4%) patients. The most frequently reported AEs (with an incidence rate >10%) included abnormal liver function (52.9%), abdominal pain (44.1%), abdominal distension and constipation (29.4%), hypertension (20.6%), leukopenia (17.6%), constipation (17.6%), ascites (14.7%), and insomnia (14.7%). Abnormal liver function (14.7%) had the most common grade 3 or higher AEs. Conclusions: A combination of low-dose cyclophosphamide with lenvatinib, pembrolizumab, and TACE is safe and effective for uHCC, showcasing a promising therapeutic strategy for managing uHCC.

15.
Plant Dis ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764338

ABSTRACT

Blue honeysuckle (Lonicera caerulea L.) cultivation has gradually expanded in China but continues to be limited by challenges such as leaf spot disease. Between September 2022 and September 2023, a leaf spot disease was observed on approximately 30% of 'Lanjingling' blue honeysuckles grown in a 2.66 ha field (a total of about 11,000 plants) in Jiamusi city (130.47°E, 46.16°N), Heilongjiang Province, China. Affected plants displayed brown necrotic lesions on their leaves that gradually expanded in area until the leaves fell off the plant entirely. Small, 3 to 4 mm segments of infected tissue from 50 randomly selected leaves were surface sterilized with 75% ethanol for 30 s and 5% sodium hypochlorite (NaOCl) for 3 min, rinsed three times with sterile distilled water, dried on paper towels, and plated in 9 cm Petri dishes containing potato dextrose agar (PDA) (Yan et al. 2022). Five pathogens (LD-232, LD-233, LD-234, LD-235, and LD-236) were isolated on PDA and displayed a conidia morphology consistent with Pseudopithomyces spp. (Perelló et al. 2017). The fungal colonies on PDA were villiform, white, and whorled and had sparse aerial mycelium on the surface with black conidiomata. The conidia were obpyriform and dark brown, had 0 to 3 transverse and 0 to 1 longitudinal septa, and measured 9.00 to 15.30 µm × 5.70 to 9.30 µm in size (n = 50). Genomic DNA was extracted from a representative isolate, LD-232, for molecular verification and PCR amplification was performed with ITS1/ITS4 (White et al. 1990), LROR/LR7 (Carbone and Kohn 1999), and RPB2-5F2/RPB2-7CR (Liu et al. 1999) primers. Sequences of LD-232 ITS (OR835654), LSU (OR835652), and RPB2 (OR859769) revealed 99.8% (530/531 nt), 98.8% (639/647 nt), and 99.8% (1015/1017 nt) shared identity with Pseudopithomyces chartarum sequences (OP269600, OP237014, and MK434892), respectively (Wu et al. 2023). Bayesian inference (BI) was used to construct the phylogenies using Mr. Bayes v. 3.2.7 to confirm the identity of the isolates (Ariyawansa et al. 2015). Phylogenetic trees cannot be constructed based on the genes' concatenated sequences because selective strains do not have complete rDNA-ITS, LSU, and RPB2 sequences. Therefore, based on the morphological characteristics and molecular phylogeny, LD-232 was identified as P. chartarum (Perelló et al. 2017; Wu et al. 2023). A pathogenicity test was performed with six healthy, two-year-old 'Lanjingling' blue honeysuckle plants. Three plants were inoculated by spraying the LD-232 conidial suspension (1 × 106 spores/ml) or clean water as an experimental control condition (Wu et al. 2023; Yan et al. 2023). All plants were cultured in a greenhouse at 28℃ under a 12-h light/dark cycle, and each experiment was replicated three times. Typical leaf spot symptoms were observed on inoculated leaves after 10 days. The same pathogens were reisolated from infected leaves, displayed the same morphological and molecular traits, and were again identified as P. chartarum, confirming Koch's postulate. P. chartarum previously caused leaf spot disease on Tetrapanax papyrifer in China (Wu et al. 2023). To our knowledge, this is the first report of blue honeysuckle leaf spot caused by P. chartarum in China. Identification of P. chartarum as a disease agent on blue honeysuckle will help guide future management of leaf diseases for this economically important small fruit tree.

16.
Front Neurosci ; 18: 1181670, 2024.
Article in English | MEDLINE | ID: mdl-38737099

ABSTRACT

Given its high morbidity, disability, and mortality rates, ischemic stroke (IS) is a severe disease posing a substantial public health threat. Although early thrombolytic therapy is effective in IS treatment, the limited time frame for its administration presents a formidable challenge. Upon occurrence, IS triggers an ischemic cascade response, inducing the brain to generate endogenous protective mechanisms against excitotoxicity and inflammation, among other pathological processes. Stroke patients often experience limited recovery stages. As a result, activating their innate self-protective capacity [endogenous brain protection (EBP)] is essential for neurological function recovery. Acupuncture has exhibited clinical efficacy in cerebral ischemic stroke (CIS) treatment by promoting the human body's self-preservation and "Zheng Qi" (a term in traditional Chinese medicine (TCM) describing positive capabilities such as self-immunity, self-recovery, and disease prevention). According to research, acupuncture can modulate astrocyte activity, decrease oxidative stress (OS), and protect neurons by inhibiting excitotoxicity, inflammation, and apoptosis via activating endogenous protective mechanisms within the brain. Furthermore, acupuncture was found to modulate microglia transformation, thereby reducing inflammation and autoimmune responses, as well as promoting blood flow restoration by regulating the vasculature or the blood-brain barrier (BBB). However, the precise mechanism underlying these processes remains unclear. Consequently, this review aims to shed light on the potential acupuncture-induced endogenous neuroprotective mechanisms by critically examining experimental evidence on the preventive and therapeutic effects exerted by acupuncture on CIS. This review offers a theoretical foundation for acupuncture-based stroke treatment.

17.
Cell Biochem Biophys ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713401

ABSTRACT

OBJECTIVE: Panax quinquefolius saponins (PQS) and Panax notoginseng saponins (PNS) are key bioactive compounds in Panax quinquefolius L. and Panax notoginseng, commonly used in the treatment of clinical ischemic heart disease. However, their potential in mitigating myocardial ischemia-reperfusion injury remains uncertain. This study aims to evaluate the protective effects of combined PQS and PNS administration in myocardial hypoxia/reoxygenation (H/R) injury and explore the underlying mechanisms. METHODS: To investigate the involvement of HIF-1α/BNIP3 mitophagy pathway in the myocardial protection conferred by PNS and PQS, we employed small interfering BNIP3 (siBNIP3) to silence key proteins of the pathway. H9C2 cells were categorized into four groups: control, H/R, H/R + PQS + PNS, and H/R + PQS + PNS+siBNIP3. Cell viability was assessed by Cell Counting Kit-8, apoptosis rates determined via flow cytometry, mitochondrial membrane potential assessed with the JC-1 fluorescent probes, intracellular reactive oxygen species detected with 2',7'-dichlorodihydrofluorescein diacetate, mitochondrial superoxide production quantified with MitoSOX Red, and autophagic flux monitored with mRFP-GFP-LC3 adenoviral vectors. Autophagosomes and their ultrastructure were visualized through transmission electron microscopy. Moreover, mRNA and protein levels were analyzed via real-time PCR and Western blotting. RESULTS: PQS + PNS administration significantly increased cell viability, reduced apoptosis, lowered reactive oxygen species levels and mitochondrial superoxide production, mitigated mitochondrial dysfunction, and induced autophagic flux. Notably, siBNIP3 intervention did not counteract the cardioprotective effect of PQS + PNS. The PQS + PNS group showed downregulated mRNA expression of HIF-1α and BNIP3, along with reduced HIF-1α protein expression compared to the H/R group. CONCLUSIONS: PQS + PNS protects against myocardial H/R injury, potentially by downregulating mitophagy through the HIF-1α/BNIP3 pathway.

18.
Small ; : e2401392, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705862

ABSTRACT

Enhancing the utilization of visible-light-active semiconductors with an excellent apparent quantum efficiency (AQE) remains a significant and challenging goal in the realm of photocatalytic water splitting. In this study, a fully condensed sulfur-doped poly(heptazine imide) metalized with Na (Na-SPHI) is synthesized by an ionothermal method by using eutectic NaCl/LiCl mixture as the ionic solvent. Comprehensive characterizations of the obtained Na-SPHI reveal several advantageous features, including heightened light absorption, facilitated exciton dissociation, and expedited charge transfer. More importantly, solvated electron, powerful reducing agents, can be generated on the surface of Na-SPHI upon irradiation with visible light. Benefiting from above advantage, the Na-SPHI exhibits an excellent H2 evolution rate of 571.8 µmol·h-1 under visible light illumination and a super-high AQE of 61.7% at 420 nm. This research emphasizes the significance of the solvated electron on the surface of photocatalyst in overcoming the challenges associated with visible light-driven photocatalysis, showcasing its potential application in photocatalytic water splitting.

19.
BMC Cancer ; 24(1): 567, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711020

ABSTRACT

BACKGROUND: Pyroptosis is a type of programmed cell death mediated by the gasdermin family. Gasdermin B (GSDMB), as a member of gasdermin family, can promote the occurrence of cell pyroptosis. However, the correlations of the GSDMB expression in colorectal cancer with clinicopathological predictors, immune microenvironment, and prognosis are unclear. METHODS: Specimens from 267 colorectal cancer cases were analyzed by immunohistochemistry to determine GSDMB expression, CD3+, CD4+, and CD8+ T lymphocytes, CD20+ B lymphocytes, CD68+ macrophages, and S100A8+ immune cells. GSDMB expression in cancer cells was scored in the membrane, cytoplasm, and nucleus respectively. GSDMB+ immune cell density was calculated. Univariate and multivariate survival analyses were performed. The association of GSDMB expression with other clinicopathological variables and immune cells were also analyzed. Double immunofluorescence was used to identify the nature of GSDMB+ immune cells. Cytotoxicity assays and sensitivity assays were performed to detect the sensitivity of cells to 5-fluorouracil. RESULTS: Multivariate survival analysis showed that cytoplasmic GSDMB expression was an independent favorable prognostic indicator. Patients with positive cytoplasmic or nuclear GSDMB expression would benefit from 5-fluorouracil based chemotherapy. The assays in vitro showed that high GSDMB expression enhanced the sensitivity of colorectal cancer cells to 5-fluorouracil. Patients with positive membranous or nuclear GSDMB expression had more abundant S100A8+ immune cells in the tumor invasive front. Positive nuclear GSDMB expression indicated more CD68+ macrophages in the tumor microenvironment. Moreover, GSDMB+ immune cell density in the stroma was associated with a higher neutrophil percentage but a lower lymphocyte counts and monocyte percentage in peripheral blood. Furthermore, the results of double immunofluorescence showed that GSDMB co-expressed with CD68 or S100A8 in stroma cells. CONCLUSION: The GSDMB staining patterns are linked to its role in cancer progression, the immune microenvironment, systemic inflammatory response, chemotherapeutic efficacy, and prognosis. Colorectal cancer cells with high GSDMB expression are more sensitive to 5-fluorouracil. However, GSDMB expression in immune cells has different effects on cancer progression from that in cancer cells.


Subject(s)
Colorectal Neoplasms , Disease Progression , Gasdermins , Tumor Microenvironment , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/mortality , Male , Prognosis , Female , Middle Aged , Tumor Microenvironment/immunology , Aged , Biomarkers, Tumor/metabolism , Fluorouracil/therapeutic use , Fluorouracil/pharmacology , Neoplasm Proteins/metabolism , Immunohistochemistry , Adult , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Pyroptosis
20.
Crit Rev Oncol Hematol ; 198: 104360, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615872

ABSTRACT

Colorectal cancer (CRC) ranks as the third most prevalent malignancy worldwide. Despite the gradual expansion of therapeutic options for CRC, its clinical management remains a formidable challenge. And, because of the current dearth of technical means for early CRC screening, most patients are diagnosed at an advanced stage. Therefore, it is imperative to develop novel diagnostic and therapeutic tools for this disease. N6-methyladenosine (m6A), the predominant RNA modification in eukaryotes, can be recognized by m6A-specific methylated reading proteins to modulate gene expression. Studies have revealed that CRC disrupts m6A homeostasis through various mechanisms, thereby sustaining aberrant signal transduction and promoting its own progression. Consequently, m6A-based diagnostic and therapeutic strategies have garnered widespread attention. Although utilizing m6A as a biomarker and drug target has demonstrated promising feasibility, existing observations primarily stem from preclinical models; henceforth necessitating further investigation and resolution of numerous outstanding issues.


Subject(s)
Adenosine , Colorectal Neoplasms , Signal Transduction , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...