Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.088
Filter
1.
Phytochem Anal ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39108034

ABSTRACT

INTRODUCTION: Magnoliae officinalis cortex (MOC) is an important traditional Chinese medicine (TCM), and both raw and stir-fried MOC were commonly used in clinic. OBJECTIVES: This study aimed to discriminate MOC and MOC stir-fried with ginger juice (MOCG) using an integrated approach combining liquid chromatography/mass spectrometry (LC/MS), gas chromatography/mass spectrometry (GC/MS), intelligent sensors, and chemometrics. METHODS: The sensory characters of the samples were digitalized using intelligent sensors, i.e., colorimeter, electronic nose, and electronic tongue. Meanwhile, the chemical profiles of the samples were analyzed using LC/MS and GC/MS methods. Chemometric models were constructed to discriminate samples of MOC and MOCG based on not only the sensory data but also the chemical data. RESULTS: The differential sensory characters (L* and b* from colorimeter, ANS from electronic tongue, W1S and W2S from electronic nose) and the differential chemical compounds (26 and 11 compounds from LC/MS and GC/MS, respectively) were discovered between MOC and MOCG. Furthermore, twelve differential compounds showed good relations with differential sensory characters. Finally, artificial neural network models were established to discriminate samples of MOC and MOCG, in which W1S, W2S, ANS, b*, and 10 differential compounds were among the top 10 important variables, respectively. CONCLUSION: Samples of MOC and MOCG can be discriminated not only by the digitalized data of color, taste, and scent detected by intelligent sensors but also by chemical information obtained from LC/MS and GC/MS using chemometrics. The variations in sensory characters and chemical compounds between MOC and MOCG partially resulted from the Maillard reaction products and the oxidation of some compounds in the stir-frying process.

2.
J Biomech ; 174: 112269, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39128410

ABSTRACT

Recent studies have suggested that irregular pulsation of intracranial aneurysm during the cardiac cycle may be potentially associated with aneurysm rupture risk. However, there is a lack of quantification method for irregular pulsations. This study aims to quantify irregular pulsations by the displacement and strain distribution of the intracranial aneurysm surface during the cardiac cycle using four-dimensional CT angiographic image data. Four-dimensional CT angiography was performed in 8 patients. The image data of a cardiac cycle was divided into approximately 20 phases, and irregular pulsations were detected in four intracranial aneurysms by visual observation, and then the displacement and strain of the intracranial aneurysm was quantified using coherent point drift and finite element method. The displacement and strain were compared between aneurysms with irregular and normal pulsations in two different ways (total and stepwise). The stepwise first principal strain was significantly higher in aneurysms with irregular than normal pulsations (0.20±0.01 vs 0.16±0.02, p=0.033). It was found that the irregular pulsations in intracranial aneurysms usually occur during the consecutive ascending or descending phase of volume changes during the cardiac cycle. In addition, no statistically significant difference was found in the aneurysm volume changes over the cardiac cycle between the two groups. Our method can successfully quantify the displacement and strain changes in the intracranial aneurysm during the cardiac cycle, which may be proven to be a useful tool to quantify intracranial aneurysm deformability and aid in aneurysm rupture risk assessment.

3.
Article in English | MEDLINE | ID: mdl-39134791

ABSTRACT

The urban heat island (UHI) effect has become increasingly prevalent and significant with the accelerated pace of urbanization, posing challenges for urban planners and policymakers. To reveal the spatiotemporal variations of the urban heat island effect in Jinan City, this study utilized Landsat satellite images from 2009, 2014, and 2019, employing the classic Mono-Window algorithm to extract land surface temperature (LST). Additionally, Geodetector was introduced to conduct a detailed analysis of the relationship between LST in Jinan City and land cover types (vegetation, water bodies, and buildings). The results indicate a significant increase in the severity of the urban heat island effect in Jinan from 2009 to 2019, with the central urban area consistently exhibiting a high-intensity core heat island. Suburban areas of Jinan show a clear trend of merging their heat island effects with the central urban area. The combined area of strong cool island effect zones and cool island effect zones within water bodies reaches 89.7%, while the combined proportion of heat island and strong heat island effect zones in building areas is 62.2%. Vegetation cover (FVC) exerts the greatest influence among all factors on the intensity level of the urban heat island effect. These findings provide a reliable basis for decision-making related to urban planning and construction in Jinan City.

4.
Int J Biol Macromol ; : 134328, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098663

ABSTRACT

Rhizoctonia solani is a soil-borne pathogen with 14 anastomosis groups (AGs), and different subgroups are genetically diverse. However, the genetic factors contributing to the pathogenicity of the fungus have not been well characterized. In this study, the genome of R. solani AG1-ZJ was sequenced. As the result, a 41.57 Mb draft genome containing 12,197 putative coding genes was obtained. Comparative genomic analysis of 11 different AGs revealed conservation and unique characteristics between the AGs. Furthermore, a novel effector family containing a 67 amino acid conserved domain unique in basidiomycetous fungi was characterized. Two effectors containing the conserved domain in AG4-JY were identified, and named as RsUEB1 and RsUEB2. Furthermore, the spray-induced gene silencing strategy was used to generate a dsRNA capable of silencing the conserved domain sequence of RsUEB1 and RsUEB2. This dsRNA can significantly reduce the expression of RsUEB1 and RsUEB2 and the pathogenicity of AG4-JY on foxtail millet, maize, rice and wheat. In conclusion, this study provides significant insights into the pathogenicity mechanisms of R. solani. The identification of the conserved domain and the successful use of dsRNA silencing of the gene containing the conserved domain will offer a new strategy for controlling sheath blight in cereal crops.

5.
Front Pharmacol ; 15: 1415844, 2024.
Article in English | MEDLINE | ID: mdl-38966558

ABSTRACT

Introduction: Aged-related brain damage and gut microbiome disruption are common. Research affirms that modulating the microbiota-gut-brain axis can help reduce age-related brain damage. Methods: Ginseng, esteemed in traditional Chinese medicine, is recognized for its anti-aging capabilities. However, previous Ginseng anti-aging studies have largely focused on diseased animal models. To this end, efforts were hereby made to explore the potential neuroprotective effects of fecal microbiota transplantation (FMT) from Ginseng-supplemented aged mice to those pre-treated with antibiotics. Results: As a result, FMT with specific modifications in natural aging mice improved animal weight gain, extended the telomere length, anti-oxidative stress in brain tissue, regulated the serum levels of cytokine, and balanced the proportion of Treg cells. Besides, FMT increased the abundance of beneficial bacteria of Lachnospiraceae, Dubosiella, Bacteroides, etc. and decreased the levels of potential pathogenic bacteria of Helicobacter and Lachnoclostridium in the fecal samples of natural aged mice. This revealed that FMT remarkably reshaped gut microbiome. Additionally, FMT-treated aged mice showed increased levels of metabolites of Ursolic acid, ß-carotene, S-Adenosylmethionine, Spermidine, Guanosine, Celecoxib, Linoleic acid, etc., which were significantly positively correlated with critical beneficial bacteria above. Additionally, these identified critical microbiota and metabolites were mainly enriched in the pathways of Amino acid metabolism, Lipid metabolism, Nucleotide metabolism, etc. Furthermore, FMT downregulated p53/p21/Rb signaling and upregulated p16/p14, ATM/synapsin I/synaptophysin/PSD95, CREB/ERK/AKT signaling in brain damage following natural aging. Discussion: Overall, the study demonstrates that reprogramming of gut microbiota by FMT impedes brain damage in the natural aging process, possibly through the regulation of microbiota-gut-brain axis.

6.
Med Biol Eng Comput ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008187

ABSTRACT

The mechanics of the trabecular bone is related to its structure; this work aimed to propose a simple projection method to clarify the correlation between the principal mechanical direction (PMD) and the principal microstructural direction (PMSD) of trabecular bones from osteoporotic femoral heads. A total of 529 trabecular cubes were cropped from five osteoporotic femoral heads. The micro computed tomography (µCT) sequential images of each cube were first projected onto the three Cartesian coordinate planes to have three overlapped images, and the trabecular orientation distribution in the three images was analyzed. The PMSD corresponding to the greatest distribution frequency of the trabecular orientation in the three images was defined. Then, the voxel finite element (FE) models of the cubes were reconstructed and simulated to obtain their compliance matrices, and the matrices were subjected to transversal rotation to find their maximum elastic constants. The PMD corresponding to the maximum elastic constant was defined. Subsequently, the correlation of the defined PMSD and PMD was analyzed. The results showed that PMSD and PMD of the trabecular cubes did not show a significant difference at the xy- and yz-planes except that at the zx-plane. Despite this, the mean PMSD-PMD deviations at the three coordinate planes were close to 0°, and the PMSD-PMD fitting to the line PMSD = PMD demonstrated their high correlation. This study might be helpful to identify the loading direction of anisotropic trabecular bones in experiments by examining the PMSD and also to guide bone scaffold design for bone tissue repair.

7.
Clin Respir J ; 18(7): e13808, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39012086

ABSTRACT

BACKGROUND: Limited data is available regarding the weaning techniques employed for mechanical ventilation (MV) in elderly patients with dementia in China. OBJECTIVE: The primary objective of this study is to investigate diverse weaning methods in relation to the prognostic outcomes of elderly patients with dementia undergoing MV in the intensive care unit (ICU). Specifically, we seek to compare the prognosis, likelihood of successful withdrawal from MV, and the length of stay (LOS) in the ICU. METHODS: The study was conducted as a randomized controlled trial, encompassing a group of 169 elderly patients aged ≥ 65 years with dementia who underwent MV. Three distinct weaning methods were used for MV cessation, namely, the tapering parameter, spontaneous breathing trial (SBT), and SmartCare (Dräger, Germany). RESULTS: In the tapering parameter group, the LOS in the ICU was notably prolonged compared to both the SBT and SmartCare groups. However, no statistically significant differences were observed among the groups with respect to demographic characteristics, such as age and sex, as well as factors including the rationale for ICU admission, cause of MV, MV mode, oxygenation index, hemoglobin levels, albumin levels, ejection fraction, sedation and analgesia practices, tracheotomy, duration of MV, successful extubation, successful weaning, incidences of ventilator-associated pneumonia, and overall prognosis. CONCLUSIONS: Both the SBT and SmartCare withdrawal methods demonstrated a reduction in the duration of MV and LOS in the ICU when compared to the tapering parameter method. TRIAL REGISTRATION: Chinese Clinical Trial Registry: ChiCTR1900028449.


Subject(s)
Dementia , Intensive Care Units , Length of Stay , Respiration, Artificial , Ventilator Weaning , Humans , Ventilator Weaning/methods , Male , Female , Aged , Dementia/therapy , Respiration, Artificial/methods , Length of Stay/statistics & numerical data , China/epidemiology , Prognosis , Aged, 80 and over
8.
Sensors (Basel) ; 24(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39066128

ABSTRACT

Visible near-infrared spectroscopy (VNIR) is extensively researched for obtaining soil property information due to its rapid, cost-effective, and environmentally friendly advantages. Despite its widespread application and significant achievements in soil property analysis, current soil prediction models continue to suffer from low accuracy. To address this issue, we propose a convolutional neural network model that can achieve high-precision soil property prediction by creating 2D multi-channel inputs and applying a multi-scale spatial attention mechanism. Initially, we explored two-dimensional multi-channel inputs for seven soil properties in the public LUCAS spectral dataset using the Gramian Angular Field (GAF) method and various preprocessing techniques. Subsequently, we developed a convolutional neural network model with a multi-scale spatial attention mechanism to improve the network's extraction of relevant spatial contextual information. Our proposed model showed superior performance in a statistical comparison with current state-of-the-art techniques. The RMSE (R²) values for various soil properties were as follows: organic carbon content (OC) of 19.083 (0.955), calcium carbonate content (CaCO3) of 24.901 (0.961), nitrogen content (N) of 0.969 (0.933), cation exchange capacity (CEC) of 6.52 (0.803), pH in H2O of 0.366 (0.927), clay content of 4.845 (0.86), and sand content of 12.069 (0.789). Our proposed model can effectively extract features from visible near-infrared spectroscopy data, contributing to the precise detection of soil properties.

9.
Pharmacol Res ; 207: 107323, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053865

ABSTRACT

The natural aging process is accompanied by changes in exosomes, gut microbiota, and metabolites. This study aimed to reveal the anti-aging effect and mechanisms of fecal microbiota transplantation (FMT) from young donors on the natural aging process in mice by analyzing exosomes, gut microbiota, and metabolomics. Aging-relevant telomeric length, oxidative stress indexes in brain tissue, and serum cytokine levels were measured. Flow analysis of T-regulatory (Treg), CD4+, and CD8+ cells was performed, and the expression levels of aging-related proteins were quantified. High-throughput sequencing technology was used to identify differentially expressed serum exosomal miRNAs. Fecal microbiota was tested by 16 S rDNA sequencing. Changes in fecal metabolites were analyzed by UPLC-Q-TOF/MS. The results indicated that the expression of mmu-miR-7010-5p, mmu-miR-376b-5p, mmu-miR-135a-5p, and mmu-miR-3100-5p by serum exosomes was down-regulated and the abundance of opportunistic bacteria (Turicibacter, Allobaculum, Morganella.) was decreased, whereas the levels of protective bacteria (Akkermansia, Muribaculaceae, Helicobacter.) were increased after FMT. Metabolic analysis identified 25 potential biomarkers. Correlation analysis between the gut microbiota and metabolites suggested that the relative abundance of protective bacteria was positively correlated with the levels of spermidine and S-adenosylmethionine. The study indicated that FMT corrected brain injury due to aging via lipid metabolism, the metabolism of cofactors and vitamins, and amino acid metabolism.

10.
World Neurosurg ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038647

ABSTRACT

BACKGROUND: Despite effective treatment for aneurysmal subarachnoid hemorrhage (aSAH), delayed cerebral ischemia (DCI) is a common complication that has a significant impact on the recovery of neurologic function. In this study, we aimed to investigate the efficacy of hyperbaric oxygen therapy (HBOT) in the rehabilitation treatment of aSAH. METHODS: In this study, a total of 98 patients with aSAH and 25 healthy individuals were recruited. The patients included 51 who received HBOT after the effective treatment of aSAH and 47 who received only physical rehabilitation. The modified Rankin Scale (mRS) and Mini-Mental Status Examination (MMSE) were applied for all patients at 7 days after aSAH to determine baseline neurologic deficits and cognitive function. The Attention Network Test (ANT) was performed at the sixth month. RESULTS: The results indicated that the patients receiving HBOT had a lower incidence of DCI (P = 0.026) and better improvement of executive control function (P < 0.001) of ANT compared to those without HBOT. However, there were no differences in orienting, alerting, mean reaction time, and accuracy between the 2 groups. CONCLUSIONS: In summary, early HBOT reduced the DCI rate in aSAH patients and consequently promoted improvement of the executive control function of ANT.

11.
J Pestic Sci ; 49(2): 104-113, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38882710

ABSTRACT

Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of U. virens explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of U. virens were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery.

12.
Opt Express ; 32(8): 14674-14684, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859405

ABSTRACT

Miniature acoustic sensors with high sensitivity are highly desired for applications in medical photoacoustic imaging, acoustic communications and industrial nondestructive testing. However, conventional acoustic sensors based on piezoelectric, piezoresistive and capacitive detectors usually require a large element size on a millimeter to centimeter scale to achieve a high sensitivity, greatly limiting their spatial resolution and the application in space-confined sensing scenarios. Herein, by using single-crystal two-dimensional gold flakes (2DGFs) as the sensing diaphragm of an extrinsic Fabry-Perot interferometer on a fiber tip, we demonstrate a miniature optical acoustic sensor with high sensitivity. Benefiting from the ultrathin thickness (∼8 nm) and high reflectivity of the 2DGF, the fiber-tip acoustic sensor gives an acoustic pressure sensitivity of ∼300 mV/Pa in the frequency range from 100 Hz to 20 kHz. The noise-equivalent pressure of the fiber-tip acoustic sensor at the frequency of 13 kHz is as low as 62.8 µPa/Hz1/2, which is one or two orders of magnitude lower than that of reported optical acoustic sensors with the same size.

13.
J Coll Physicians Surg Pak ; 34(6): 672-676, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840349

ABSTRACT

OBJECTIVE: To explore the preventive efficacy of antibiotics following surgical removal of the impacted mandibular third molars and screen the potential risk factors. STUDY DESIGN: A cohort trial. Place and Duration of the Study: Department of Oral and Maxillofacial Surgery, Zhejiang University School of Medicine, Stomatology Hospital, Hangzhou, China, from August 2021 to 2022. METHODOLOGY: Cases with impacted mandibular third molar were divided into two groups based on antibiotics use. The primary outcome variable post-operative infection, secondary clinical parameter analgesics intake, and other variables (the operative time, the history of pericoronitis, and wound closure) were documented. RESULTS: The post-operative infections occurred in 3.64% (n = 12) of the 330 cases (n = 330); 3.01% in the antibiotic group (n = 166) and 4.27% in the control group (n = 164, OR = 1.44, 95% CI: 0.49 to 4.06; p = 0.54). Concerning secondary outcome measures, the analgesics that the antibiotic group took was 5.40, and the control group took was 5.95 (95% CI = -0.21 to 1.30; p = 0.16). For those with post-operative infections, the average operative time was 22.83 minutes, whereas for those without post-operative infections it was 14.87 minutes (95% CI = -0.26 to 15.67; p = 0.04). When the operative time was greater than or equal to 15 minutes, it was related to more analgesics use (95% CI: -0.43 to 1.93; p <0.05), also was the history of pericoronitis (95% CI = 0.04 to 1.54; p = 0.04). CONCLUSION: Antibiotics are unnecessary for preventing post-operative infections or minimising analgesic requirements following extraction of the impacted mandibular third molars; operative time and pericoronitis showed a suppressive influence on post-operative recovery. KEY WORDS: Impacted molars, Antibiotics, Analgesics, Operative time, Pericoronitis.


Subject(s)
Anti-Bacterial Agents , Antibiotic Prophylaxis , Molar, Third , Surgical Wound Infection , Tooth Extraction , Tooth, Impacted , Humans , Molar, Third/surgery , Male , Tooth, Impacted/surgery , Female , Tooth Extraction/adverse effects , Adult , Surgical Wound Infection/prevention & control , Anti-Bacterial Agents/therapeutic use , Antibiotic Prophylaxis/methods , Mandible/surgery , Young Adult , China/epidemiology , Operative Time , Cohort Studies , Treatment Outcome
14.
Medicine (Baltimore) ; 103(24): e38456, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875407

ABSTRACT

Infective endophthalmitis is an ophthalmic infection that in severe cases can cause complete loss of vision. In children, the defense against infection is low and eye tissue is not fully developed, leading to increased vulnerability to endophthalmitis. Children may be unable to understand the symptoms; thus, developing a method for prevention and treatment of this disease in children is important. Therefore, we analyzed the clinical and pathogenic characteristics of infectious endophthalmitis in children and provided evidence for clinical treatment. The clinical data of 78 children (78 eyes) with infectious endophthalmitis were retrospectively analyzed. The clinical characteristics, pathogen distribution, drug sensitivity, clinical medication, and treatments were summarized and analyzed. In total, 74 (94.87%) had ocular infections caused by trauma and 75 (96.15%) were from rural townships. A total of 108 sterile specimens were examined, with a positive detection rate of 37.04%. The sensitivity rates of Gram-positive cocci and bacilli to vancomycin were 100%. The sensitivity rates of Gram-negative bacilli to ceftazidime, piperacillin/tazobactam, amikacin, gentamicin, ciprofloxacin, and levofloxacin were 100%. Of the 78 patients, 53 (67.95%) received intravitreal injection and 54 (69.23%) underwent vitrectomy. Trauma is the main factor leading to infectious endophthalmitis in children, wherein Gram-positive bacteria are the most common pathogens. Thus, a timely understanding of the pathogen and drug sensitivity is needed. Intravitreal injection and vitrectomy are effective treatments.


Subject(s)
Anti-Bacterial Agents , Endophthalmitis , Humans , Endophthalmitis/microbiology , Endophthalmitis/epidemiology , Endophthalmitis/drug therapy , Retrospective Studies , Child , Male , Female , Child, Preschool , Anti-Bacterial Agents/therapeutic use , Infant , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/epidemiology , Adolescent , Microbial Sensitivity Tests , Vitrectomy , Intravitreal Injections
15.
Phytomedicine ; 131: 155758, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843643

ABSTRACT

BACKGROUND: The adaptor protein apoptosis-associated speck-like protein (ASC) containing a caspase recruitment domain (CARD) can be activated through pyrin domain (PYD) interactions between sensors and ASC, and through CARD interactions between caspase-1 and ASC. Although the majority of ternary inflammasome complexes depend on ASC, drugs targeting ASC protein remain scarce. After screening natural compounds from Isatidis Radixin, we found that tryptanthrin (TPR) could inhibit NLRP3-induced IL-1ß and caspase-1 production, but the underlying anti-inflammatory mechanisms remain to be elucidated. PURPOSE: The purpose of this study was to determine the impact of TPR on the NLRP3, NLRC4, and AIM2 inflammasomes and the underlying mechanisms. Additionally, the efficacy of TPR was analysed in the further course of methionine- and choline-deficient (MCD)-induced NASH and lipopolysaccharide (LPS)-induced sepsis models of mice. METHODS: In vitro studies used bone marrow-derived macrophages to assess the anti-inflammatory activity of TPR, and the techniques included western blot, testing of intracellular K+ and Ca2+, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), co-immunoprecipitation, ASC oligomerization assay, surface plasmon resonance (SPR), and molecular docking. We used LPS-induced sepsis models and MCD-induced NASH models in vivo to evaluate the effectiveness of TPR in inhibiting inflammatory diseases. RESULTS: Our observations suggested that TPR could inhibit NLRP3, NLRC4, and AIM2 inflammasome activation. As shown in a mouse model of inflammatory diseases caused by MCD-induced NASH and LPS-induced sepsis, TPR significantly alleviated the progression of diseases. TPR interrupted the interactions between ASC and NLRP3/NLRC4/AIM2 in the co-immunoprecipitation experiment, and stable binding of TPR to ASC was also evident in SPR experiments. The underlying mechanisms of anti-inflammatory activities of TPR might be associated with targeting ASC, in particular, PYD domain of ASC. CONCLUSION: In general, the requirement for ASC in multiple inflammasome complexes makes TPR, as a novel broad-spectrum inflammasome inhibitor, potentially useful for treating a wide range of multifactorial inflammasome-related diseases.


Subject(s)
CARD Signaling Adaptor Proteins , Calcium-Binding Proteins , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Non-alcoholic Fatty Liver Disease , Quinazolines , Animals , Inflammasomes/metabolism , Inflammasomes/drug effects , CARD Signaling Adaptor Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Male , Calcium-Binding Proteins/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Quinazolines/pharmacology , Mice , Apoptosis Regulatory Proteins/metabolism , Interleukin-1beta/metabolism , DNA-Binding Proteins/metabolism , Caspase 1/metabolism , Sepsis/drug therapy , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides , Macrophages/drug effects , Macrophages/metabolism , Disease Models, Animal
16.
Bioorg Chem ; 150: 107493, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38870703

ABSTRACT

2. This research investigates the impact of the EGCG-CSH/n-HA/CMC composite material on bone defect repair, emphasizing its influence on macrophage polarization and osteogenic differentiation of BMSCs. Comprehensive evaluations of the composite's physical and chemical characteristics were performed. BMSC response to the material was tested in vitro for proliferation, migration, and osteogenic potential. An SD rat model was employed for in vivo assessments of bone repair efficacy. Both transcriptional and proteomic analyses were utilized to delineate the mechanisms influencing macrophage behavior and stem cell differentiation. The material maintained excellent structural integrity and significantly promoted BMSC functions critical to bone healing. In vivo results confirmed accelerated bone repair, and molecular analysis highlighted the role of macrophage M2 polarization, particularly through changes in the SIRPA gene and protein expression. EGCG-CSH/n-HA/CMC plays a significant role in enhancing bone repair, with implications for macrophage and BMSC function. Our findings suggest that targeting SIRPA may offer new therapeutic opportunities for bone regeneration.


Subject(s)
Catechin , Cell Differentiation , Macrophages , Osteogenesis , Rats, Sprague-Dawley , Osteogenesis/drug effects , Cell Differentiation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/cytology , Animals , Catechin/pharmacology , Catechin/analogs & derivatives , Catechin/chemistry , Rats , Molecular Structure , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Structure-Activity Relationship , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology
17.
Opt Lett ; 49(11): 3255-3258, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824377

ABSTRACT

A high-peak-power, widely tunable range long-wave infrared optical parametric oscillator (OPO) based on the BaGa4Se7 (BGSe) crystal is demonstrated in this Letter. Pumped by a 1064 nm Nd:YAG laser, a high-peak-power of 0.15 MW was achieved at 9.8 µm with a pulse width of 5.0 ns. At 11.0 µm, a high beam quality of M2x = 4.1 and M2y = 3.3 was achieved. By rotating the BGSe crystal, a broad tuning range of 6.7-13.9 µm was realized. Furthermore, a theoretical analysis was conducted to elucidate the reasons behind the improvement in beam quality in the x-direction as the wavelength of the idler wave increases.

18.
Nat Commun ; 15(1): 4891, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849363

ABSTRACT

Limited test data hinder the accurate prediction of mechanical strength and permeability of permeable cement-stabilized base materials (PCBM). Here we show a kriging-based surrogate model assisted artificial neural network (KS-ANN) framework that integrates laboratory testing, mathematical modeling, and machine learning. A statistical distribution model was established from limited test data to enrich the dataset through the combination of markov chain monte carlo simulation and kriging-based surrogate modeling. Subsequently, an artificial neural network (ANN) model was trained using the enriched dataset. The results demonstrate that the well-trained KS-ANN model effectively captures the actual data distribution characteristics. The accurate prediction of the mechanical strength and permeability of PCBM under the constraint of limited data validates the effectiveness of the proposed framework. As compared to traditional ANN models, the KS-ANN model improves the prediction accuracy of PCBM's mechanical strength by 21%. Based on the accurate prediction of PCBM's mechanical strength and permeability by the KS-ANN model, an optimization function was developed to determine the optimal cement content and compaction force range of PCBM, enabling it to concurrently satisfy the requirements of mechanical strength and permeability. This study provides a cost-effective and rapid solution for evaluating the performance and optimizing the design of PCBM and similar materials.

19.
Genes (Basel) ; 15(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38927750

ABSTRACT

Bromus (Poaceae Bromeae) is a forage grass with high adaptability and ecological and economic value. Here, we sequenced Bromus ciliatus, Bromus benekenii, Bromus riparius, and Bromus rubens chloroplast genomes and compared them with four previously described species. The genome sizes of Bromus species ranged from 136,934 bp (Bromus vulgaris) to 137,189 bp (Bromus ciliates, Bromus biebersteinii), with a typical quadripartite structure. The studied species had 129 genes, consisting of 83 protein-coding, 38 tRNA-coding, and 8 rRNA-coding genes. The highest GC content was found in the inverted repeat (IR) region (43.85-44.15%), followed by the large single-copy (LSC) region (36.25-36.65%) and the small single-copy (SSC) region (32.21-32.46%). There were 33 high-frequency codons, with those ending in A/U accounting for 90.91%. A total of 350 simple sequence repeats (SSRs) were identified, with single-nucleotide repeats being the most common (61.43%). A total of 228 forward and 141 palindromic repeats were identified. No reverse or complementary repeats were detected. The sequence identities of all sequences were very similar, especially with respect to the protein-coding and inverted repeat regions. Seven highly variable regions were detected, which could be used for molecular marker development. The constructed phylogenetic tree indicates that Bromus is a monophyletic taxon closely related to Triticum. This comparative analysis of the chloroplast genome of Bromus provides a scientific basis for species identification and phylogenetic studies.


Subject(s)
Bromus , Genome, Chloroplast , Microsatellite Repeats , Phylogeny , Genome, Chloroplast/genetics , Microsatellite Repeats/genetics , Bromus/genetics , Base Composition/genetics
20.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928203

ABSTRACT

The morphological architecture of inflorescence influences seed production. The regulatory mechanisms underlying alfalfa (Medicago sativa) inflorescence elongation remain unclear. Therefore, in this study, we conducted a comparative analysis of the transcriptome, proteome, and metabolome of two extreme materials at three developmental stages to explore the mechanisms underlying inflorescence elongation in alfalfa. We observed the developmental processes of long and short inflorescences and found that the elongation capacity of alfalfa with long inflorescence was stronger than that of alfalfa with short inflorescences. Furthermore, integrative analysis of the transcriptome and proteome indicated that the phenylpropanoid biosynthesis pathway was closely correlated with the structural formation of the inflorescence. Additionally, we identified key genes and proteins associated with lignin biosynthesis based on the differential expressed genes and proteins (DEGs and DEPs) involved in phenylpropanoid biosynthesis. Moreover, targeted hormone metabolome analysis revealed that IAA, GA, and CK play an important role in the peduncle elongation of alfalfa inflorescences. Based on omics analysis, we detected key genes and proteins related to plant hormone biosynthesis and signal transduction. From the WGCNA and WPCNA results, we furthermore screened 28 candidate genes and six key proteins that were correlated with lignin biosynthesis, plant hormone biosynthesis, and signaling pathways. In addition, 19 crucial transcription factors were discovered using correlation analysis that might play a role in regulating candidate genes. This study provides insight into the molecular mechanism of inflorescence elongation in alfalfa and establishes a theoretical foundation for improving alfalfa seed production.


Subject(s)
Gene Expression Regulation, Plant , Inflorescence , Lignin , Medicago sativa , Plant Proteins , Transcriptome , Medicago sativa/genetics , Medicago sativa/growth & development , Medicago sativa/metabolism , Inflorescence/growth & development , Inflorescence/genetics , Inflorescence/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Lignin/biosynthesis , Lignin/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics , Proteome/metabolism , Gene Expression Profiling , Proteomics/methods , Metabolome , Multiomics
SELECTION OF CITATIONS
SEARCH DETAIL