Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Biomaterials ; 312: 122749, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39121725

ABSTRACT

The prevalence of Alzheimer's disease (AD) is increasing globally due to population aging. However, effective clinical treatment strategies for AD still remain elusive. The mechanisms underlying AD onset and the interplay between its pathological factors have so far been unclear. Evidence indicates that AD progression is ultimately driven by neuronal loss, which in turn is caused by neuroapoptosis and neuroinflammation. Therefore, the inhibition of neuroapoptosis and neuroinflammation could be a useful anti-AD strategy. Nonetheless, the delivery of active drug agents into the brain parenchyma is hindered by the blood-brain barrier (BBB). To address this challenge, we fabricated a black phosphorus nanosheet (BP)-based methylene blue (MB) delivery system (BP-MB) for AD therapy. After confirming the successful preparation of BP-MB, we proved that its BBB-crossing ability was enhanced under near-infrared light irradiation. In vitro pharmacodynamics analysis revealed that BP and MB could synergistically scavenge excessive reactive oxygen species (ROS) in okadaic acid (OA)-treated PC12 cells and lipopolysaccharide (LPS)-treated BV2 cells, thus efficiently reversing neuroapoptosis and neuroinflammation. To study in vivo pharmacodynamics, we established a mouse model of AD mice, and behavioral tests confirmed that BP-MB treatment could successfully improve cognitive function in these animals. Notably, the results of pathological evaluation were consistent with those of the in vitro assays. The findings demonstrated that BP-MB could scavenge excessive ROS and inhibit Tau hyperphosphorylation, thereby alleviating downstream neuroapoptosis and regulating the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Overall, this study highlights the therapeutic potential of a smart nanomedicine with the capability of reversing neuroapoptosis and neuroinflammation for AD treatment.

3.
Comput Biol Med ; 180: 108979, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098237

ABSTRACT

In Alzheimer's disease (AD) assessment, traditional deep learning approaches have often employed separate methodologies to handle the diverse modalities of input data. Recognizing the critical need for a cohesive and interconnected analytical framework, we propose the AD-Transformer, a novel transformer-based unified deep learning model. This innovative framework seamlessly integrates structural magnetic resonance imaging (sMRI), clinical, and genetic data from the extensive Alzheimer's Disease Neuroimaging Initiative (ADNI) database, encompassing 1651 subjects. By employing a Patch-CNN block, the AD-Transformer efficiently transforms image data into image tokens, while a linear projection layer adeptly converts non-image data into corresponding tokens. As the core, a transformer block learns comprehensive representations of the input data, capturing the intricate interplay between modalities. The AD-Transformer sets a new benchmark in AD diagnosis and Mild Cognitive Impairment (MCI) conversion prediction, achieving remarkable average area under curve (AUC) values of 0.993 and 0.845, respectively, surpassing those of traditional image-only models and non-unified multimodal models. Our experimental results confirmed the potential of the AD-Transformer as a potent tool in AD diagnosis and MCI conversion prediction. By providing a unified framework that jointly learns holistic representations of both image and non-image data, the AD-Transformer paves the way for more effective and precise clinical assessments, offering a clinically adaptable strategy for leveraging diverse data modalities in the battle against AD.

4.
Bone ; 187: 117196, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39004161

ABSTRACT

Radial extracorporeal shockwave (r-ESW) and bone marrow stromal cells (BMSCs) have been reported to alleviate senile osteoporosis (SOP), but its regulatory mechanism remains unclear. In this study, we firstly isolated human BMSCs from bone marrow samples and treated with varying r-ESW doses. And we found that r-ESW could enhance the proliferation of SOP-BMSCs in a dose-dependent manner by EdU assay. Subsequently, the impact of r-ESW on the proliferation, apoptosis and multipotency of BMSCs was assessed. And the outcomes of flow cytometry, Alizarin red S (ARS), and tube formation test demonstrated that the optimal shockwave obviously boosted SOP-BMSCs osteogenesis and angiogenesis but exhibited no significant impact on cell apoptosis. Additionally, the signaling of Piezo1 and CaMKII/CREB was examined by Western blotting, qPCR and immunofluorescence. And the results showed that r-ESW promoted the expression of Piezo1, increased intracellular Ca2+ and activated the CaMKII/CREB signaling pathway. Then, the application of Piezo1 siRNA hindered the r-ESW-induced enhancement ability of osteogenesis coupling with angiogenesis of SOP-BMSCs. The use of the CaMKII/CREB signaling pathway inhibitor KN93 suppressed the Piezo1-induced increase in osteogenesis and angiogenesis in SOP-BMSCs. Finally, we also found that r-ESW might alleviate SOP in the senescence-accelerated mouse prone 6 (SAMP6) model by activating Piezo1. In conclusion, our research offers experimental evidence and an elucidated underlying molecular mechanism to support the use of r-ESW as a credible rehabilitative treatment for senile osteoporosis.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Cyclic AMP Response Element-Binding Protein , Ion Channels , Mesenchymal Stem Cells , Osteogenesis , Osteoporosis , Signal Transduction , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Humans , Osteoporosis/metabolism , Osteoporosis/pathology , Animals , Mesenchymal Stem Cells/metabolism , Ion Channels/metabolism , Neovascularization, Physiologic , Mice , Extracorporeal Shockwave Therapy/methods , Cell Proliferation , Apoptosis , Male , Female , Angiogenesis
5.
Sci Total Environ ; 948: 174595, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-38986695

ABSTRACT

China is experiencing large-scale rural-urban migration and rapid urbanization, which have had significant impact on terrestrial carbon sink. However, the impact of rural-urban migration and its accompanying urban expansion on the carbon sink is unclear. Based on multisource remote sensing product data for 2000-2020, the soil microbial respiration equation, relative contribution rate, and threshold analysis, we explored the impact of rural depopulation on the carbon sink and its threshold. The results revealed that the proportion of the rural population in China decreased from 63.91 % in 2000 to 36.11 % in 2020. Human pressure decreased by 1.82% in rural depopulation areas, which promoted vegetation restoration in rural areas (+8.45 %) and increased the carbon sink capacity. The net primary productivity (NPP) and net ecosystem productivity (NEP) of the vegetation in the rural areas increased at rates of 2.95 g C m-2 yr-1 and 2.44 g C m-2 yr-1. Strong rural depopulation enhanced the carbon sequestration potential, and the NEP was 1.5 times higher in areas with sharp rural depopulation than in areas with mild rural depopulation. In addition, the rural depopulation was accompanied by urban expansion, and there was a positive correlation between the comprehensive urbanization level (CUL) and NEP in 75.29 % of urban areas. In the urban areas, the vegetation index increased by 88.42 %, and the urban green space partially compensated for the loss of carbon sink caused by urban expansion, with a growth rate of 4.96 g C m-2 yr-1. Changes in rural population have a nonlinear impact on the NEP. When the rural population exceeds 545.686 people/km2, an increase in the rural population will have a positive impact on the NEP. Our research shows that rural depopulation offers a potential opportunity to restore natural ecosystems and thus increase the carbon sequestration capacity.


Subject(s)
Carbon Sequestration , Ecosystem , Urbanization , China , Rural Population , Environmental Monitoring
6.
Heliyon ; 10(13): e34006, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39071644

ABSTRACT

Progesterone (P4) plays a pivotal role in regulating the cancer progression of various types, including breast cancer, primarily through its interaction with the P4 receptor (PR). In PR-negative breast cancer cells, P4 appears to function in mediating cancer progression, such as cell growth. However, the mechanisms underlying the roles of P4 in PR-negative breast cancer cells remain incompletely understood. This study aimed to investigate the effects of P4 on cell proliferation, gene expression, and signal transduction in PR-negative MDA-MB-231 breast cancer cells. P4-activated genes, associated with proliferation in breast cancer cells, exhibit a stimulating effect on cell growth in PR-negative MDA-MB-231 cells, while demonstrating an inhibitory impact in PR-positive MCF-7 cells. The use of arginine-glycine-aspartate (RGD) peptide successfully blocked P4-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, aligning with computational models of P4 binding to integrin αvß3. Disrupting integrin αvß3 binding with RGD peptide or anti-integrin αvß3 antibody altered P4-induced expression of proliferative genes and modified P4-induced cell growth in breast cancer cells. In conclusion, integrin αvß3 appears to mediate P4-induced ERK1/2 signal pathway to regulate proliferation via alteration of proliferation-related gene expression in PR-negative breast cancer cells.

7.
Chin Med J (Engl) ; 137(14): 1695-1704, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38955430

ABSTRACT

BACKGROUND: Understanding willingness to undergo pulmonary function tests (PFTs) and the factors associated with poor uptake of PFTs is crucial for improving early detection and treatment of chronic obstructive pulmonary disease (COPD). This study aimed to understand willingness to undergo PFTs among high-risk populations and identify any barriers that may contribute to low uptake of PFTs. METHODS: We collected data from participants in the "Happy Breathing Program" in China. Participants who did not follow physicians' recommendations to undergo PFTs were invited to complete a survey regarding their willingness to undergo PFTs and their reasons for not undergoing PFTs. We estimated the proportion of participants who were willing to undergo PFTs and examined the various reasons for participants to not undergo PFTs. We conducted univariable and multivariable logistic regressions to analyze the impact of individual-level factors on willingness to undergo PFTs. RESULTS: A total of 8475 participants who had completed the survey on willingness to undergo PFTs were included in this study. Out of these participants, 7660 (90.4%) were willing to undergo PFTs. Among those who were willing to undergo PFTs but actually did not, the main reasons for not doing so were geographical inaccessibility ( n  = 3304, 43.1%) and a lack of trust in primary healthcare institutions ( n  = 2809, 36.7%). Among the 815 participants who were unwilling to undergo PFTs, over half ( n  = 447, 54.8%) believed that they did not have health problems and would only consider PFTs when they felt unwell. In the multivariable regression, individuals who were ≤54 years old, residing in rural townships, with a secondary educational level, with medical reimbursement, still working, with occupational exposure to dust, and aware of the abbreviation "COPD" were more willing to undergo PFTs. CONCLUSIONS: Willingness to undergo PFTs was high among high-risk populations. Policymakers may consider implementing strategies such as providing financial incentives, promoting education, and establishing community-based programs to enhance the utilization of PFTs.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Respiratory Function Tests , Spirometry , Humans , Cross-Sectional Studies , Male , Female , China , Middle Aged , Aged , Adult , Spirometry/methods , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/psychology , Surveys and Questionnaires
8.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119773, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844182

ABSTRACT

Hepatocellular carcinoma (HCC), the leading cause of cancer-related deaths worldwide, is characterised by rapid growth and marked invasiveness. Accumulating evidence suggests that deubiquitinases play a pivotal role in HCC growth and metastasis. However, the expression of the deubiquitinase FAM188B and its biological functions in HCC remain unknown. The aim of our study was to investigate the potential role of FAM188B in HCC. The expression of FAM188B was significantly upregulated in liver cancer cells compared to normal liver cells, both at the transcriptional and translational levels. Similarly, FAM188B expression was higher in liver cancer tissues than in normal liver tissues. Bioinformatic analysis revealed that high FAM188B expression was associated with poor prognosis in patients with HCC. We further demonstrated that FAM188B knockdown inhibited cell proliferation, epithelial-mesenchymal transition, migration and invasion both in vitro and in vivo. Mechanistically, FAM188B knockdown significantly inhibited the hnRNPA1/PKM2 pathway in HCC cells. FAM188B may inhibit ubiquitin-mediated degradation of hnRNPA1 through deubiquitination. Notably, we observed that the inhibitory effects of FAM188B knockdown on HCC cell proliferation, migration and invasion were reversed when hnRNPA1 expression was restored. In conclusion, FAM188B promotes HCC progression by enhancing the deubiquitination of hnRNPA1 and subsequently activating the hnRNPA1/PKM2 pathway. Therefore, targeting FAM188B is a potential strategy for HCC therapy.

9.
Chemosphere ; 362: 142626, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908446

ABSTRACT

Exploring the association between exposure to polycyclic aromatic hydrocarbons (PAHs) and the risk of dyslipidemia and possible mediating effects is essential for conducting epidemiological health studies on related lipid disorders. Therefore, our study aimed to elucidate the potential association between PAH exposure and dyslipidemia risk and further identify the mediating effects based on blood cell-based inflammatory biomarkers. This cross-sectional study was conducted on 8380 individuals with complete survey data from the National Health and Nutrition Examination Survey (2001-2016). Multiple models (generalized linear regression model, restricted cubic spline model, Bayesian kernel machine regression, weighted quantiles sum regression) were used to assess the relationship between PAH co-exposure and the dyslipidemia risk and further identify potential mediating effects. Among the 8380 subjects, 2886 (34.44 %) had dyslipidemia. After adjusting for the confounding factors, the adjusted OR and 95% CI for dyslipidemia in the highest quartile of subjects were 1.30 (1.11, 1.51), 1. 22 (1.04, 1.43), 1.21 (1.03, 1.42), 1.29 (1.10, 1.52), 1.18 (1.01, 1.37), and 1.04 (0.89, 1.23) for 1-hydroxynaphthalene, 2-hydroxynaphthalene, 3-hydroxyfluorene, 2-hydroxyfluorene (2-FLU), 1-hydroxyphenanthrene, and 1-hydroxypyrene. The Bayesian kernel machine regression model also showed a positive correlation between PAH mixtures and dyslipidemia, and 2-FLU has the highest contribution. Mediation effect analyses showed that white blood cells and neutrophils were statistically significant in the association between PAHs and dyslipidemia. The present study suggests that individual and mixed PAH exposures may increase the risk of dyslipidemia in adults. Inflammatory biomarkers significantly mediated the relationship between PAH exposure and dyslipidemia. Environmental pollutants and their mechanisms should be more intensively monitored and studied.


Subject(s)
Biomarkers , Dyslipidemias , Environmental Exposure , Inflammation , Polycyclic Aromatic Hydrocarbons , Humans , Dyslipidemias/epidemiology , Dyslipidemias/chemically induced , Biomarkers/blood , Female , Male , Cross-Sectional Studies , Middle Aged , Adult , Environmental Exposure/statistics & numerical data , Inflammation/chemically induced , Bayes Theorem , Nutrition Surveys , Environmental Pollutants/blood , Aged
10.
Heliyon ; 10(10): e30977, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813213

ABSTRACT

The trajectory of China's PPP market since 2014, characterized by rapid expansion and a high failure rate, now plunges into a state of limbo and uncertainty. Through a quantitative analysis of failed PPP projects in China from 2014 to 2020, this study investigates the impact of local government institutional quality, private capital business environment, local economic development, and local fiscal affordability on the development and implementation of PPP projects. The findings reveal that larger government size is associated with a higher likelihood of PPP project failure, while a favorable private capital business environment can mitigate the failure rate of local PPP projects. Furthermore, empirical results demonstrate a positive relationship between local fiscal affordability and the success rate of PPP projects. The analysis underscores the significant influence of the institutional environment on the effectiveness of PPP projects and provides policy recommendations for local governments to enhance the business environment and other key factors contributing to the resilience of PPP projects.

11.
Hum Mol Genet ; 33(16): 1429-1441, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38747556

ABSTRACT

Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38 465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program (with varying sample size by trait, where the minimum sample size was n = 737 for MMP-1). We identified 22 distinct single-variant associations across 6 traits-E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin-that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.


Subject(s)
Biomarkers , Genome-Wide Association Study , Inflammation , Precision Medicine , Whole Genome Sequencing , Humans , Precision Medicine/methods , Inflammation/genetics , Genome-Wide Association Study/methods , Whole Genome Sequencing/methods , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Genetic Predisposition to Disease , Female , Interleukin-6/genetics
12.
Pharmaceuticals (Basel) ; 17(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794185

ABSTRACT

The relapse rate of substance abusers is high, and addiction rehabilitation adjunct drugs need to be developed urgently. There have been numerous reports on blocking the formation of substance addiction, but studies on drugs that can alleviate withdrawal symptoms are very limited. Both the dopamine transporter (DAT) hypothesis and D3 dopamine receptor (D3R) hypothesis are proposed. DAT activators reduce the extracellular dopamine level, and D3R antagonists reduce the neuron's sensitivity to dopamine, both of which may exacerbate the withdrawal symptoms subsequently. The D3R partial agonist SK608 has biased signaling properties via the G-protein-dependent pathway but did not induce D3R desensitization and, thus, may be a promising drug for the withdrawal symptoms. Drugs for serotoninergic neurons or GABAergic neurons and anti-inflammatory drugs may have auxiliary effects to addiction treatments. Drugs that promote structural synaptic plasticity are also discussed.

13.
Epilepsia Open ; 9(4): 1287-1299, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38808652

ABSTRACT

OBJECTIVE: The present study aimed to identify various distinguishing features for use in the accurate classification of stereoelectroencephalography (SEEG) channels based on high-frequency oscillations (HFOs) inside and outside the epileptogenic zone (EZ). METHODS: HFOs were detected in patients with focal epilepsy who underwent SEEG. Subsequently, HFOs within the seizure-onset and early spread zones were defined as pathological HFOs, whereas others were defined as physiological. Three features of HFOs were identified at the channel level, namely, morphological repetition, rhythmicity, and phase-amplitude coupling (PAC). A machine-learning (ML) classifier was then built to distinguish two HFO types at the channel level by application of the above-mentioned features, and the contributions were quantified. Further verification of the characteristics and classifier performance was performed in relation to various conscious states, imaging results, EZ location, and surgical outcomes. RESULTS: Thirty-five patients were included in this study, from whom 166 104 pathological HFOs in 255 channels and 53 374 physiological HFOs in 282 channels were entered into the analysis pipeline. The results revealed that the morphological repetitions of pathological HFOs were markedly higher than those of the physiological HFOs; this was also observed for rhythmicity and PAC. The classifier exhibited high accuracy in differentiating between the two forms of HFOs, as indicated by an area under the curve (AUC) of 0.89. Both PAC and rhythmicity contributed significantly to this distinction. The subgroup analyses supported these findings. SIGNIFICANCE: The suggested HFO features can accurately distinguish between pathological and physiological channels substantially improving its usefulness in clinical localization. PLAIN LANGUAGE SUMMARY: In this study, we computed three quantitative features associated with HFOs in each SEEG channel and then constructed a machine learning-based classifier for the classification of pathological and physiological channels. The classifier performed well in distinguishing the two channel types under different levels of consciousness as well as in terms of imaging results, EZ location, and patient surgical outcomes.


Subject(s)
Electroencephalography , Epilepsies, Partial , Machine Learning , Humans , Female , Male , Adult , Epilepsies, Partial/physiopathology , Epilepsies, Partial/surgery , Epilepsies, Partial/diagnosis , Brain/physiopathology , Adolescent , Young Adult , Middle Aged , Child , Stereotaxic Techniques
14.
PLoS One ; 19(4): e0299399, 2024.
Article in English | MEDLINE | ID: mdl-38607987

ABSTRACT

In this study, we employed the principle of Relative Mode Transfer Method (RMTM) to establish a model for a single pendulum subjected to sudden changes in its length. An experimental platform for image processing was constructed to accurately track the position of a moving ball, enabling experimental verification of the pendulum's motion under specific operating conditions. The experimental data demonstrated excellent agreement with simulated numerical results, validating the effectiveness of the proposed methodology. Furthermore, we performed simulations of a double obstacle pendulum system, investigating the effects of different parameters, including obstacle pin positions, quantities, and initial release angles, on the pendulum's motion through numerical simulations. This research provides novel insights into addressing the challenges associated with abrupt and continuous changes in pendulum length.


Subject(s)
Image Processing, Computer-Assisted , Physical Therapy Modalities , Motion
15.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38451300

ABSTRACT

Although previous studies have reported the sex differences in behavior/cognition and the brain, the sex difference in the relationship between memory abilities and the underlying neural basis in the aging process remains unclear. In this study, we used a machine learning model to estimate the association between cortical thickness and verbal/visuospatial memory in females and males and then explored the sex difference of these associations based on a community-elderly cohort (n = 1153, age ranged from 50.42 to 86.67 years). We validated that females outperformed males in verbal memory, while males outperformed females in visuospatial memory. The key regions related to verbal memory in females include the medial temporal cortex, orbitofrontal cortex, and some regions around the insula. Further, those regions are more located in limbic, dorsal attention, and default-model networks, and are associated with face recognition and perception. The key regions related to visuospatial memory include the lateral prefrontal cortex, anterior cingulate gyrus, and some occipital regions. They overlapped more with dorsal attention, frontoparietal and visual networks, and were associated with object recognition. These findings imply the memory performance advantage of females and males might be related to the different memory processing tendencies and their associated network.


Subject(s)
Facial Recognition , Sex Characteristics , Aged , Humans , Female , Male , Middle Aged , Aged, 80 and over , Brain , Cognition , Cytoplasm
16.
Food Funct ; 15(8): 4365-4374, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38545932

ABSTRACT

Childhood malnutrition remains a serious global health concern, particularly in low-income nations like Uganda. This study investigated the impact of peanut supplementation on the compositions and functions of gut microbiome with nutritional improvement. School children aged 6-9 years from four rural communities were recruited, with half receiving roasted peanut snacks while the other half served as controls. Fecal samples were collected at the baseline (day 0), day 60, and day 90. Microbial DNA was extracted, and 16S rRNA sequencing was performed, followed by the measurement of SCFA concentration in fecal samples using UHPLC. Alpha and beta diversity analyses revealed significant differences between the control and supplemented groups after 90 days of supplementation. Leuconostoc lactis, Lactococcus lactis, Lactococcus garvieae, Eubacterium ventriosum, and Bacteroides thetaiotaomicron, associated with the production of beneficial metabolites, increased significantly in the supplemented group. Acetic acid concentration also increased significantly. Notably, pathogenic bacteria, including Clostridium perfringens and Leuconostoc mesenteroides, were decreased in the supplemented group. The study indicates the potential of peanut supplementation to modulate the gut metabolome, enrich beneficial bacteria, and inhibit pathogens, suggesting a novel approach to mitigating child malnutrition and improving health status.


Subject(s)
Arachis , Bacteria , Dietary Supplements , Feces , Gastrointestinal Microbiome , Humans , Arachis/microbiology , Uganda , Child , Male , Female , Feces/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , RNA, Ribosomal, 16S/genetics
17.
Int J Biochem Cell Biol ; 169: 106537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342404

ABSTRACT

BACKGROUNDS: Senile osteoporosis-alternatively labeled as skeletal aging-encompasses age-induced bone deterioration and loss of bone microarchitecture. Recent studies have indicated a potential association between senile osteoporosis and chronic systemic inflammation, and pyroptosis in bone marrow-derived mesenchymal stem cells is speculated to contribute to bone loss and osteoporosis. Therefore, targeting pyroptosis in stem cells may be a potential therapeutic strategy for treating osteoporosis. METHODS: Initially, we conducted bioinformatics analysis to screen the GEO databases to identify the key gene associated with pyroptosis in senile osteoporosis. Next, we analyzed the relationship between altered proteins and clinical data. In vitro experiments were then performed to explore whether the downregulation of PKM2 expression could inhibit pyroptosis. Additionally, an aging-related mouse model of osteoporosis was established to validate the efficacy of a PKM2 inhibitor in alleviating osteoporosis progression. RESULTS: We identified PKM2 as a key gene implicated in pyroptosis in senile osteoporosis patients through bioinformatics analysis. Further analyses of bone marrow and stem cells demonstrated significant PKM2 overexpression in senile osteoporosis patients. Silencing PKM2 expression inhibited pyroptosis in senile stem cells, of which the osteogenesis potential and angiogenic function were also primarily promoted. Moreover, the results in vivo demonstrated that administering PKM2 inhibitors suppressed pyroptosis in senile osteoporosis mice and mitigated senile osteoporosis progression. CONCLUSION: Our study uncovered PKM2, a key pyroptosis marker of bone marrow mesenchymal stem cells in senile osteoporosis. Shikonin, a PKM2 inhibitor, was then identified as a potential drug candidate for the treatment of osteoporosis.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Osteoporosis , Animals , Humans , Mice , Caspase 1 , Gasdermins , Inflammation , Osteoporosis/genetics , Phosphate-Binding Proteins/genetics , Pyroptosis/genetics , Signal Transduction , Pyruvate Kinase/metabolism
18.
Cell Signal ; 117: 111078, 2024 05.
Article in English | MEDLINE | ID: mdl-38320625

ABSTRACT

Hepatocellular carcinoma(HCC) is one of the most common tumors in the world. Human insulin-like growth factor 2(IGF2) mRNA binding protein 2(IGF2BP2) plays an important role in the progression of hepatocellular carcinoma. Additionally, long non-coding RNA(lncRNA) has been confirmed as a key regulator of hepatocellular carcinoma occurrence. However, the function of TRPC7-AS1 has not been verified in hepatocellular carcinoma. The research results revealed that high IGF2BP2 expression was associated with a decreased survival rate in patients with hepatocellular carcinoma. Furthermore, IGF2BP2 knockdown inhibited and IGF2BP2 overexpression promoted the cell proliferation and invasion of hepatocellular carcinoma cells. The research illuminated that IGF2BP2 regulated the expression of TRPC7-AS1, and a correlation was observed between IGF2BP2 and TRPC7-AS1 expression. TRPC7-AS1 silencing repressed and its overexpression promoted the progression of hepatocellular carcinoma. After silencing or overexpressing TRPC7-AS1, the expression of the high-mobility group AT-hook 2 (HMGA2) gene decreased or increased, respectively. IGF2BP2 enhanced the expression of TRPC7-AS1 and thus affected the expression of HMGA2, thereby promoting hepatocellular carcinoma progression.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , TRPC Cation Channels/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
19.
Cell Rep ; 43(2): 113789, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38368608

ABSTRACT

Under stress conditions, translationally stalled mRNA and associated proteins undergo liquid-liquid phase separation and condense into cytoplasmic foci called stress granules (SGs). Many viruses hijack SGs for their pathogenesis; however, whether pathogenic bacteria also exploit this pathway remains unknown. Here, we report that members of the OspC family of Shigella flexneri induce SG formation in infected cells. Mechanistically, the OspC effectors target multiple subunits of the host translation initiation factor 3 complex by ADP-riboxanation. The modification of eIF3 leads to translational arrest and thus the formation of SGs. Furthermore, OspC-mediated SGs are beneficial for S. flexneri replication within infected host cells, and bacterial strains unable to induce SGs are attenuated for virulence in a murine model of infection. Our findings reveal a mechanism by which bacterial pathogens induce SG assembly by inactivating host translational machinery and promote bacterial proliferation in host cells.


Subject(s)
Eukaryotic Initiation Factor-3 , Shigella , Animals , Mice , Stress Granules , Cytoplasm , Shigella flexneri
20.
Biomed Pharmacother ; 173: 116315, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394852

ABSTRACT

Due to resistance and BCR-ABLT315I-mutated, CML remains a clinical challenge. It needs new potential therapeutic targets to overcome CML resistance related to BCR-ABL. Our research revealed that the deubiquitinating enzyme USP28 was highly expressed in BCR-ABL-dependent CML patients. Similarly, a high expression of USP28 was found in the K562 cell line, particularly in the imatinib-resistant strains. Notably, USP28 directly interacted with BCR-ABL. Furthermore, when BCR-ABL and its mutant BCR-ABLT315I were overexpressed in K562-IMR, they promoted the expression of IFITM3. However, when small molecule inhibitors targeting USP28 and small molecule degraders targeting BCR-ABL were combined, they significantly inhibited the expression of IFITM3. The experiments conducted on tumor-bearing animals revealed that co-treated mice showed a significant reduction in tumor size, effectively inhibiting the progression of CML tumors. In summary, USP28 promoted the proliferation and invasion of tumor cells in BCR-ABL-dependent CML by enhancing the expression of IFITM3. Moreover, imatinib resistance might be triggered by the activation of the USP28-BCR-ABL-IFITM3 pathway. Thus, the combined inhibition of USP28 and BCR-ABL could be a promising approach to overcome CML resistance dependent on BCR-ABL.


Subject(s)
Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl , Humans , Animals , Mice , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Fusion Proteins, bcr-abl/metabolism , Apoptosis , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Membrane Proteins/metabolism , RNA-Binding Proteins , Ubiquitin Thiolesterase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL