Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
J Food Sci ; 89(10): 6335-6349, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39183691

ABSTRACT

In this study, the effects of ultrasound combined with ferulic acid (FA) on the quality of the Yesso scallop (Patinopecten yessoensis) adductor muscles (SAM) during refrigerated storage were investigated. The results demonstrated that the combined treatment with 350 W ultrasound and FA (UFA) significantly delayed enzyme activities and microbial growth in SAM tissues compared to FA treatment alone. After 6 days of cold storage, samples treated with UFA exhibited higher hardness (2850 g), lower thiobarbituric acid reactive substances (TBARS = 9.35 MDA mg/g SAM), and lower total volatile basic nitrogen (TVB-N = 19.75 mg/100 g SAM) values compared to control and FA-treated samples. Consequently, UFA treatment prolonged the shelf life of SAM by 3 days during storage at 4°C. Based on scanning electron microscopy and low-field nuclear magnetic resonance data, these findings are attributed to UFA treatment not only reducing the degradation of SAM tissue network structure but also minimizing water loss. PRACTICAL APPLICATION: Scallop adductor muscle (SAM) is commonly considered a delicacy owing to its unique mouthfeel and delicious taste. However, owing to its high moisture content and high levels of various nutrients, SAM has a short shelf life. In this work, a combination of ultrasound with ferulic acid (UFA) has been found to have effective preservation effects on SAM during refrigerated storage. Our study findings pave the way for a potential approach to maintain scallop quality during processing and storage. Moreover, our study also provides some theoretical basis for using and promoting these technologies in aquatic products.


Subject(s)
Coumaric Acids , Food Preservation , Pectinidae , Coumaric Acids/analysis , Pectinidae/chemistry , Animals , Food Preservation/methods , Food Storage/methods , Seafood/analysis , Thiobarbituric Acid Reactive Substances/analysis , Food Handling/methods , Ultrasonics/methods
2.
Ultrason Sonochem ; 107: 106935, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850642

ABSTRACT

Myofibrillar proteins (MPs) have a notable impact on the firmness and flexibility of gel-based products. Therefore, enhancing the gelation and emulsification properties of scallop MPs is of paramount significance for producing high-quality scallop surimi products. In this study, we investigated the effects of high-intensity ultrasound on the physicochemical and gelation properties of MPs from bay scallops (Argopecten irradians). The carbonyl content of MPs significantly increased with an increase in ultrasound power (150, 350, and 550 W), indicating ultrasound-induced MP oxidation. Meanwhile, high-intensity ultrasound treatment (550 W) enhanced the emulsifying capacity and the short-term stability of MPs (up to 72.05 m2/g and 153.05 min, respectively). As the ultrasound power increased, the disulfide bond content and surface hydrophobicity of MPs exhibited a notable increase, indicating conformational changes in MPs. Moreover, in the secondary structure of MPs, the α-helix content significantly decreased, whereas the ß-sheet content increased, thereby suggesting the ultrasound-induced stretching and flexibility of MP molecules. Sodium-dodecyl sulfate-polyacrylamide gel electrophoresis and scanning electron microscopy analysis further elucidated that high-intensity ultrasound induced MP oxidation, leading to modification of amino acid side chains, intra- and intermolecular cross-linking, and MP aggregation. Consequently, high-intensity ultrasound treatment was found to augment the viscoelasticity, gel strength, and water-holding capacity of MP gels, because ultrasound treatment facilitated the formation of a stable network structure in protein gels. Thus, this study offers theoretical insights into the functional modification of bay scallop MPs and the processing of its surimi products.


Subject(s)
Gels , Muscle Proteins , Pectinidae , Pectinidae/chemistry , Animals , Gels/chemistry , Muscle Proteins/chemistry , Ultrasonic Waves , Chemical Phenomena , Hydrophobic and Hydrophilic Interactions , Emulsions/chemistry
3.
Sheng Li Xue Bao ; 75(2): 303-315, 2023 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-37089104

ABSTRACT

Interleukin 27 (IL-27) is a pleiotropic cytokine that is involved in the regulation of the body's innate and adaptive immunity. Previous studies have shown that IL-27 mediates a variety of inflammatory responses in vivo. With the development of animal models and technical tools, several studies have shown that it is also closely associated with autoimmune diseases and other immune related diseases, and is considered as an important candidate for the treatment of viral disease, autoimmune diseases, tumors and obesity. Therefore, this paper reviews recent progress on the role of IL-27 in acquired immunodeficiency syndrome (AIDS), rheumatoid arthritis, tumors and obesity, with the aim of providing new ideas for the treatment of immune related diseases.


Subject(s)
Arthritis, Rheumatoid , Autoimmune Diseases , Interleukin-27 , Neoplasms , Animals , Cytokines
4.
J Sci Food Agric ; 103(4): 1964-1973, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36533998

ABSTRACT

BACKGROUND: In this study, a new crosslinking agent (CA) containing whey protein, papin, glycerin, and epigallocatechin gallate (EGCG), was prepared. The effects of CA content (0, 10, 20, 30, and 40%, v/v) on food packaging properties, crystallinity, microstructure, and antioxidant properties of pectin-CA and chitosan-CA composite films were analyzed. The results of this research offer a theoretical basis for engineering improved films for food packing. RESULTS: Pectin-CA (30%) and chitosan-CA (40%) composite films showed the best light transmission, water retention, breathability, plasticity, and antioxidant activity. Scanning electron microscopy revealed that these composite films exhibited a uniform and homogeneous structure without obvious pores. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) indicated that the amino acids and EGCG in CA were bonded to the film substrate (pectin/chitosan) via electrostatic interactions, hydrogen bonding, and covalent bonding, which led to an improvement in the film's properties. CONCLUSION: The CA has broad application prospects in food packaging as a cross-linking agent and antioxidant. © 2022 Society of Chemical Industry.


Subject(s)
Chitosan , Chitosan/chemistry , Antioxidants/chemistry , Pectins/chemistry , X-Ray Diffraction , Food Packaging/methods , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL