Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancer Res Commun ; 4(8): 2183-2188, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39099199

ABSTRACT

Secondary endpoints (SEP) provide crucial information in the interpretation of clinical trials, but their features are not yet well understood. Thus, we sought to empirically characterize the scope and publication rate of SEPs among late-phase oncology trials. We assessed SEPs for each randomized, published phase III oncology trial across all publications and ClinicalTrials.gov, performing logistic regressions to evaluate associations between trial characteristics and SEP publication rates. After screening, a total of 280 trials enrolling 244,576 patients and containing 2,562 SEPs met the inclusion criteria. Only 22% of trials (62/280) listed all SEPs consistently between ClinicalTrials.gov and the trial protocol. The absolute number of SEPs per trial increased over time, and trials sponsored by industry had a greater number of SEPs (median 9 vs. 5 SEPs per trial; P < 0.0001). In total, 69% of SEPs (1,770/2,562) were published. The publication rate significantly varied by SEP category [X2 (5, N = 2,562) = 245.86; P < 0.001]. SEPs that place the most burden on patients, such as patient-reported outcomes and translational correlatives, were published at 63% (246/393) and 44% (39/88), respectively. Trials with more SEPs were associated with lower overall SEP publication rates. Overall, our findings are that SEP publication rates in late-phase oncology trials are highly variable based on the type of SEP. To avoid undue burden on patients and promote transparency of findings, trialists should weigh the biological and clinical relevance of each SEP together with its feasibility at the time of trial design. SIGNIFICANCE: In this investigation, we characterized the utilization and publication rates of SEPs among late-phase oncology trials. Our results draw attention to the proliferation of SEPs in recent years. Although overall publication rates were high, underpublication was detected among endpoints that may increase patient burden (such as translational correlatives and patient-reported outcomes).


Subject(s)
Clinical Trials, Phase III as Topic , Humans , Neoplasms/therapy , Medical Oncology/statistics & numerical data , Randomized Controlled Trials as Topic/statistics & numerical data , Endpoint Determination
2.
Int J Cancer ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138841

ABSTRACT

Disease progression in clinical trials is commonly defined by radiologic measures. However, clinical progression may be more meaningful to patients, may occur even when radiologic criteria for progression are not met, and often requires a change in therapy in clinical practice. The objective of this study was to determine the utilization of clinical progression criteria within progression-based trial endpoints among phase III trials testing systemic therapies for metastatic solid tumors. The primary manuscripts and protocols of phase III trials were reviewed for whether clinical events, such as refractory pain, tumor bleeding, or neurologic compromise, could constitute a progression event. Univariable logistic regression computed odds ratios (OR) and 95% CI for associations between trial-level covariates and clinical progression. A total of 216 trials enrolling 148,190 patients were included, with publication dates from 2006 through 2020. A major change in clinical status was included in the progression criteria of 13% of trials (n = 27), most commonly as a secondary endpoint (n = 22). Only 59% of trials (n = 16) reported distinct clinical progression outcomes that constituted the composite surrogate endpoint. Compared with other disease sites, genitourinary trials were more likely to include clinical progression definitions (16/33 [48%] vs. 11/183 [6%]; OR, 14.72; 95% CI, 5.99 to 37.84; p < .0001). While major tumor-related clinical events were seldom considered as disease progression events, increased attention to clinical progression may improve the meaningfulness and clinical applicability of surrogate endpoints for patients with metastatic solid tumors.

3.
Clin Cancer Res ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133081

ABSTRACT

BACKGROUND: Survival analyses of novel agents with long-term responders often exhibit differential hazard rates over time. Such proportional hazards violations (PHVs) may reduce the power of the log-rank test and lead to misinterpretation of trial results. We aimed to characterize the incidence and study attributes associated with PHVs in phase 3 oncology trials and assess the utility of restricted mean survival time (RMST) and MaxCombo as additional analyses. METHODS: Clinicaltrials.gov and PubMed were searched to identify 2-arm, randomized, phase 3 superiority-design cancer trials with time-to-event primary endpoints and published results through 2020. Patient-level data were reconstructed from published Kaplan-Meier curves. PHVs were assessed using Schoenfeld residuals. RESULTS: Three hundred fifty-seven Kaplan-Meier comparisons across 341 trials were analyzed, encompassing 292,831 enrolled patients. PHVs were identified in 85/357 (23.8%; 95%CI 19.7%, 28.5%) comparisons. In multivariable analysis, non-OS endpoints (odds ratio [OR] 2.16 [95%CI 1.21, 3.87]; P=.009) were associated with higher odds of PHVs, and immunotherapy comparisons (OR 1.94 [95%CI 0.98, 3.86]; P=.058) were weakly suggestive of higher odds of PHVs. Few trials with PHVs (25/85, 29.4%) pre-specified a statistical plan to account for PHVs. Fourteen trials with PHVs exhibited discordant statistical signals with RMST or MaxCombo, of which ten (71%) reported negative results. CONCLUSION: PHVs are common across therapy types, and attempts to account for PHVs in statistical design are lacking despite the potential for results exhibiting non-proportional hazards to be misinterpreted.

4.
medRxiv ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39108512

ABSTRACT

Most oncology trials define superiority of an experimental therapy compared to a control therapy according to frequentist significance thresholds, which are widely misinterpreted. Posterior probability distributions computed by Bayesian inference may be more intuitive measures of uncertainty, particularly for measures of clinical benefit such as the minimum clinically important difference (MCID). Here, we manually reconstructed 194,129 individual patient-level outcomes across 230 phase III, superiority-design, oncology trials. Posteriors were calculated by Markov Chain Monte Carlo sampling using standard priors. All trials interpreted as positive had probabilities > 90% for marginal benefits (HR < 1). However, 38% of positive trials had ≤ 90% probabilities of achieving the MCID (HR < 0.8), even under an enthusiastic prior. A subgroup analysis of 82 trials that led to regulatory approval showed 30% had ≤ 90% probability for meeting the MCID under an enthusiastic prior. Conversely, 24% of negative trials had > 90% probability of achieving marginal benefits, even under a skeptical prior, including 12 trials with a primary endpoint of overall survival. Lastly, a phase III oncology-specific prior from a previous work, which uses published summary statistics rather than reconstructed data to compute posteriors, validated the individual patient-level data findings. Taken together, these results suggest that Bayesian models add considerable unique interpretative value to phase III oncology trials and provide a robust solution for overcoming the discrepancies between refuting the null hypothesis and obtaining a MCID.

5.
medRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38978666

ABSTRACT

IMPORTANCE: Improving the efficiency of interim assessments in phase III trials should reduce trial costs, hasten the approval of efficacious therapies, and mitigate patient exposure to disadvantageous randomizations. OBJECTIVE: We hypothesized that in silico Bayesian early stopping rules improve the efficiency of phase III trials compared with the original frequentist analysis without compromising overall interpretation. DESIGN: Cross-sectional analysis. SETTING: 230 randomized phase III oncology trials enrolling 184,752 participants. PARTICIPANTS: Individual patient-level data were manually reconstructed from primary endpoint Kaplan-Meier curves. INTERVENTIONS: Trial accruals were simulated 100 times per trial and leveraged published patient outcomes such that only the accrual dynamics, and not the patient outcomes, were randomly varied. MAIN OUTCOMES AND MEASURES: Early stopping was triggered per simulation if interim analysis demonstrated ≥ 85% probability of minimum clinically important difference/3 for efficacy or futility. Trial-level early closure was defined by stopping frequencies ≥ 0.75. RESULTS: A total of 12,451 simulations (54%) met early stopping criteria. Trial-level early stopping frequency was highly predictive of the published outcome (OR, 7.24; posterior probability of association, >99.99%; AUC, 0.91; P < 0.0001). Trial-level early closure was recommended for 82 trials (36%), including 62 trials (76%) which had performed frequentist interim analysis. Bayesian early stopping rules were 96% sensitive (95% CI, 91% to 98%) for detecting trials with a primary endpoint difference, and there was a high level of agreement in overall trial interpretation (Bayesian Cohen's κ, 0.95; 95% CrI, 0.92 to 0.99). However, Bayesian interim analysis was associated with >99.99% posterior probability of reducing patient enrollment requirements ( P < 0.0001), with an estimated cumulative enrollment reduction of 20,543 patients (11%; 89 patients averaged equally over all studied trials) and an estimated cumulative cost savings of 851 million USD (3.7 million USD averaged equally over all studied trials). CONCLUSIONS AND RELEVANCE: Bayesian interim analyses may improve randomized trial efficiency by reducing enrollment requirements without compromising trial interpretation. Increased utilization of Bayesian interim analysis has the potential to reduce costs of late-phase trials, reduce patient exposures to ineffective therapies, and accelerate approvals of effective therapies. KEY POINTS: Question: What are the effects of Bayesian early stopping rules on the efficiency of phase III randomized oncology trials?Findings: Individual-patient level outcomes were reconstructed for 184,752 patients from 230 trials. Compared with the original interim analysis strategy, in silico Bayesian interim analysis reduced patient enrollment requirements and preserved the original trial interpretation. Meaning: Bayesian interim analysis may improve the efficiency of conducting randomized trials, leading to reduced costs, reduced exposure of patients to disadvantageous treatments, and accelerated approval of efficacious therapies.

6.
Oncologist ; 29(7): 547-550, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38824414

ABSTRACT

Missing visual elements (MVE) in Kaplan-Meier (KM) curves can misrepresent data, preclude curve reconstruction, and hamper transparency. This study evaluated KM plots of phase III oncology trials. MVE were defined as an incomplete y-axis range or missing number at risk table in a KM curve. Surrogate endpoint KM curves were additionally evaluated for complete interpretability, defined by (1) reporting the number of censored patients and (2) correspondence of the disease assessment interval with the number at risk interval. Among 641 trials enrolling 518 235 patients, 116 trials (18%) had MVE in KM curves. Industry sponsorship, larger trials, and more recently published trials were correlated with lower odds of MVE. Only 3% of trials (15 of 574) published surrogate endpoint KM plots with complete interpretability. Improvements in the quality of KM curves of phase III oncology trials, particularly for surrogate endpoints, are needed for greater interpretability, reproducibility, and transparency in oncology research.


Subject(s)
Clinical Trials, Phase III as Topic , Kaplan-Meier Estimate , Humans , Clinical Trials, Phase III as Topic/standards , Neoplasms/therapy , Medical Oncology/standards , Medical Oncology/methods
8.
JAMA Netw Open ; 7(3): e243379, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38546648

ABSTRACT

Importance: Subgroup analyses are often performed in oncology to investigate differential treatment effects and may even constitute the basis for regulatory approvals. Current understanding of the features, results, and quality of subgroup analyses is limited. Objective: To evaluate forest plot interpretability and credibility of differential treatment effect claims among oncology trials. Design, Setting, and Participants: This cross-sectional study included randomized phase 3 clinical oncology trials published prior to 2021. Trials were screened from ClinicalTrials.gov. Main Outcomes and Measures: Missing visual elements in forest plots were defined as a missing point estimate or use of a linear x-axis scale for hazard and odds ratios. Multiplicity of testing control was recorded. Differential treatment effect claims were rated using the Instrument for Assessing the Credibility of Effect Modification Analyses. Linear and logistic regressions evaluated associations with outcomes. Results: Among 785 trials, 379 studies (48%) enrolling 331 653 patients reported a subgroup analysis. The forest plots of 43% of trials (156 of 363) were missing visual elements impeding interpretability. While 4148 subgroup effects were evaluated, only 1 trial (0.3%) controlled for multiple testing. On average, trials that did not meet the primary end point conducted 2 more subgroup effect tests compared with trials meeting the primary end point (95% CI, 0.59-3.43 tests; P = .006). A total of 101 differential treatment effects were claimed across 15% of trials (55 of 379). Interaction testing was missing in 53% of trials (29 of 55) claiming differential treatment effects. Trials not meeting the primary end point were associated with greater odds of no interaction testing (odds ratio, 4.47; 95% CI, 1.42-15.55, P = .01). The credibility of differential treatment effect claims was rated as low or very low in 93% of cases (94 of 101). Conclusions and Relevance: In this cross-sectional study of phase 3 oncology trials, nearly half of trials presented a subgroup analysis in their primary publication. However, forest plots of these subgroup analyses largely lacked essential features for interpretation, and most differential treatment effect claims were not supported. Oncology subgroup analyses should be interpreted with caution, and improvements to the quality of subgroup analyses are needed.


Subject(s)
Medical Oncology , Neoplasms , Humans , Cross-Sectional Studies , Neoplasms/therapy , Odds Ratio , Randomized Controlled Trials as Topic , Clinical Trials, Phase III as Topic
9.
J Natl Cancer Inst ; 116(6): 990-994, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38331394

ABSTRACT

Differential censoring, which refers to censoring imbalance between treatment arms, may bias the interpretation of survival outcomes in clinical trials. In 146 phase III oncology trials with statistically significant time-to-event surrogate primary endpoints, we evaluated the association between differential censoring in the surrogate primary endpoints, control arm adequacy, and the subsequent statistical significance of overall survival results. Twenty-four (16%) trials exhibited differential censoring that favored the control arm, whereas 15 (10%) exhibited differential censoring that favored the experimental arm. Positive overall survival was more common in control arm differential censoring trials (63%) than in trials without differential censoring (37%) or with experimental arm differential censoring (47%; odds ratio = 2.64, 95% confidence interval = 1.10 to 7.20; P = .04). Control arm differential censoring trials more frequently used suboptimal control arms at 46% compared with 20% without differential censoring and 13% with experimental arm differential censoring (odds ratio = 3.60, 95% confidence interval = 1.29 to 10.0; P = .007). The presence of control arm differential censoring in trials with surrogate primary endpoints, especially in those with overall survival conversion, may indicate an inadequate control arm and should be examined and explained.


Subject(s)
Neoplasms , Humans , Neoplasms/mortality , Neoplasms/therapy , Clinical Trials, Phase III as Topic , Research Design/standards , Medical Oncology/standards
10.
J Gastrointest Oncol ; 14(6): 2466-2478, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38196532

ABSTRACT

Background: Amongst patients with recurrent hepatocellular carcinoma (HCC) post-liver transplantation, systemic therapy options may be limited by immunosuppression or poor performance status. Thus, we aimed to assess the impact of metastasis-directed therapy to all sites of disease (MDT-All) in HCC patients with limited disease recurrence [i.e., oligorecurrence (oligoM1)] post-transplantation and characterize pre-transplant characteristics associated with oligoM1. Methods: In this retrospective cohort study, patients at a single institution with recurrent HCC post-liver transplantation were identified. OligoM1 disease was defined as ≤3 lesions at recurrence, while polyrecurrent (polyM1) disease was defined as >3 lesions. Outcomes were compared in patients with oligoM1 disease by receipt of MDT-All. Regression analyses were used to identify predictors of polyM1 disease and characteristics associated with post-recurrence outcomes. Results: Forty-three patients with recurrent HCC post-liver transplantation from 2005-2022 were identified. Twenty-seven (63%) patients had oligoM1. Microvascular invasion was independently associated with polyM1 [odds ratio (OR): 14.64; 95% confidence interval (CI): 1.48-144.77; P=0.022]. Elevated alpha-fetoprotein (AFP) ≥400 ng/mL [hazard ratio (HR): 2.44; 95% CI: 1.08, 5.52; P=0.033] at recurrence was independently associated with inferior overall survival (OS), while oligoM1 (HR: 0.42; 95% CI: 0.21, 0.87; P=0.018) was independently associated with favorable OS. Amongst patients with oligoM1 who received MDT-All (n=15) median OS was 38.4 vs. 16.1 months for those who did not receive MDT-All (log-rank P=0.021). There was a non-significant improvement in polyprogression-free survival (polyPFS) (median 14.0 vs. 10.7 months, P=0.1) amongst oligoM1 patients who received MDT-All compared to those who did not. Conclusions: Receipt of MDT-All was associated with improved OS amongst patients with limited HCC disease recurrence following liver transplantation.

SELECTION OF CITATIONS
SEARCH DETAIL