Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Gene ; 933: 148949, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39278374

ABSTRACT

C-terminal kinesin motor KIFC1 is increasingly concerned with an essential role in germ cell development. During the spermatogenesis of mice, rats, and crustaceans, KIFC1 functions in regulating meiotic chromosome separation, acrosome vesicle transportation, and nuclear morphology maintenance. The expression pattern of KIFC1 is conservatively concentrated at the acrosome and nucleus of haploid sperm cells. However, whether KIFC1 has similar functions in non-human primates remains unknown. In this study, we constructed the testis-specific cDNA library and cloned different transcripts of KIFC1 based on the genomic sequence. New variants of KIFC1 were identified, and showed different functional domains from the predicted isoforms. The spatio-temporal expression of KIFC1 proteins in seminiferous tubules of rhesus monkeys showed an obvious nuclear localization, specifically expressed in the spermatocytes and early haploid spermatids. The transcripts of KIFC1 also exhibited considerable expression in the nucleus of rhesus LLC-MK2 cells. Besides, we demonstrated that KIFC1 located at the acrosome and microtubule flagella of the mature sperm, and KIFC1 inhibition resulted in sperm tail deformation as well as increased the instability of head-to-tail connection. In summary, this study filled a gap in the reproductive research of the KIFC1 gene in non-human primates.

2.
PLoS One ; 19(5): e0300924, 2024.
Article in English | MEDLINE | ID: mdl-38768105

ABSTRACT

The identification research of hydrogenation catalyst information has always been one of the most important businesses in the chemical industry. In order to aid researchers in efficiently screening high-performance catalyst carriers and tackle the pressing challenge at hand, it is imperative to find a solution for the intelligent recognition of hydrogenation catalyst images. To address the issue of low recognition accuracy caused by adhesion and stacking of hydrogenation catalysts, An image recognition algorithm of hydrogenation catalyst based on FPNC Net was proposed in this paper. In the present study, Resnet50 backbone network was used to extract the features, and spatially-separable convolution kernel was used to extract the multi-scale features of catalyst fringe. In addition, to effectively segment the adhesive regions of stripes, FPN (Feature Pyramid Network) is added to the backbone network for deep and shallow feature fusion. Introducing an attention module to adaptively adjust weights can effectively highlight the target features of the catalyst. The experimental results showed that the FPNC Net model achieved an accuracy of 94.2% and an AP value improvement of 19.37% compared to the original CenterNet model. The improved model demonstrates a significant enhancement in detection accuracy, indicating a high capability for detecting hydrogenation catalyst targets.


Subject(s)
Algorithms , Deep Learning , Catalysis , Hydrogenation , Image Processing, Computer-Assisted/methods , Neural Networks, Computer
3.
Ecotoxicol Environ Saf ; 270: 115907, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38176185

ABSTRACT

Fluoride has strong electronegativity and exposes diversely in nature. Water fluoridation is the most pervasive form of occurrence, representing a significant threat to human health. In this study, we investigate the morphometric and physiological alterations triggered by fluoride stimulation during the embryogenesis of zebrafish and reveal its putative effects of stage- and/or dose-dependent. Fluoride exhibits potent biological activity and can be extensively absorbed by the yolk sac, exerting significant effects on the development of multiple organs. This is primarily manifested as restricted nutrient utilization and elevated levels of lipid peroxidation, further leading to the accumulation of superoxide in the yolk sac, liver, and intestines. Moreover, pericardial edema exerts pressure on the brain and eye development, resulting in spinal curvature and reduced body length. Besides, acute fluoride exposure with varying concentrations has led to diverse teratogenic outcomes. A low dose of water fluoridation tends to induce abnormal development of the embryonic yolk sac, while vascular malformation is widely observed in all fluoride-treated groups. The effect of fluoride exposure on blood circulation is universally present, even in zebrafish larvae that do not exhibit obvious deformities. Their swimming behavior is also affected by water fluoridation, resulting in reduced activity and delayed reactions. In conclusion, this study provides valuable insights into the monitoring of environmental quality related to water fluoridation and disease prevention.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Humans , Fluorides/toxicity , Fluoridation , Embryonic Development , Yolk Sac , Embryo, Nonmammalian , Water Pollutants, Chemical/toxicity
4.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119555, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37524262

ABSTRACT

KIFC1, a member of kinesin-14 subfamily motors, is essential for meiotic cell division and acrosome formation during spermatogenesis. However, the functions of KIFC1 in the formation and maintenance of the acrosome in male germ cells remain to be elucidated. In this study, we report the structural deformities of acrosomes in the in vivo KIFC1 inhibition mouse models. The proacrosomal vesicles diffuse into the cytoplasm and form atypical acrosomal granules. This phenotype is consistent with globozoospermia patients and probably results from the failure of the Golgi-derived vesicle trafficking and actin filament organization. Moreover, the multinucleated and undifferentiated spermatogenic cells in the epidydimal lumen after KIFC1 inhibition reveal the specific roles of KIFC1 in regulating post-meiotic maturation. Overall, our results uncover KIFC1 as an essential regulator in the trafficking, fusion and maturation of acrosomal vesicles during spermiogenesis.

5.
Int J Hyperthermia ; 38(1): 1359-1365, 2021.
Article in English | MEDLINE | ID: mdl-34505553

ABSTRACT

OBJECTIVE: This study aimed to evaluate the clinical safety and efficacy magnetic resonance (MR)-guided percutaneous thermal ablation for the treatment of small liver malignant tumors of segment II and IVa (≤3.0 cm) abutting the heart. METHOD: The enrollment of 24 patients with 25 malignant liver lesions located on the II or IVa segment abutting the heart who underwent MRI-guided thermal ablation between August 2010 and February 2020 were retrospectively analyzed. Follow-up MRI was performed to evaluate the curative effect. Local tumor progression-free survival and overall survival rates were also calculated. RESULTS: The procedures including radiofrequency ablation (RFA) for 15 patients and microwave ablation (MWA) for 9 patients were successfully accomplished (technical success rate of 100%) without major complications. The mean duration time was 78.4 ± 29.4 min (40-140 min), and mean follow-up time was 31.5 ± 22.2 months (6-92 months). The technical efficacy was 100% following one ablation session with MRI assessment after one month. Local tumor progression was observed in one patient with a metastatic lesion located in segment II at 18 months follow-up. The progression-free survival time was 20.1 ± 16.9 months (median: 15 months). The 1-, 3-, and 5-year local tumor progression-free survival rates of this patient were 100%, 94.7%, and 94.7%, respectively. With regards to all the patients, the 1-, 3-, and 5-year estimated overall survival rates were 91.7%, 80.6%, and 50.1%, respectively. CONCLUSION: MR-guided thermal ablation is safe and effective for the treatment of small liver malignant tumors located on the II or IVa segment abutting the heart.


Subject(s)
Catheter Ablation , Liver Neoplasms , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Magnetic Resonance Spectroscopy , Retrospective Studies , Treatment Outcome
6.
Data Brief ; 31: 105897, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32642514

ABSTRACT

The SEM image data presented in this article was collected by the Scanning electron microscopy (SEM) performed on an XL-30 ESEM FEG scanning electron microscopy. The diameter stastics data was collected and calculated by the Image-Pro Plus software system. The UV-Vis Res spectrum was collected by solid state UV diffuse reflector Shimadzu UV-4100 at wavelength 200-800 nm. The SEM image data showed more details of the poplar tree leave template(PTLT). The diameter stastics data show the diameter averagely distributed in the material. The UV-Vis Res spectrum reflected the physical property of PTLT NiO/ZnO. Interpretation of this data can be found in a research article titled "One-step facile synthesis of a NiO/ZnO biomorphic nanocomposite using a poplar tree leaf template to generate an enhanced gas sensing platform to detect n-butanol" (Qingrui Zeng et al., 2019) [1], Research Article DOI: 10.1016/j.jallcom.2019.05.018•The SEM image provide the more details about the distinction of the PTLT ZnO and conventional ZnO, further present more morphology information of the PTLT biotemplate. Exhibiting a facile and green way for synthesising ZnO and narrow down the size of ZnO crystal, present the advantage of PTLT ZnO in morphology control. Motivating gas sensor researcher to fabricate ZnO by a biotemplate method, which owned biomorphic and extraordinary gas sensing properties.•The UV-Vis Res spectrum present more detail of the energy band information of PTLT ZnO and PTLT NiO/ZnO, which is use for the gas sensing mechanism analysis. Inspiring researcher forcus on the construction on p-n heterojunction type gas sensor to enhance the gas sensing properties.•The material researchers work on the morphic investigation, gas sensor, and application of semiconductor.•These data are benefit for the application of biotemplate method for material fabrication and material application.

7.
Mikrochim Acta ; 187(5): 258, 2020 04 04.
Article in English | MEDLINE | ID: mdl-32248309

ABSTRACT

Flower-like graphene/CuO@Cu-BTC (GR/CuO@Cu-BTC) composite was employed as electrode material for the voltammetric determination of caffeic acid (CA) in the wine. The composite material was prepared via the self-template method. In this synthetic process, budlike CuO not only acts as the template, but also provides Cu2+ ions for in situ growth of the Cu-BTC shell. The utilization of GR as petal greatly boosts the stability and electronic conductivity of CuO@Cu-BTC. The GR/CuO@Cu-BTC composite possesses unique structural features with high specific surface area and good conductivity, exhibiting excellent electrocatalytic activity towards the oxidation of CA. Under optimized conditions, the sensor shows a good linear response to CA concentration over the range 0.020-10.0 µM, together with a low limit of detection (LOD) of 7.0 nM. Selectivity, reproducibility, and stability were investigated, and the method has been applied for the determination of CA in wine samples. Graphical abstract Schematic representation of electrochemical sensor for the detection of caffeic acid was designed based on flower-like graphene/copper oxide@copper(II) metal-organic framework (GR/CuO@Cu-BTC) composite electrode material.

SELECTION OF CITATIONS
SEARCH DETAIL