Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Agric Food Chem ; 69(17): 5096-5104, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33826316

ABSTRACT

Natural and modified versions of the 5-enolpyruvylshikimate-3-phosphate synthase (epsps) gene have been used to confer tolerance to the broad-spectrum herbicide glyphosate in a variety of commercial crops. The most widely utilized trait was obtained from the Agrobacterium tumefaciens strain CP4 and has been commercialized in several glyphosate-tolerant crops. The EPSPS gene products are enzymes that have been divided into three classes based on sequence similarity, sensitivity to glyphosate, and steady-state catalytic parameters. Herein, we describe the informatics-guided identification and biochemical and structural characterization of a novel EPSPS from Streptomyces sviceus (DGT-28 EPSPS). The data suggest DGT-28 EPSPS and other closely related homologues exemplify a distinct new class (Class IV) of EPSPS enzymes that display intrinsic tolerance to high concentrations of glyphosate (Ki ≥ 5000 µM). We further demonstrate that dgt-28 epsps, when transformed into stable plants, provides robust (≥4× field rates) vegetative/reproductive herbicide tolerance and has utility in weed-control systems comparable to that of commercialized events.


Subject(s)
Herbicides , Streptomyces , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Glycine/analogs & derivatives , Glycine/pharmacology , Herbicide Resistance/genetics , Herbicides/pharmacology , Streptomyces/genetics , Glyphosate
2.
Proc Natl Acad Sci U S A ; 107(47): 20240-5, 2010 Nov 23.
Article in English | MEDLINE | ID: mdl-21059954

ABSTRACT

Engineered glyphosate resistance is the most widely adopted genetically modified trait in agriculture, gaining widespread acceptance by providing a simple robust weed control system. However, extensive and sustained use of glyphosate as a sole weed control mechanism has led to field selection for glyphosate-resistant weeds and has induced significant population shifts to weeds with inherent tolerance to glyphosate. Additional weed control mechanisms that can complement glyphosate-resistant crops are, therefore, urgently needed. 2,4-dichlorophenoxyacetic acid (2,4-D) is an effective low-cost, broad-spectrum herbicide that controls many of the weeds developing resistance to glyphosate. We investigated the substrate preferences of bacterial aryloxyalkanoate dioxygenase enzymes (AADs) that can effectively degrade 2,4-D and have found that some members of this class can act on other widely used herbicides in addition to their activity on 2,4-D. AAD-1 cleaves the aryloxyphenoxypropionate family of grass-active herbicides, and AAD-12 acts on pyridyloxyacetate auxin herbicides such as triclopyr and fluroxypyr. Maize plants transformed with an AAD-1 gene showed robust crop resistance to aryloxyphenoxypropionate herbicides over four generations and were also not injured by 2,4-D applications at any growth stage. Arabidopsis plants expressing AAD-12 were resistant to 2,4-D as well as triclopyr and fluroxypyr, and transgenic soybean plants expressing AAD-12 maintained field resistance to 2,4-D over five generations. These results show that single AAD transgenes can provide simultaneous resistance to a broad repertoire of agronomically important classes of herbicides, including 2,4-D, with utility in both monocot and dicot crops. These transgenes can help preserve the productivity and environmental benefits of herbicide-resistant crops.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/metabolism , Arabidopsis/genetics , Cupriavidus necator/enzymology , Dioxygenases/genetics , Herbicide Resistance/genetics , Herbicides/toxicity , Zea mays/genetics , 2,4-Dichlorophenoxyacetic Acid/toxicity , Blotting, Southern , Blotting, Western , Cupriavidus necator/genetics , Delftia acidovorans/enzymology , Dioxygenases/metabolism , Enzyme-Linked Immunosorbent Assay , Escherichia coli , Genetic Engineering , Glycine/analogs & derivatives , Glycine/toxicity , Kinetics , Molecular Structure , Sphingomonadaceae/enzymology , Substrate Specificity , Transformation, Genetic/genetics , Transgenes/genetics , Glyphosate
3.
J Nat Prod ; 69(10): 1506-10, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17067173

ABSTRACT

Several Penicillia and one Tricothecium strain produced a new, insecticidally active member of the cycloaspeptide family, with the proposed name cycloaspeptide E (1). The structure, which was determined on the basis of spectroscopic (NMR, UV, MS) data and Marfey amino acid analysis, was the tyrosine desoxy version of cycloaspeptide A (2). Two synthetic routes to compound 1 were developed: one a partial synthesis from 2 and the other a total synthesis from methyl alaninate hydrochloride. Cycloaspeptide E, the first member of this series not to contain a tyrosine moiety, is also the first to be reported with insecticidal activity.


Subject(s)
Ascomycota/chemistry , Insecticides , Lepidoptera/drug effects , Penicillium/chemistry , Peptides, Cyclic , Animals , Insecticides/chemical synthesis , Insecticides/chemistry , Insecticides/isolation & purification , Insecticides/pharmacology , Molecular Structure , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Peptides, Cyclic/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL