Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
J Chem Phys ; 160(24)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38916267

ABSTRACT

We report the free energy barriers for the elementary reactions in the 2e- and 4e- oxygen reduction reaction (ORR) steps on Au(100) in an alkaline solution. Due to the weak adsorption energy of O2 on Au(100), the barrier for the association channel is very low, and the 2e- pathway is clearly favored, while the barrier for the O-O dissociation channel is significantly higher at 0.5 eV. Above 0.7 V reversible hydrogen electrode (RHE), the association channel becomes thermodynamically unfavorable, which opens up the O-O dissociation channel, leading to the 4e- pathway. The low adsorption energy of oxygenated species on Au is now an advantage, and residue ORR current can be observed up to the 1.0-1.2 V region (RHE). In contrast, the O-O dissociation barrier on Au(111) is significantly higher, at close to 0.9 eV, due to coupling with surface reorganization, which explains the lower ORR activity on Au(111) than that on Au(100). In combination with the previously suggested outer sphere electron transfer to O2 for its initial adsorption, these results provide a consistent explanation for the features in the experimentally measured polarization curve for the alkaline ORR on Au(100) and demonstrate an ORR mechanism distinct from that on Pt(111). It also highlights the importance to consider the spin state of O2 in ORR and to understand the activation barriers, in addition to the adsorption energies, to account for the features observed in electrochemical measurements.

2.
Dalton Trans ; 53(27): 11247-11251, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38938107

ABSTRACT

A novel sheet-like tin-based metal-organic framework exhibited a specific capacity for lithium storage as high as 1033.3 mAh g-1 at 200 mA g-1 with excellent cycling stability. This framework, due to its unique porous structure and multiple lithium storage sites, could better cope with challenges occurring during lithium insertion/extraction than could traditional tin materials.

3.
Cell Death Differ ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918620

ABSTRACT

Mitochondrial dysfunction plays a pivotal role in the pathogenesis of Parkinson's disease (PD). As a mitochondrial governor, voltage-dependent anion channel 1 (VDAC1) is critical for cell survival and death signals and implicated in neurodegenerative diseases. However, the mechanisms of VDAC1 regulation are poorly understood and the role of tripartite motif-containing protein 31 (TRIM31), an E3 ubiquitin ligase which is enriched in mitochondria, in PD remains unclear. In this study, we found that TRIM31-/- mice developed age associated motor defects and dopaminergic (DA) neurodegeneration spontaneously. In addition, TRIM31 was markedly reduced both in nigrostriatal region of PD mice induced by MPTP and in SH-SY5Y cells stimulated by MPP+. TRIM31 deficiency significantly aggravated DA neurotoxicity induced by MPTP. Mechanistically, TRIM31 interacted with VDAC1 and catalyzed the K48-linked polyubiquitination to degrade it through its E3 ubiquitin ligase activity. In conclusion, we demonstrated for the first time that TRIM31 served as an important regulator in DA neuronal homeostasis by facilitating VDAC1 degradation through the ubiquitin-proteasome pathway. Our study identified TRIM31 as a novel potential therapeutic target and pharmaceutical intervention to the interaction between TRIM31 and VDAC1 may provide a promising strategy for PD.

4.
Cell Death Differ ; 31(6): 753-767, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38605168

ABSTRACT

Myddosome is an oligomeric complex required for the transmission of inflammatory signals from TLR/IL1Rs and consists of MyD88 and IRAK family kinases. However, the molecular basis for the self-assemble of Myddosome proteins and regulation of intracellular signaling remains poorly understood. Here, we identify OTUD5 acts as an essential regulator for MyD88 oligomerization and Myddosome formation. OTUD5 directly interacts with MyD88 and cleaves its K11-linked polyubiquitin chains at Lys95, Lys231 and Lys250. This polyubiquitin cleavage enhances MyD88 oligomerization after LPS stimulation, which subsequently promotes the recruitment of downstream IRAK4 and IRAK2 to form Myddosome and the activation of NF-κB and MAPK signaling and production of inflammatory cytokines. Consistently, Otud5-deficient mice are less susceptible to LPS- and CLP-induced sepsis. Taken together, our findings reveal a positive regulatory role of OTUD5 in MyD88 oligomerization and Myddosome formation, which provides new sights into the treatment of inflammatory diseases.


Subject(s)
Inflammation , Myeloid Differentiation Factor 88 , Animals , Humans , Mice , HEK293 Cells , Inflammation/metabolism , Inflammation/pathology , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/metabolism , Signal Transduction
5.
Nat Commun ; 15(1): 3195, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609380

ABSTRACT

The solvent-free selective hydrogenation of nitroaromatics to azoxy compounds is highly important, yet challenging. Herein, we report an efficient strategy to construct individually dispersed Co atoms decorated on niobium pentaoxide nanomeshes with unique geometric and electronic properties. The use of this supported Co single atom catalysts in the selective hydrogenation of nitrobenzene to azoxybenzene results in high catalytic activity and selectivity, with 99% selectivity and 99% conversion within 0.5 h. Remarkably, it delivers an exceptionally high turnover frequency of 40377 h-1, which is amongst similar state-of-the-art catalysts. In addition, it demonstrates remarkable recyclability, reaction scalability, and wide substrate scope. Density functional theory calculations reveal that the catalytic activity and selectivity are significantly promoted by the unique electronic properties and strong electronic metal-support interaction in Co1/Nb2O5. The absence of precious metals, toxic solvents, and reagents makes this catalyst more appealing for synthesizing azoxy compounds from nitroaromatics. Our findings suggest the great potential of this strategy to access single atom catalysts with boosted activity and selectivity, thus offering blueprints for the design of nanomaterials for organocatalysis.

6.
Life Sci Alliance ; 7(3)2024 03.
Article in English | MEDLINE | ID: mdl-38182161

ABSTRACT

Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.


Subject(s)
Intellectual Disability , Mental Retardation, X-Linked , Humans , Cell Proliferation , Computational Biology , Intellectual Disability/genetics , Neurogenesis , Mental Retardation, X-Linked/genetics
8.
PLoS Pathog ; 20(1): e1011902, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38166150

ABSTRACT

Fungal infections have emerged as a major concern among immunocompromised patients, causing approximately 2 million deaths each year worldwide. However, the regulatory mechanisms underlying antifungal immunity remain elusive and require further investigation. The E3 ligase Trim26 belongs to the tripartite motif (Trim) protein family, which is involved in various biological processes, including cell proliferation, antiviral innate immunity, and inflammatory responses. Herein, we report that Trim26 exerts protective antifungal immune functions after fungal infection. Trim26-deficient mice are more susceptible to fungemia than their wild-type counterparts. Mechanistically, Trim26 restricts inflammatory neutrophils infiltration and limits proinflammatory cytokine production, which can attenuate kidney fungal load and renal damage during Candida infection. Trim26-deficient neutrophils showed higher proinflammatory cytokine expression and impaired fungicidal activity. We further demonstrated that excessive neutrophils infiltration in the kidney was because of the increased production of chemokines CXCL1 and CXCL2, which are mainly synthesized in the macrophages or dendritic cells of Trim26-deficient mice after Candida albicans infections. Together, our study findings unraveled the vital role of Trim26 in regulating antifungal immunity through the regulation of inflammatory neutrophils infiltration and proinflammatory cytokine and chemokine expression during candidiasis.


Subject(s)
Candidiasis , Neutrophils , Animals , Mice , Antifungal Agents , Candida albicans , Candidiasis/metabolism , Candidiasis/microbiology , Cytokines/metabolism , Neutrophil Infiltration , Tripartite Motif Proteins , Ubiquitin-Protein Ligases
9.
Anal Chem ; 96(1): 67-75, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38153001

ABSTRACT

Origins of pH effects on the kinetics of electrocatalytic reactions involving the transfer of both protons and electrons, including the hydrogen evolution reaction (HER) considered in this study, are heatedly debated. By taking the HER at Au(111) in acid solutions of different pHs and ionic concentrations as the model systems, herein, we report how to derive the intrinsic kinetic parameters of such reactions and their pH dependence through the measurement of j-E curves and the corresponding kinetic simulation based on the Frumkin-Butler-Volmer theory and the modified Poisson-Nernst-Planck equation. Our study reveals the following: (i) the same set of kinetic parameters, such as the standard activation Gibbs free energy, charge transfer coefficient, and Gibbs adsorption energy for Had at Au(111), can simulate well all the j-E curves measured in solutions with different pH and temperatures; (ii) on the reversible hydrogen electrode scale, the intrinsic rate constant increases with the increase of pH, which is in contrast with the decrease of the HER current with the increase of pH; and (iii) the ratio of the rate constants for HER at Au(111) in x M HClO4 + (0.1 - x) M NaClO4 (pH ≤ 3) deduced before properly correcting the electric double layer (EDL) effects to the ones estimated with EDL correction is in the range of ca. 10 to 40, and even in a solution of x M HClO4 + (1 - x) M NaClO4 (pH ≤ 2) there is a difference of ca. 5× in the rate constants without and with EDL correction. The importance of proper correction of the EDL effects as well as several other important factors on unveiling the intrinsic pH-dependent reaction kinetics are discussed to help converge our analysis of pH effects in electrocatalysis.

10.
Autophagy ; : 1-16, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060409

ABSTRACT

The excessive activation of immune responses will trigger autoimmune diseases or inflammatory injury. The endosomal sorting complexes required for transport (ESCRT) system can capture and mediate ubiquitinated protein degradation, which timely terminates signaling pathway hyperactivation. However, whether the ESCRT system participates in regulating RIGI-like receptor (RLR)-mediated antiviral responses remains unknown. In this study, we show that LTN1/listerin, a major component of RQC, can recruit E3 ubiquitin ligase TRIM27 to trigger K63-linked polyubiquitination of RIGI and IFIH1/MDA5. This K63-linked polyubiquitination facilitates the sorting and degradation of RIGI and IFIH1 proteins through the ESCRT-dependent pathway. Concordantly, LTN1 deficiency enhances the innate antiviral response to infection with RNA viruses. Thus, our work uncovers a new mechanism for RIGI and IFIH1 degradation and identifies the role of LTN1 in negatively regulating RLR-mediated antiviral innate immunity, which may provide new targets for the intervention of viral infection.Abbreviation: 5'-pppRNA: 5' triphosphate double stranded RNA; ATG5: autophagy related 5; ATG7: autophagy related 7; BafA1: bafilomycin A1; ESCRT: endosomal sorting complexes required for transport; CHX: cycloheximide; IFIH1/MDA5: interferon induced with helicase C domain 1; IFN: interferon; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptors; RQC: ribosome-associated protein quality control; SeV: Sendai virus; TRIM27: tripartite motif-containing 27; VSV: vesicular stomatitis virus; VPS4: vacuolar protein sorting 4.

11.
Proc Natl Acad Sci U S A ; 120(52): e2308853120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38109536

ABSTRACT

The enzyme cyclic GMP-AMP synthase (cGAS) is a key sensor for detecting misplaced double-stranded DNA (dsDNA) of genomic, mitochondrial, and microbial origin. It synthesizes 2'3'-cGAMP, which in turn activates the stimulator of interferon genes pathway, leading to the initiation of innate immune responses. Here, we identified Listerin as a negative regulator of cGAS-mediated innate immune response. We found that Listerin interacts with cGAS on endosomes and promotes its K63-linked ubiquitination through recruitment of the E3 ligase TRIM27. The polyubiquitinated cGAS is then recognized by the endosomal sorting complexes required for transport machinery and sorted into endosomes for degradation. Listerin deficiency enhances the innate antiviral response to herpes simplex virus 1 infection. Genetic deletion of Listerin also deteriorates the neuroinflammation and the ALS disease progress in an ALS mice model; overexpression of Listerin can robustly ameliorate disease progression in ALS mice. Thus, our work uncovers a mechanism for cGAS regulation and suggests that Listerin may be a promising therapeutic target for ALS disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Ubiquitin-Protein Ligases , Animals , Mice , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/immunology , Endosomal Sorting Complexes Required for Transport/metabolism , Immunity, Innate/genetics , Nucleotidyltransferases/metabolism , Proteolysis , Signal Transduction/physiology , Disease Models, Animal , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/immunology , Ubiquitin-Protein Ligases/metabolism
12.
Front Neurol ; 14: 1266513, 2023.
Article in English | MEDLINE | ID: mdl-37780704

ABSTRACT

It is well recognized that the vestibular system is involved in numerous important cognitive functions, including self-motion perception, spatial orientation, locomotion, and vector-based navigation, in addition to basic reflexes, such as oculomotor or body postural control. Consistent with this rationale, vestibular signals exist broadly in the brain, including several regions of the cerebral cortex, potentially allowing tight coordination with other sensory systems to improve the accuracy and precision of perception or action during self-motion. Recent neurophysiological studies in animal models based on single-cell resolution indicate that vestibular signals exhibit complex spatiotemporal dynamics, producing challenges in identifying their exact functions and how they are integrated with other modality signals. For example, vestibular and optic flow could provide congruent and incongruent signals regarding spatial tuning functions, reference frames, and temporal dynamics. Comprehensive studies, including behavioral tasks, neural recording across sensory and sensory-motor association areas, and causal link manipulations, have provided some insights into the neural mechanisms underlying multisensory self-motion perception.

13.
Math Biosci Eng ; 20(8): 13562-13580, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37679102

ABSTRACT

The advancement of deep learning has resulted in significant improvements on various visual tasks. However, deep neural networks (DNNs) have been found to be vulnerable to well-designed adversarial examples, which can easily deceive DNNs by adding visually imperceptible perturbations to original clean data. Prior research on adversarial attack methods mainly focused on single-task settings, i.e., generating adversarial examples to fool networks with a specific task. However, real-world artificial intelligence systems often require solving multiple tasks simultaneously. In such multi-task situations, the single-task adversarial attacks will have poor attack performance on the unrelated tasks. To address this issue, the generation of multi-task adversarial examples should leverage the generalization knowledge among multiple tasks and reduce the impact of task-specific information during the generation process. In this study, we propose a multi-task adversarial attack method to generate adversarial examples from a multi-task learning network by applying attention distraction with gradient sharpening. Specifically, we first attack the attention heat maps, which contain more generalization information than feature representations, by distracting the attention on the attack regions. Additionally, we use gradient-based adversarial example-generating schemes and propose to sharpen the gradients so that the gradients with multi-task information rather than only task-specific information can make a greater impact. Experimental results on the NYUD-V2 and PASCAL datasets demonstrate that the proposed method can improve the generalization ability of adversarial examples among multiple tasks and achieve better attack performance.

14.
Eur J Med Res ; 28(1): 368, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737183

ABSTRACT

AIM: Autophagy plays essential roles in abdominal aortic aneurysm (AAA) development and progression. The objective of this study was to verify the autophagy-related genes (ARGs) underlying AAA empirically and using bioinformatics analysis. METHODS: Two gene expression profile datasets GSE98278 and GSE57691 were downloaded from the Gene Expression Omnibus (GEO) database, and principal component analysis was performed. Following, the R software (version 4.0.0) was employed to analyze potentially differentially expressed genes related with AAA and autophagy. Subsequently, the candidate genes were screened using protein-protein interaction (PPI), gene ontology (GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Finally, quantitative real-time polymerase chain reaction (RT-qPCR) was performed to detect the RNA expression levels of the top five selected abnormal ARGs in clinical samples obtained from the normal and AAA patients. RESULTS: According to the information contained (97 AAA patients and 10 healthy controls) in the two datasets, a total of 44 differentially expressed autophagy-related genes (6 up-regulated genes and 38 down-regulated genes) were screened. GO enrichment analysis of differentially expressed autophagy-related genes (DEARGs) demonstrated that some enrichment items were associated with inflammation, and PPI analysis indicated interaction between these genes. RT-qPCR results presented that the expression levels of IL6, PPARG, SOD1, and MAP1LC3B were in accordance with the bioinformatics prediction results acquired from the mRNA chip. CONCLUSION: Bioinformatics analysis identified 44 potential autophagy-related differentially expressed genes in AAA. Further verification by RT- qPCR presented that IL6, PPARG, SOD1, and MAP1LC3B may affect the development of AAA by regulating autophagy. These findings might help explain the pathogenesis of AAA and be helpful in its diagnosis and treatment.


Subject(s)
Aortic Aneurysm, Abdominal , Interleukin-6 , Humans , PPAR gamma , Superoxide Dismutase-1 , Autophagy/genetics , Aortic Aneurysm, Abdominal/genetics
15.
Cell Mol Immunol ; 20(10): 1186-1202, 2023 10.
Article in English | MEDLINE | ID: mdl-37582970

ABSTRACT

The adaptor molecule MAVS forms prion-like aggregates to govern the RIG-I-like receptor (RLR) signaling cascade. Lys63 (K63)-linked polyubiquitination is critical for MAVS aggregation, yet the underlying mechanism and the corresponding E3 ligases and deubiquitinating enzymes (DUBs) remain elusive. Here, we found that the K63-linked polyubiquitin chains loaded on MAVS can be directly recognized by RIG-I to initiate RIG-I-mediated MAVS aggregation with the prerequisite of the CARDRIG-I-CARDMAVS interaction. Interestingly, many K63-linked polyubiquitin chains attach to MAVS via an unanchored linkage. We identified Ube2N as a major ubiquitin-conjugating enzyme for MAVS and revealed that Ube2N cooperates with the E3 ligase Riplet and TRIM31 to promote the unanchored K63-linked polyubiquitination of MAVS. In addition, we identified USP10 as a direct DUB that removes unanchored K63-linked polyubiquitin chains from MAVS. Consistently, USP10 attenuates RIG-I-mediated MAVS aggregation and the production of type I interferon. Mice with a deficiency in USP10 show more potent resistance to RNA virus infection. Our work proposes a previously unknown mechanism for the activation of the RLR signaling cascade triggered by MAVS-attached unanchored K63-linked polyubiquitin chains and establishes the DUB USP10 and the E2:E3 pair Ube2N-Riplet/TRIM31 as a specific regulatory system for the unanchored K63-linked ubiquitination and aggregation of MAVS upon viral infection.


Subject(s)
Immunity, Innate , Polyubiquitin , Animals , Mice , DEAD Box Protein 58/genetics , Polyubiquitin/metabolism , Immunity, Innate/genetics , Signal Transduction/genetics , Ubiquitination , Ubiquitin-Protein Ligases/metabolism
16.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3207-3214, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37382004

ABSTRACT

The present study aimed to investigate the protective role of Shaofu Zhuyu Decoction(SFZY) against endometriosis fibrosis in mice, and decipher the underlying mechanism through the phosphatase and tensin homolog deleted on chromosome ten(PTEN)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) pathway. Eighty-five BALB/c female mice were randomly assigned into a blank group, a model group, high-, medium, and low-dose SFZY(SFZY-H, SFZY-M, and SFZY-L, respectively) groups, and a gestrinone suspension(YT) group. The model of endometriosis was induced by intraperitoneal injection of uterine fragments. The mice in different groups were administrated with corresponding groups by gavage 14 days after modeling, and the blank group and model group with equal volume of distilled water by gavage. The treatment lasted for 14 days. The body weight, paw withdrawal latency caused by heat stimuli, and total weight of dissected ectopic focus were compared between different groups. The pathological changes of the ectopic tissue were observed via hematoxylin-eosin(HE) and Masson staining. Real-time PCR was employed to measure the mRNA levels of α-smooth muscle actin(α-SMA) and collagen type Ⅰ(collagen-Ⅰ) in the ectopic tissue. The protein levels of PTEN, Akt, mTOR, p-Akt, and p-mTOR in the ectopic tissue were determined by Western blot. Compared with the blank group, the modeling first decreased and then increased the body weight of mice, increased the total weight of ectopic focus, and shortened the paw withdrawal latency. Compared with the model group, SFZY and YT increased the body weight, prolonged the paw withdrawal latency, and decreased the weight of ectopic focus. Furthermore, the drug administration, especially SFZY-H and YT(P<0.01), recovered the pathological and reduced the area of collagen deposition. Compared with the blank group, the modeling up-regulated the mRNA levels of α-SMA and collagen-Ⅰ in the ectopic focus, and such up-regulation was attenuated after drug intervention, especially in the SFZY-H and YT groups(P<0.05,P<0.01). Compared with the blank group, the modeling down-regulated the protein level of PTEN and up-regulated the protein levels of Akt, mTOR, p-Akt, and p-mTOR(P<0.01, P<0.001). Drug administration, especially SFZY-H and YT, restored such changes(P<0.01). SFZY may significantly attenuate the focal fibrosis in the mouse model of endometriosis by regulating the PTEN/Akt/mTOR signaling pathway.


Subject(s)
Choristoma , Endometriosis , Female , Animals , Mice , Humans , Proto-Oncogene Proteins c-akt/genetics , Endometriosis/drug therapy , Endometriosis/genetics , TOR Serine-Threonine Kinases/genetics , RNA, Messenger , Signal Transduction , Body Weight , Mammals , PTEN Phosphohydrolase/genetics
17.
Immunity ; 56(8): 1727-1742.e6, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37379835

ABSTRACT

STING (stimulator of interferon genes) exerts protective cellular responses to viral infection via induction of interferon production and autophagy. Here, we report the role of STING in modulating the immune responses toward fungal infection. Upon Candida albicans stimulation, STING transited alongside the endoplasmic reticulum (ER) to the phagosomes. In phagosomes, STING directly bound with Src via the N-terminal 18 amino acids of STING, and this binding prevented Src from recruiting and phosphorylating Syk. Consistently, Syk-associated signaling and production of pro-inflammatory cytokines and chemokines were increased in mouse BMDCs (bone-marrow-derived dendritic cells) lacking STING with fungal treatment. STING deficiency improved anti-fungal immunity in systemic C. albicans infection. Importantly, administration of the N-terminal 18-aa (amino acid) peptide of STING improved host outcomes in disseminated fungal infection. Overall, our study identifies a previously unrecognized function of STING in negatively regulating anti-fungal immune responses and offers a potential therapeutic strategy for controlling C. albicans infection.


Subject(s)
Nucleotides , Signal Transduction , Animals , Mice , Cytokines/metabolism , Immunity, Innate , Interferons/metabolism , Nucleotides/metabolism , Phagosomes/metabolism , Phagosomes/microbiology
18.
Angew Chem Int Ed Engl ; 62(25): e202305135, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37092858

ABSTRACT

Multiple constituent coassembly is an emerging strategy to manipulate supramolecular chirality and chiroptical properties such as circularly polarized luminescence (CPL). However, the second or third constituent could not be removed from pristine self-assembly. Here we developed a constitute-removable chiral coassembly using sublimation that could realize coassembly with tunable supramolecular chirality, luminescence and CPL properties. Octafluoronapthalene (OFN) with small sublimation enthalpy formed coassemblies with perylene-conjugated peptoids via arene-perfluoroarene (AP) interaction that induced the emergence of macroscopic chirality and hypsochromic luminescence from yellow to green. Coassembly with OFN accelerated one-dimensional growth and induced the emergence of macroscopic chirality and CPL. Despite the stability at ambient conditions, vacuum-treatment triggered fast sublimation of OFN, which behaved as a sacrificial template. Physical removal of OFN retained the helical nanoarchitectures as well as the basic features of Cotton effects and CPL activities. X-ray diffraction suggested the back-fill consolidation occurred on the molecular voids by OFN removal that slightly varied the templated molecular arrangements. Sublimation of perfluorinated building units is green and efficient and non-destructive, which is potentially applicable in constructing template-directed chiroptical materials and devices.


Subject(s)
Peptoids , Perylene , Luminescence , X-Ray Diffraction
19.
Cell Rep ; 42(4): 112306, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36972172

ABSTRACT

STING is an endoplasmic reticulum-resident protein regulating innate immunity. After binding with cyclic guanosine monophosphate-AMP (cGAMP), STING translocates from the endoplasmic reticulum (ER) to the Golgi apparatus to stimulate TBK1 and IRF3 activation, leading to expression of type I interferon. However, the exact mechanism concerning STING activation remains largely enigmatic. Here, we identify tripartite motif 10 (TRIM10) as a positive regulator of STING signaling. TRIM10-deficient macrophages exhibit reduced type I interferon production upon double-stranded DNA (dsDNA) or cGAMP stimulation and decreased resistance to herpes simplex virus 1 (HSV-1) infection. Additionally, TRIM10-deficient mice are more susceptible to HSV-1 infection and exhibit faster melanoma growth. Mechanistically, TRIM10 associates with STING and catalyzes K27- and K29-linked polyubiquitination of STING at K289 and K370, which promotes STING trafficking from the ER to the Golgi apparatus, formation of STING aggregates, and recruitment of TBK1 to STING, ultimately enhancing the STING-dependent type I interferon response. Our study defines TRIM10 as a critical activator in cGAS-STING-mediated antiviral and antitumor immunity.


Subject(s)
Herpes Simplex , Interferon Type I , Animals , Mice , DNA , Golgi Apparatus/metabolism , Immunity, Innate , Intracellular Signaling Peptides and Proteins , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Tripartite Motif Proteins , Ubiquitin , Ubiquitin-Protein Ligases
20.
Food Chem Toxicol ; 174: 113653, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36758786

ABSTRACT

Formaldehyde exposure during pregnancy can cause fetal congenital heart disease (CHD). However, the regulatory mechanism remains unclear. Studies on the biology of long non-coding RNAs (lncRNAs) show that lncRNAs can influence cardiac development and disease. However, expression patterns and regulatory mechanisms of action of lncRNAs in formaldehyde-induced CHD remain unclear. We used high-throughput sequencing strategies as a means of identifying lncRNA expression profiles in heart tissues of normal and formaldehyde-exposed newborn rats. Overall, 763 differentially expressed lncRNAs were identified, including 325 and 438 that were respectively up-regulated and down-regulated. GO and KEGG analyses indicated that the Ras and hedgehog signaling pathways may be important regulatory pathways in CHD caused by exposure to formaldehyde. A lncRNA-miRNA-mRNA co-expression network was constructed and a key miRNA, rno-miR-665, was identified. Furthermore, qRT-PCR analysis verified that the novel lncRNAs: MSTRG.27313.2, MSTRG.30629.2, MSTRG.36520.33, MSTRG.91234.1, and MSTRG.91233.9, were upregulated in the formaldehyde-exposed group. These differentially expressed lncRNAs identified during formaldehyde-induced CHD in newborn rats help explain CHD pathogenesis and provide an effective reference for diagnosing and treating CHD.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Pregnancy , Female , Rats , Animals , RNA, Long Noncoding/genetics , Hedgehog Proteins/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , Heart , Gene Regulatory Networks , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL