Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.275
Filter
1.
Neural Regen Res ; 20(2): 402-415, 2025 Feb 01.
Article in English | MEDLINE | ID: mdl-38819044

ABSTRACT

With an increase in global aging, the number of people affected by cerebrovascular diseases is also increasing, and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate. However, few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients. Similarly in Alzheimer's disease and other neurological disorders, synaptic dysfunction is recognized as the main reason for cognitive decline. Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system. Recently, nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia. This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction, neuroinflammation, oxidative stress, and blood-brain barrier dysfunction that underlie the progress of vascular dementia. Additionally, we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia.

2.
Neural Regen Res ; 20(6): 1721-1734, 2025 Jun 01.
Article in English | MEDLINE | ID: mdl-39104111

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202506000-00024/figure1/v/2024-08-05T133530Z/r/image-tiff The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions. Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress-induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2 agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice. After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.

3.
Front Plant Sci ; 15: 1436152, 2024.
Article in English | MEDLINE | ID: mdl-39091320

ABSTRACT

Introduction: Salinity and droughts are severe abiotic stress factors that limit plant growth and development. However, the differences and similarities of non-structural carbohydrates (NSCs) responses patterns of trees under the two stress conditions remain unclear. Methods: We determined and compared the growth, physiology, and NSCs response patterns and tested the relationships between growth and NSCs concentrations (or pool size) of Eucommia ulmoides seedlings planted in field under drought and salt stress with different intensities and durations. Results and discussion: We found that drought and salt stress can inhibit the growth of E. ulmoides, and E. ulmoides tended to enhance its stress resistance by increasing proline concentration and leaf thickness or density but decreasing investment in belowground biomass in short-term stress. During short-term drought and salt stress, the aboveground organs showed different NSCs response characteristics, while belowground organs showed similar change characteristics: the starch (ST) and NSCs concentrations in the coarse roots decreased, while the ST and soluble sugar (SS) concentrations in the fine roots increased to enhance stress resistance and maintain water absorption function. As salt and drought stress prolonged, the belowground organs represented different NSCs response patterns: the concentrations of ST and SS in fine roots decreased as salt stress prolonged; while ST in fine roots could still be converted into SS to maintain water absorption as drought prolonged, resulting in an increase of SS and a decrease of ST. Significant positive relationships were found between growth and the SS and total NSCs concentrations in leaves and branches, however, no significant correlations were found between growth and below-ground organs. Moreover, relationships between growth and NSCs pool size across organs could be contrast. Conclusion: Our results provide important insights into the mechanisms of carbon balance and carbon starvation and the relationship between tree growth and carbon storage under stress, which were of great significance in guiding for the management of artificial forest ecosystem under the context of global change.

4.
Ann Gen Psychiatry ; 23(1): 28, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095916

ABSTRACT

BACKGROUND: Even with advances in primary health care, depressive disorders remain a major global public health problem. We conducted an in-depth analysis of global, regional and national trends in depressive disorders incidence over the past 30 years. METHODS: Data on the incidence of depressive disorders were obtained by sex (female, male, and both), location (204 countries), age (5-84 years), year (1990-2019) from the Global Burden of Disease Study (GBD) 2019. Further, age-period-cohort modeling was used to estimate the net drift, local drift, age, period and cohort effects between 1990 and 2019. RESULTS: In 2019, although the incidence of depressive disorders has increased by 59.3% to 290 million (95% UI: 256, 328), the age-standardized incidence rate has decreased by 2.35% to 3588.25 per 100,000 people (3152.71, 4060.42) compared to 1990. There was an emerging transition of incidences from the young and middle-aged population to the old population. From 1990 to 2019, the net drift of incidence rate ranged from -0.54% (-0.61%, -0.47%) in low-middle Socio-demographic Index (SDI) regions to 0.52% (0.25%, 0.79%) in high SDI regions. Globally, the incidence rate of depressive disorders increases with age, period effects showing a decreasing risk and cohort effects beginning to decline after the 1960s. CONCLUSIONS: Our current findings reflect substantial health disparities and potential priority-setting of depressive disorders incidence in the three dimensions of age, period and cohort across SDI regions, countries. The scope of healthcare to improve the progression of depressive disorders events can be expanded to include males, females of all ages.

5.
Blood Lymphat Cancer ; 14: 63-69, 2024.
Article in English | MEDLINE | ID: mdl-39100972

ABSTRACT

Background: The aim of the study was to evaluate the efficacy and safety of induction and consolidation with all-trans retinoic acid (ATRA) +arsenic trioxide (ATO) +anthracyclines and maintenance with ATRA +Realgar-Indigo naturalis formula (RIF) for high-risk APL. Methods: Twenty-one patients with high-risk APL treated with ATRA+ATO+ anthracyclines for induction and consolidation and ATRA+RIF for maintenance from 2012 to 2021 were analyzed. Endpoints include morphological complete remission (CR) and complete molecular remission (CMR), early death (ED) and relapse, survival and adverse events (AEs). Results: After induction treatment, all 21 patients (100%) achieved morphological CR and 14 people (66.7%) achieved CMR. Five of the 21 patients did not undergo immunological minimal residual disease (MRD) examination after induction; however, 14 of the remaining 16 patients were MRD negative (87.5%). The median time to achieve CR and CMR was 26 days (range: 16-44) and 40 days (range: 22-75), respectively. The cumulative probability of achieving CR and CMR in 45 days was 100% and 76.2% (95% CI: 56.9-91.3%), respectively. All patients achieved CMR and MRD negativity after the three courses of consolidation treatment. The median follow-up was 66 months (25-142), with no central nervous system relapse and bone marrow morphological or molecular relapse until now, and all patients survived with 100% overall survival and 100% event-free survival. Grade 4 adverse events (AEs) were observed in 3 patients (14.3%) during the induction period including arrhythmia (n = 1), pulmonary infection (n = 1) and respiratory failure (n = 1); and the most frequent grade 3 AEs were pulmonary infection, accounting for 62.0% and 28.6%, respectively, during induction and consolidation treatment, followed by neutropenia, accounting for 42.9% and 38.1%, respectively. Conclusion: For newly diagnosed high-risk APL patients, induction and consolidation with ATRA+ATO+anthracyclines and maintenance with ATRA+RIF is a highly curative treatment approach.

6.
Int J Biol Macromol ; 277(Pt 3): 134411, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39097054

ABSTRACT

Stress granules (SGs) are membrane-less organelles (MLOs) or cytosolic compartments formed upon exposure to environmental cell stress-inducing stimuli. SGs are based on ribonucleoprotein complexes from a set of cytoplasmic proteins and mRNAs, blocked in translation due to stress cell-induced polysome disassembly. Post-translational modifications (PTMs) such as methylation, are involved in SG assembly, with the methylation writer PRMT1 and its reader TDRD3 colocalizing to SGs. However, the role of this writer-reader system in SG assembly remains unclear. Here, we found that PRMT1 methylates SG constituent RNA-binding proteins (RBPs) on their RGG motifs. Besides, we report that TDRD3, as a reader of asymmetric dimethylarginines, enhances RNA binding to recruit additional RNAs and RBPs, lowering the percolation threshold and promoting SG assembly. Our study enriches our understanding of the molecular mechanism of SG formation by elucidating the functions of PRMT1 and TDRD3. We anticipate that our study will provide a new perspective for comprehensively understanding the functions of PTMs in liquid-liquid phase separation driven condensate assembly.

7.
Article in English | MEDLINE | ID: mdl-39150531

ABSTRACT

An adhesive solid-state fermentation (adSSF) mode was developed to produce Aspergillus niger conidia, which used a stainless-steel Dixon ring as the support and water-retaining adhesive to load nutritional media on its surface. To obtain high conidia yields, the components of the water-retaining adhesive were screened, optimized by single-factor optimization and response surface methodology, and the optimal dosages of the main components were: wheat bran powder 0.023 g·cm-3bed, cassava starch 0.0022 g·cm-3bed, and xanthan gum 0.0083 g·cm-3bed. The experimentally tested conidia yield was 4.2-fold that without water-retaining adhesive but was 3.7% lower than the maximum yield predicted by the model. The observed double-side growth of A. niger on the Dixon ring supports improved space utilization of the fermentation bed, and the void fraction can increase with the shrinkage of the gel layer. In 1.6 L tray reactors with three-point online temperature monitoring, the inner-bed temperature of adSSF was at most 4 °C lower than the adsorbed carrier solid-state fermentation (ACSSF) mode, and the conidia yield was 1.68 × 108 conidia.cm-3bed, 61.5% higher than that of the ACSSF bed at the same time, but when the fermentation time was extended to 168 h, the conidia yield of the adSSF bed and ACSSF bed were close to each other. The results revealed that the high voidage of the adSSF bed was the main reason for low bed temperature, which can benefit the inner-bed natural convection and water evaporation.

8.
Org Lett ; 26(32): 6841-6846, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39110606

ABSTRACT

A visible-light-induced photocatalytic deoxygenative benzylation of quinoxalin-2-(1H)-ones is herein described. This novel approach provides a mild, simple, and practical route to 3-benzylquinoxalin-2(1H)-ones from ubiquitous and safe carboxylic acid anhydrides. A wide range of substrates with different substituents were well-tolerated and efficiently transformed to various functionalized 3-benzylquinoxalin-2(1H)-ones with great potential for valuable applications in drug discovery. Mechanistic investigations suggest H2O as a proton source, while hydroxyl-containing quinoxalin-2(1H)-ones may be key intermediates of the photocatalytic deoxygenative process.

9.
Cancer Control ; 31: 10732748241278485, 2024.
Article in English | MEDLINE | ID: mdl-39159955

ABSTRACT

OBJECTIVES: Signet ring cell carcinoma (SRCC) of the urinary bladder is a rare and highly aggressive form of bladder cancer, with no widely agreed-upon treatment strategy. The aim of this study was to identify important factors influencing patient prognosis and to assess how various treatment approaches affect survival outcomes. METHODS: A retrospective study was conducted using data from the Surveillance, Epidemiology, and End Results (SEER) Program, including patients with bladder primary SRCC who were presented between 2000 and 2017. Univariate and multivariate Cox regression models were used to examine the impact of various factors on cancer-specific survival (CSS) and overall survival (OS). Propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) were applied to homogenize both groups. The impact of different treatment regimens on patient CSS and OS was analyzed using the Kaplan-Meier method. RESULTS: A total of 33 cases of non-muscular invasive SRCC and 210 cases of muscular invasive SRCC were included in this study. Multivariate analysis identified race, TNM stage, and surgical method as independent variables influencing both OS and CSS. In non-muscle invasive bladder SRCC patients, radical cystectomy showed no CSS benefit compared to transurethral resection of bladder tumors (P = 0.304). For muscle invasive SRCC, patients who underwent partial cystectomy had better OS and CSS compared to those who underwent radical cystectomy (P = 0.019, P = 0.024). However, after conducting a PSM analysis, the differences between the two surgical outcomes were not statistically significant (P = 0.504, P = 0.335). Lymphadenectomy, chemotherapy, and radiation did not show any benefit to the prognosis of patients. CONCLUSION: This study identified race, TNM stage, and surgical approach as significant independent predictors for SRCC outcomes. Simple radical cystectomy and partial cystectomy proved to be effective treatments for SRCC. The optimal treatment option still needs to be supported by a number of prospective research trials.


Subject(s)
Carcinoma, Signet Ring Cell , Cystectomy , SEER Program , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/mortality , Urinary Bladder Neoplasms/surgery , Female , Male , Carcinoma, Signet Ring Cell/pathology , Carcinoma, Signet Ring Cell/therapy , Carcinoma, Signet Ring Cell/mortality , Carcinoma, Signet Ring Cell/surgery , Retrospective Studies , Middle Aged , Aged , Cystectomy/methods , Prognosis , Neoplasm Staging , Propensity Score , Kaplan-Meier Estimate , Adult
10.
Cell Discov ; 10(1): 87, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39160208

ABSTRACT

Individuals' continuous success in competitive interactions with conspecifics strongly affects their social hierarchy. Medial prefrontal cortex (mPFC) is the key brain region mediating both social competition and hierarchy. However, the molecular regulatory mechanisms underlying the neural ensemble in the mPFC remains unclear. Here, we demonstrate that in excitatory neurons of prelimbic cortex (PL), lncRNA Sera remodels the utilization of Pkm Exon9 and Exon10, resulting in a decrease in the Pkm1/2 ratio in highly competitive mice. By employing a tet-on/off system, we disrupt or rebuild the normal Pkm1/2 ratio by controlling the expression of Pkm2 in PL excitatory neurons. We find that long-term Pkm2 modulation induces timely competition alteration and hysteretic rank change, through phosphorylating the Ser845 site of GluA1. Together, this study uncovers a crucial role of lncRNA Sera/Pkm2 pathway in the transition of social competition to rank by remodeling neural ensemble in mPFC.

11.
Chem Commun (Camb) ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39171745

ABSTRACT

The adsorption of nitrate is the key to enhancing the electrocatalytic nitrate reduction reaction (NitRR). Herein, a typical hydrolysis-coupled redox (HCR) reaction has been designed to prepare unique 3D Cu/Fe2O3 core-shell nanorod array cathodes with controllable oxygen vacancy concentrations for NitRR. The optimal Cu/Fe2O3-13 achieves a high nitrate conversion of 99.10% and ammonia selectivity of 98.30%. The outstanding electrochemical performance is attributed to the enhancement mechanism of OVs and a unique nanorod array structure with a high density of surface-exposed OVs and high-throughput transport pathways for ion-aspects.

12.
Dalton Trans ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39157994

ABSTRACT

Spin crossover (SCO) has long been a hot topic in the field of molecular magnetism owing to its unique bistability character. Rational control of thermal hysteresis and transition temperature (T1/2) is crucial for their practical applications, which rely on precise manipulation of the substituents of SCO coordinating ligands and molecular packing interactions. In this study, we designed two different bridging ligands (2-FDPB: 4,4'-(2-fluoro-1,4-phenylene)dipyridine; 2,3-FDPB: 4,4'-(2,3-difluoro-1,4-phenylene)dipyridine) featuring one and two fluoro substitution on the central benzene ring and applied a Schiff base-like equatorial tetradentate ligand {diethyl(E,E)-2,2'-[4,5-difluoro-1,2-phenyl-bis(iminomethylidyne)]bis(3-oxobutanoate)-(2-)-N,N',O3,O3'} (H2L) to coordinate with the FeII ion. Two FeII-coordination chain polymers [FeII(L)(2,3-FDPB)]·0.25CH2Cl2 (1) and [FeII(L)(2-FDPB)]·0.5CH3OH (2) were obtained. 1 crystallizes in the monoclinic P21/n space group with only one FeII center, while 2 crystallizes in the triclinic P1̄ space group with two independent FeII centers. Unlike the identical 2D layer stacking in 1, 2 exhibited alternating stacking of the extending 2D layers and meshed chains. Magnetic measurements revealed the typical thermally induced spin crossover behavior (SCO): 1 exhibited a 41 K-wide thermal hysteresis with transition temperatures of T1/2↑ = 245 K and T1/2↓ = 204 K, while 2 showed a higher transition temperature (T1/2 = 330 K) with no thermal hysteresis. Magneto-structural correlation studies suggest that the electron-withdrawing effect present in the fluoro substituents does not have a significant impact on the SCO behaviors. Despite the fluoro substituents having a similar atomic radius of hydrogen atoms, variations in the number of these substituents can alter the crystallization behavior of these complexes, which in turn affects the solvents, molecular stacking patterns, and intermolecular interactions, ultimately influencing the SCO behaviors.

14.
Ann Med ; 56(1): 2390200, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39183726

ABSTRACT

BACKGROUND: Lung cancer has maintained a high prevalence and mortality. Besides, venous thromboembolism (VTE) is the third most common disease of cardiovascular disease. Lung cancer with VTE usually influenced the overall survival in the follow-up. In the development of lung cancer, vigilance against and early diagnosis of VTE is of significance. METHODS: We searched the databases of PubMed, Web of Science, Embase and Cochrane for related research up to 30 November 2023 and extracted information of incidence, odds ratio (OR), hazard ratio (HR) and their 95% confidence intervals (CIs), for evaluating the incidence of VTE and its risk factors. RESULTS: A total of 54 articles and 873,292 records were included in our study. The pooled incidences of VTE and PE were 6% and 3%, respectively. Subgroup analysis revealed that the tumour, node and metastasis (TNM) stage (HR= 5.43, 95% CI: 2.42, 12.22), metastasis (HR= 2.67, 95% CI: 1.35, 5.29) and chemotherapy (HR= 2.27, 95% CI: 1.11, 4.65) had major influence on VTE occurrence. CONCLUSIONS: Lung cancer complicated with VTE is unignorable, and its occurrence varies widely by tumour staging, tissue type and treatment. The results may aid in clinical decision-making about lung cancer in higher risk with VTE and weather receiving anticoagulant prophylaxis.


The pooled incidences of VTE and PE were 6% and 3% in lung cancer.LUAD, NSCLC and tumour stage III-IV have significant relevant with VTE in lung cancer.


Subject(s)
Lung Neoplasms , Venous Thromboembolism , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/complications , Risk Factors , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology , Incidence , Pulmonary Embolism/epidemiology , Pulmonary Embolism/etiology , Neoplasm Staging
15.
Front Cell Infect Microbiol ; 14: 1408581, 2024.
Article in English | MEDLINE | ID: mdl-39119290

ABSTRACT

Background: Statins, being the primary pharmacological intervention for hypercholesterolemia, exhibit a notable degree of interpatient variability in their effectiveness, which may be associated with gut microbiota. This study sought to identify the biomarkers for evaluating differences in statin efficacy. Methods: A quasi case-control study was conducted among participants with hypercholesterolemia and coronary heart disease taking rosuvastatin essential. According to the level of low density lipoprotein cholesterol (LDL-C), participants was divided into the "Up to standard" (US) group and the "Below standard" (BS) group. 16S rDNA sequencing and untargeted metabolomics were applied to detected the information of gut microbiota and related metabolites. Results: A total of 8 US and 8 BS group matched by age and sex were included in the final analysis. 16S rDNA sequencing results indicated that the characteristic strains of the US group were f-Eubacterium_coprostanoligenes and g-Papillibacter, while the characteristic flora of the BS group were o-C0119, g-Pseudolabrys, s-Dyella-Marensis and f-Xanthobacaceae. Metabolomic results suggested that the levels of chenodeoxycholic acid-3-ß-D-glucuronide, 1-methylnicotinamide and acetoacetate in stool samples of the US group were significantly higher than those of the BS group. By identifying the differentially abundant bacterial taxa, the gut microbiota could modulate the efficacy of statins through producing enzymes involved in cholesterol metabolism. Conclusions: The findings suggest that the difference in statin efficacy may be related to gut microbiota strains that can produce short-chain fatty acids and secondary bile acids and affect the efficacy of statins by regulating the activities of cholesterol metabolite-related proteins. Metabolites related to short-chain fatty acids and secondary bile acids in the gut are expected to be biomarkers indicating the efficacy of statins.


Subject(s)
Coronary Disease , Gastrointestinal Microbiome , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Aged , Female , Humans , Male , Middle Aged , Bacteria/metabolism , Bile Acids and Salts/metabolism , Biomarkers/blood , Case-Control Studies , China , Cholesterol, LDL/blood , Cholesterol, LDL/metabolism , Coronary Disease/microbiology , Coronary Disease/drug therapy , Coronary Disease/metabolism , East Asian People , Feces/microbiology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypercholesterolemia/drug therapy , Metabolomics , RNA, Ribosomal, 16S/genetics , Rosuvastatin Calcium/therapeutic use , Treatment Outcome
16.
Nat Commun ; 15(1): 6865, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127750

ABSTRACT

The nanoscale fibrillar morphology, featuring long-range structural order, provides abundant interfaces for efficient exciton dissociation and high-quality pathways for effective charge transport, is a promising morphology for high performance organic solar cells. Here, we synthesize a thiophene terminated non-fullerene acceptor, L8-ThCl, to induce the fibrillization of both polymer donor and host acceptor, that surpasses the 20% efficiency milestone of organic solar cells. After adding L8-ThCl, the original weak and less continuous nanofibrils of polymer donors, i.e. PM6 or D18, are well enlarged and refined, whilst the host acceptor L8-BO also assembles into nanofibrils with enhanced structural order. By adapting the layer-by-layer deposition method, the enhanced structural order can be retained to significantly boost the power conversion efficiency, with specific values of 19.4% and 20.1% for the PM6:L8-ThCl/L8-BO:L8-ThCl and D18:L8-ThCl/L8-BO:L8-ThCl devices, with the latter being certified 20.0%, which is the highest certified efficiency reported so far for single-junction organic solar cells.

17.
Sci Rep ; 14(1): 18598, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127765

ABSTRACT

Feline mesenchymal stem cells (fMSCs) are well known for their robust differentiation capabilities and are commonly used in studying immune-related diseases in cats. Despite their importance, the susceptibility of fMSCs to viral infections remains uncertain. This study aimed to assess the susceptibility of feline adipose-derived mesenchymal stem cells (fAD-MSCs) and feline umbilical cord-derived mesenchymal stem cells (fUC-MSCs) to common feline viruses, including feline coronavirus (FCoV), feline herpesvirus type 1 (FHV-1), and feline panleukopenia virus (FPV). The results demonstrated that both FCoV and FHV-1 were able to infect both types of cells, while FPV did not exhibit cytopathic effects on fUC-MSCs. Furthermore, all three viruses were successfully isolated from fAD-MSCs. These findings suggest that certain feline viruses can replicate in fMSCs, indicating potential limitations in using fMSCs for treating viral diseases caused by these specific viruses. This study has important clinical implications for veterinarians, particularly in the management of viral diseases.


Subject(s)
Coronavirus, Feline , Mesenchymal Stem Cells , Animals , Cats , Mesenchymal Stem Cells/virology , Mesenchymal Stem Cells/cytology , Coronavirus, Feline/physiology , Feline Panleukopenia Virus , Cells, Cultured , Varicellovirus/physiology , Virus Replication , Cell Differentiation , Adipose Tissue/cytology , Cat Diseases/virology
18.
Ageing Res Rev ; : 102452, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127445

ABSTRACT

Lactate, a byproduct of glycolysis, was considered as a metabolic waste until identified by studies on the Warburg effect. Increasing evidence elucidates that lactate functions as energy fuel, signaling molecule, and donor for protein lactylation. Altered lactate utilization is a common metabolic feature of the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. This review offers an overview of lactate metabolism from the perspective of production, transportation and clearance, and the role of lactate in neurodegenerative progression, as well as a summary of protein lactylation and the signaling function of lactate in neurodegenerative diseases. Besides, this review delves into the dual roles of changed lactate metabolism during neurodegeneration and explores prospective therapeutic methods targeting lactate. We propose that elucidating the correlation between lactate and neurodegeneration is pivotal for exploring innovative therapeutic interventions for neurodegenerative diseases.

19.
Stem Cell Res Ther ; 15(1): 243, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113141

ABSTRACT

Mesenchymal stem cells (MSCs) therapy is a highly researched treatment that has the potential to promote immunomodulation and anti-inflammatory, anti-apoptotic, and antimicrobial activities. It is thought that it can enhance internal organ function, reverse tissue remodeling, and achieve significant organ repair and regeneration. However, the limited infusion, survival, and engraftment of transplanted MSCs diminish the effectiveness of MSCs-based therapy. Consequently, various preconditioning methods have emerged as strategies for enhancing the therapeutic effects of MSCs and achieving better clinical outcomes. In particular, the use of natural small molecule compounds (NSMs) as a pretreatment strategy is discussed in this narrative review, with a focus on their roles in regulating MSCs for injury repair in vital internal organs. Additionally, the discussion focuses on the future directions and challenges of transforming mesenchymal stem cell research into clinical applications.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cell Transplantation/methods , Animals , Biological Products/pharmacology , Biological Products/therapeutic use , Wound Healing/drug effects
20.
Angew Chem Int Ed Engl ; : e202410416, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134476

ABSTRACT

Precise control over the organic composition is crucial for tailoring the distinctive structures and properties of hybrid metal halides. However, this approach is seldom utilized to develop materials that exhibit stimuli-responsive circularly polarized luminescence (CPL). Herein, we present the synthesis and characterization of enantiomeric hybrid zinc bromides: biprotonated ((R/S)-C12H16N2)ZnBr4 ((R/S-LH2)ZnBr4) and monoprotonated ((R/S)-C12H15N2)2ZnBr4 ((R/S-LH1)2ZnBr4), derived from the chiral organic amine (R/S)-2,3,4,9-Tetrahydro-1H-carbazol-3-amine ((R/S)-C12H14N2). These compounds showcase luminescent properties; the zero-dimensional biprotonated form emits green light at 505 nm, while the monoprotonated form, with a pseudo-layered structure, displays red luminescence at 599 and 649 nm. Remarkably, the reversible local protonation-deprotonation behavior of the organic cations allows for exposure to polar solvents and heating to induce reversible structural and luminescent transformations between the two forms. Theoretical calculations reveal that the lower energy barrier associated with the deprotonation process within the pyrrole ring is responsible for the local protonation-deprotonation behavior observed. These enantiomorphic hybrid zinc bromides also exhibit switchable circular dichroism (CD) and CPL properties. Furthermore, their chloride counterparts were successfully obtained by adjusting the halogen ions. Importantly, the unique stimuli-responsive CPL characteristics position these hybrid zinc halides as promising candidates for applications information storage, anti-counterfeiting, and information encryption.

SELECTION OF CITATIONS
SEARCH DETAIL