Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.125
Filter
1.
Sci Total Environ ; : 175063, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067591

ABSTRACT

Limited knowledge exists regarding the potential risks associated with anthropogenic release of rare earth elements (REEs) in the environment. This study aimed to investigate REE signatures in the watershed Poyang Lake, the largest freshwater lake in China. Samples of surface water, wastewater, and groundwater were collected from five rivers discharging into the lake. Results revealed wastewater from wastewater treatment plants contained total REE concentrations from 231 to 904 µg/L, exceeding those found in surface water (0.4 to 1.3 µg/L) and groundwater (0.5 to 416 µg/L). Samples with elevated REE were found in Ca-Mg-Cl/SO4 type waters and exhibited an 18OD deviation from local meteoric water line. Wastewater exhibited a higher positive Gd anomaly compared to surface water and groundwater, attributed to anthropogenic input of Gd (Gdanth). The determined Gdanth concentration ranged from 0.04 to 0.21 µg/L, and from 0.06 to 0.37 µg/L, accounting for 4 % to 21 % and 49 % to 84 % of total Gd concentrations in groundwater and surface water, respectively. Gdanth concentration in wastewater (0.19 to 0.43 µg/L) remained constant in effluent after wastewater treatment. Surface water displayed relatively complex normalized REE patterns influenced by anthropogenic activities and natural processes (weathering and complexation), while groundwater exhibited heavy REEs enrichment, due to carbonate solution complexation. Additionally, Gdanth concentration showed a positive correlation with ΣREE, Pb, Ni, and Co concentrations in groundwater, indicating a good pollution tracing potential. Health risk assessment using the hazard quotient (HQ) suggested higher HQGd values in groundwater compared to surface water. Residents in the eastern part of Poyang Lake were found to face higher risks associated with Gd in groundwater compared to the western part, with infants and children at greater risk than adult males and females. These findings offer valuable insights into environmental behavior and health risks of REEs in aquatic systems impacted by human activities.

2.
Nutrients ; 16(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39064785

ABSTRACT

(1) Background: The diversity of blood biomarkers used to assess the metabolic mechanisms of hydrogen limits a comprehensive understanding of its effects on improving exercise performance. This study evaluated the impact of hydrogen-rich gas (HRG) on metabolites following sprint-interval exercise using metabolomics approaches, aiming to elucidate its underlying mechanisms of action. (2) Methods: Ten healthy adult males participated in the Wingate Sprint-interval test (SIT) following 60 min of HRG or placebo (air) inhalation. Venous blood samples were collected for metabolomic analysis both before and after gas inhalation and subsequent to completing the SIT. (3) Results: Compared with the placebo, HRG inhalation significantly improved mean power, fatigue index, and time to peak for the fourth sprint and significantly reduced the attenuation values of peak power, mean power, and time to peak between the first and fourth. Metabolomic analysis highlighted the significant upregulation of acetylcarnitine, propionyl-L-carnitine, hypoxanthine, and xanthine upon HRG inhalation, with enrichment pathway analysis suggesting that HRG may foster fat mobilization by enhancing coenzyme A synthesis, promoting glycerophospholipid metabolism, and suppressing insulin levels. (4) Conclusions: Inhaling HRG before an SIT enhances end-stage anaerobic sprint capabilities and mitigates fatigue. Metabolomic analysis suggests that HRG may enhance ATP recovery during interval stages by accelerating fat oxidation, providing increased energy replenishment for late-stage sprints.


Subject(s)
Hydrogen , Metabolomics , Humans , Male , Hydrogen/metabolism , Young Adult , Adult , Athletic Performance/physiology , Hypoxanthine/blood , High-Intensity Interval Training , Biomarkers/blood , Xanthine , Acetylcarnitine/blood , Administration, Inhalation , Fatigue
3.
Biology (Basel) ; 13(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39056727

ABSTRACT

With the increasing prominence of the global energy problem, socioeconomic activities have been seriously affected. Biofuels, as a renewable source of energy, are of great significance in promoting sustainable development. In this study, batch anaerobic digestion (AD) of frass (swine manure after bioconversion by black soldier fly larvae) and co-digestion with corn straw after the addition of iron oxide (Fe3O4) nanoparticles is investigated, as well as the start-up period without inoculation. The biochemical methane potential of pure frass was obtained using blank 1 group and after the addition of various sizes of Fe3O4 nanoparticles for 30 days period, and similarly, the digestion of frass with straw (blank 2) and after the addition of various sizes of Fe3O4 nanoparticles for 61 days period. The results showed that the average gas production was 209.43 mL/gVS, 197.68 mL/gVS, 151.85 mL/gVS, and 238.15 mL/gVS for the blank, ~176 nm, ~164 nm, and ~184 nm, respectively. The average gas production of frass with straw (blank 2) was 261.64 mL/gVS, 259.62 mL/gVS, 241.51 mL/gVS, and 285.98 mL/gVS for blank 2, ~176 nm, ~164 nm, and ~184 nm, respectively. Meanwhile, the accumulated methane production of the ~184 nm group was 2312.98 mL and 10,952.96 mL, respectively, which significantly increased the biogas production compared to the other groups. The methanogenic results of the frass (30 days) indicated that Methanocorpusculum, Methanosarcina, and Methanomassiliicoccus are the important methanogenic species in the AD reactor, while the microbial diversity of the ~184 nm group was optimal, which may be the reason for the high gas production of ~184 nm.

4.
J Funct Biomater ; 15(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39057306

ABSTRACT

In this work, a new type of FE-1 COF material is prepared by a reversible imine condensation reaction with diaminoferrocene and diaminodiformaldehyde as materials. The material is connected by imine bonds to form a COF skeleton, and the presence of plenty of nitrogen-containing groups gives the material good hydrophilicity; the presence of metal Fe ions provides the material application potential in the enrichment of phosphopeptides. According to the different binding abilities of N-glycopeptide and phosphopeptide on FE-1 COF, it can simultaneously enrich N-glycopeptide and phosphopeptide through different elution conditions to realize its controllable and selective enrichment. Using the above characteristics, 18 phosphopeptides were detected from α-casein hydrolysate, 8 phosphopeptides were detected from ß-casein hydrolysate and 21 glycopeptides were detected from IgG hydrolysate. Finally, the gradual elution strategy was used; 16 phosphopeptides and 19 glycopeptides were detected from the α-casein hydrolysate and IgG hydrolysate. The corresponding glycopeptides and phosphopeptides were identified from the human serum. It proves that the FE-1 COF material has a good enrichment effect on phosphopeptides and glycopeptides.

5.
Front Neurosci ; 18: 1388213, 2024.
Article in English | MEDLINE | ID: mdl-39010942

ABSTRACT

Objective: Acute unilateral vestibulopathy (AUVP) is the second leading cause of peripheral vestibular vertigo. Full recovery of AUVP is related to sufficient central vestibular compensation. It has been confirmed that the vestibular nucleus and vestibular cortex are involved in the process of vestibular compensatory in AUVP patients. However, few studies have focused on the functional compensation of thalamus in patients with AUVP. This study aimed to explore the alterations of resting-state functional connectivity (FC) focused on thalamus using functional magnetic resonance imaging (fMRI) in AUVP patients. Methods: Data of 3D-T1 and resting-state fMRI were collected from 40 AUVP patients and 35 healthy controls (HC). Seeds-based (bilateral thalamus) FC was analyzed to investigate the changes in FC between the two groups. Furthermore, we evaluated the associations between altered thalamus FC and clinical features in AUVP patients using Pearson's partial correlation. Results: Compared with HC, AUVP patients showed decreased FC between bilateral thalamus and left insula. We also observed decreased FC between right thalamus and left supramarginal gyrus. Additionally, we found increased FC between left thalamus and right postcentral gyrus (PCG), as well as increased FC between right thalamus and regions of bilateral PCG, right middle frontal gyrus and right middle occipital gyrus in AUVP patients. Furthermore, the FC between left thalamus and left insula was negatively correlated with values of canal paresis in patients with AUVP (p = 0.010, r = -0.434). Conclusion: Our results provided first evidence for the decreased thalamo-vestibular cortex pathway, as well as increased thalamo-somatosensory and thalamo-visual cortex pathway in AUVP patients. These findings help us better understand the underlying mechanisms of central dynamic compensatory following an acute unilateral peripheral vestibular damage.

6.
Am J Cancer Res ; 14(6): 2805-2822, 2024.
Article in English | MEDLINE | ID: mdl-39005660

ABSTRACT

Dysregulation of polyamine metabolism has been associated with the development of many cancers. However, little information has been reported about the associations between elevated extracellular putrescine and epithelial-mesenchymal transition (EMT) of gastric cancer (GC) cells. In this study, the influence of extracellular putrescine on the malignant behavior and EMT of the AGS and MKN-28 cells was investigated, followed by RNA sequencing profiling of transcriptomic alterations and CUT&Tag sequencing capturing H3K27ac variations across the global genome using extracellular putrescine. Our results demonstrated that the administration of extracellular putrescine significantly promoted the proliferation, migration, invasion, and expression of N-cadherin in GC cells. We also observed elevated H3K27ac in MKN-28 cells but not in AGS cells when extracellular putrescine was used. A combination of transcriptomic alterations and genome-wide variations of H3K27ac highlighted the upregulated MAL2 and H3K27ac in its promoter region. Knockdown and overexpression of MAL2 were found to inhibit and promote EMT, respectively, in AGS and MKN-28 cells. We demonstrated that extracellular putrescine could upregulate MAL2 expression by elevating H3K27ac in its promoter region, thus triggering augmented EMT in GC cells.

7.
Front Aging Neurosci ; 16: 1418455, 2024.
Article in English | MEDLINE | ID: mdl-39021706

ABSTRACT

Background: Cognitive function (CF) deterioration is a pressing concern in geriatric research. This study aimed to explore the relationship between physical activity (PA) and CF in older adults. Methods: This study adopted a dual approach, employing both observational and genetic approaches through data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 and Mendelian Randomization (MR) analysis. For the NHANES component, PA levels were evaluated using the Global Physical Activity Questionnaire, and CF was assessed via standardized tests. Multivariate regression, threshold effect analysis, smoothing curve fitting, and subgroup analyses were conducted to examine the association between PA and CF. In parallel, MR methods, using genetic variants as instrumental variables, assessed the causal impact of PA on CF and related conditions such as Alzheimer's disease and dementia. Results: Observational findings from NHANES demonstrated a positive correlation between PA and CF, notably among female participants. The detailed analysis identified specific thresholds of PA that correlate with cognitive enhancements. However, MR results did not support a significant causal relationship between PA and CF or dementia-related outcomes, indicating an absence of a direct genetic basis for the observational associations. Conclusion: Although observational data from NHANES suggest that PA is positively associated with CF in older adults, particularly among women, MR analysis did not confirm these findings as causally related. The discrepancy highlights the complexity of the PA-CF relationship and underscores the need for further research. These results emphasize the potential of PA as a modifiable risk factor for CF, though causal effects remain to be definitively established.

8.
Int J Appl Earth Obs Geoinf ; 131: 103949, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38993519

ABSTRACT

Timely and precise detection of emerging infections is imperative for effective outbreak management and disease control. Human mobility significantly influences the spatial transmission dynamics of infectious diseases. Spatial sampling, integrating the spatial structure of the target, holds promise as an approach for testing allocation in detecting infections, and leveraging information on individuals' movement and contact behavior can enhance targeting precision. This study introduces a spatial sampling framework informed by spatiotemporal analysis of human mobility data, aiming to optimize the allocation of testing resources for detecting emerging infections. Mobility patterns, derived from clustering point-of-interest and travel data, are integrated into four spatial sampling approaches at the community level. We evaluate the proposed mobility-based spatial sampling by analyzing both actual and simulated outbreaks, considering scenarios of transmissibility, intervention timing, and population density in cities. Results indicate that leveraging inter-community movement data and initial case locations, the proposed Case Flow Intensity (CFI) and Case Transmission Intensity (CTI)-informed spatial sampling enhances community-level testing efficiency by reducing the number of individuals screened while maintaining a high accuracy rate in infection identification. Furthermore, the prompt application of CFI and CTI within cities is crucial for effective detection, especially in highly contagious infections within densely populated areas. With the widespread use of human mobility data for infectious disease responses, the proposed theoretical framework extends spatiotemporal data analysis of mobility patterns into spatial sampling, providing a cost-effective solution to optimize testing resource deployment for containing emerging infectious diseases.

9.
Angew Chem Int Ed Engl ; : e202410590, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888029

ABSTRACT

Iron-based mixed polyanion phosphate Na4Fe3(PO4)2P2O7 (NFPP) is recognized as a promising cathode for Sodium-ion Batteries (SIBs) due to its low cost and environmental friendliness. However, its inherent low conductivity and sluggish Na+ diffusion limit fast charge and low-temperature sodium storage. This study pioneers a scalable synthesis of hollow core-shelled Na4Fe2.4Ni0.6(PO4)2P2O7 with tiny-void space (THoCS-0.6Ni) via a one-step spray-drying combined with calcination process due to the different viscosity, coordination ability, molar ratios, and shrinkage rates between citric acid and polyvinylpyrrolidone. This unique structure with interconnected carbon networks ensures rapid electron transport and fast Na+ diffusion, as well as efficient space utilization for relieve volume expansion. Incorporating regulation of lattice structure by doping Ni heteroatom to effectively improve intrinsic electron and Na+ diffusion path and energy barrier, which achieves fast charge and low-temperature sodium storage. As a result, THoCS-0.6Ni exhibits superior rate capability (86.4 mAh g-1 at 25 C). Notably, THoCS-0.6Ni demonstrates exceptional cycling stability at -20 °C with a capacity of 43.6 mAh g-1 after 2500 cycles at 5 C. This work provides a universal strategy to design the hollow core-shelled structure with tiny-void space cathode materials for reversible batteries with fast-charge and low-temperature storage features.

10.
Heliyon ; 10(11): e32176, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882377

ABSTRACT

Objective: To develop and evaluate a nomogram prediction model for recurrence of acute ischemic stroke (AIS) within one year. Method: Patients with AIS treated at the second affiliated hospital of Xuzhou Medical University from August 2017 to July 2019 were enrolled. Clinical data such as demographic data, risk factors, laboratory tests, TOAST etiological types, MRI features, and treatment methods were collected. Cox regression analysis was done to determine the parameters for entering the nomogram model. The performance of the model was estimated by receiver operating characteristic curves, decision curve analysis, calibration curves, and C-index. Result: A total of 645 patients were enrolled in this study. Side of hemisphere (SOH, Bilateral, HR = 0.35, 95 % CI = 0.15-0.84, p = 0.018), homocysteine (HCY, HR = 1.38, 95 % CI = 1.29-1.47, p < 0.001), c-reactive protein (CRP, HR = 1.04, 95 % CI = 1.01-1.07, p = 0.013) and stroke severity (SS, HR = 3.66, 95 % CI = 2.04-6.57, p < 0.001) were independent risk factors. The C-index of the nomogram model was 0.872 (se = 0.016). The area under the receiver operating characteristic (ROC)curve at one-year recurrence was 0.900. Calibration curve, decision curve analysis showed good performance of the nomogram. The cutoff value for low or high risk of recurrence score was 1.73. Conclusion: The nomogram model for stroke recurrence within one year developed in this study performed well. This useful tool can be used in clinical practice to provide important guidance to healthcare professionals.

11.
Prep Biochem Biotechnol ; : 1-8, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856714

ABSTRACT

To enhance the stability and light resistance of the yellow compounds in citrus pomace, our study successfully isolated and purified five compounds using ultrasonic-assisted extraction and column chromatography. The identified compounds include methyl linoleate, (2-ethyl)hexyl phthalate, 1,3-distearoyl-2-oleoylglycerol, 6,6-ditetradecyl-6,7-dihydroxazepin-2(3H)-one, and n-octadeca-17-enoic acid. The monomers extracted from fresh pomace, compounds 1 and 2, exhibit structural similarities to flavonoids and carotenoids. In contrast, the polymers isolated from fermented pomace, compounds 3, 4, and 5, share structural units with the fresh pomace compounds, indicating the transformation to stable polymeric forms. This suggests that the microbial fermentation process not only enhances the value of citrus pomace, but also provides a promising pathway for the synthesis of natural antioxidant yellow pigments with far-reaching theoretical and practical significance.

12.
J Integr Neurosci ; 23(6): 113, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38940095

ABSTRACT

Excessively high or synchronized neuronal activity in the brain is the underlying cause of epilepsy, a condition of the central nervous system. Epilepsy is caused mostly by an imbalance in the activity of inhibitory and excitatory neural networks. Recurrent or prolonged seizures lead to neuronal death, which in turn promotes epileptogenesis and epileptic seizures. Ferrous ion-mediated cell death is known as ferroptosis, which is due to the accumulation of lipid peroxidation products resulting from compromise of the glutathione (GSH)-dependent antioxidant system. The pathophysiology of epilepsy has been linked to anomalies in the glutathione peroxidase 4 (GPX4)/GSH redox pathway, lipid peroxidation, and iron metabolism. Studies have shown that inhibiting ferroptosis may alleviate cognitive impairment and decrease seizures, indicating that it is neuroprotective. With the hope of aiding the development of more novel approaches for the management of epilepsy, this research aimed to examine the role of ferroptosis in this disease.


Subject(s)
Epilepsy , Ferroptosis , Ferroptosis/physiology , Humans , Epilepsy/metabolism , Epilepsy/physiopathology , Animals , Lipid Peroxidation/physiology , Iron/metabolism
13.
PeerJ ; 12: e17494, 2024.
Article in English | MEDLINE | ID: mdl-38832035

ABSTRACT

Background: Autoantibodies targeting tumor-associated antigens (TAAbs) have emerged as promising biomarkers for early cancer detection. This research aimed to assess the diagnostic capacity of anti-BIRC5 autoantibody in detecting AFP-negative hepatocellular carcinoma (ANHCC). Methods: This research was carried out in three stages (discovery phase, validation phase, and evaluation phase) and included a total of 744 participants. Firstly, the anti-BIRC5 autoantibody was discovered using protein microarray, exhibiting a higher positive rate in ANHCC samples (ANHCCs) compared to normal control samples (NCs). Secondly, the anti-BIRC5 autoantibody was validated through enzyme-linked immunosorbent assay (ELISA) in 85 ANHCCs and 85 NCs from two clinical centers (Zhengzhou and Nanchang). Lastly, the diagnostic usefulness of the anti-BIRC5 autoantibody for hepatocellular carcinoma (HCC) was evaluated by ELISA in a cohort consisting of an additional 149 AFP-positive hepatocellular carcinoma samples (APHCCs), 95 ANHCCs and 244 NCs. The association of elevated autoantibody to high expression of BIRC5 in HCC was further explored by the database from prognosis, immune infiltration, DNA methylation, and gene mutation level. Results: In the validation phase, the area under the ROC curve (AUC) of anti-BIRC5 autoantibody to distinguish ANHCCs from NCs in Zhengzhou and Nanchang centers was 0.733 and 0.745, respectively. In the evaluation phase, the AUCs of anti-BIRC5 autoantibody for identifying ANHCCs and HCCs from NCs were 0.738 and 0.726, respectively. Furthermore, when combined with AFP, the AUC for identifying HCCs from NCs increased to 0.914 with a sensitivity of 77.5% and specificity of 91.8%. High expression of BIRC5 gene is not only correlated with poor prognosis of HCCs, but also significantly associated with infiltration of immune cells, DNA methylation, and gene mutation. Conclusion: The findings suggest that the anti-BIRC5 autoantibody could serve as a potential biomarker for ANHCC, in addition to its supplementary role alongside AFP in the diagnosis of HCC. Next, we can carry out specific verification and explore the function of anti-BIRC5 autoantibody in the occurrence and development of HCC.


Subject(s)
Autoantibodies , Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , Survivin , alpha-Fetoproteins , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/immunology , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Autoantibodies/blood , Autoantibodies/immunology , Biomarkers, Tumor/immunology , Biomarkers, Tumor/genetics , Male , Female , Middle Aged , Survivin/genetics , Survivin/immunology , alpha-Fetoproteins/immunology , alpha-Fetoproteins/analysis , Enzyme-Linked Immunosorbent Assay , Adult
14.
Clin Neurophysiol ; 164: 149-160, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896932

ABSTRACT

OBJECTIVE: We aimed to determine whether quantitative electroencephalography (QEEG) measures have predictive value for cerebral edema (CED) and clinical outcomes in acute ischemic stroke (AIS) patients with anterior circulation large vessel occlusion who underwent mechanical thrombectomy (MT). METHODS: A total of 105 patients with AIS in the anterior circulation were enrolled in this prospective study. The occurrence and severity of CED were assessed through computed tomography conducted 24 h after MT. Clinical outcomes were evaluated based on early neurological deterioration (END) and 3-month functional status, as measured by the modified Rankin scale (mRS). Electroencephalography (EEG) recordings were performed 24 h after MT, and QEEG indices were calculated from the standard 16 electrodes and 2 frontal channels (F3-C3, F4-C4). The delta/alpha ratio (DAR), the (delta + theta) / (alpha + beta) ratio (DTABR), and relative delta power were averaged over all electrodes (global) and the F3-C3 and F4-C4 channels (frontal). The predictive effect and value of QEEG indices for CED and clinical outcomes were assessed using ordinal and logistic regression models, as well as receiver operating characteristic (ROC) curves. RESULTS: Significantly, both global and frontal DAR were found to be associated with the severity of CED, END, and poor functional outcomes at 90 days, while global and frontal DTABR and relative delta power were not associated with outcomes. In ROC analysis, the best predictive effect was observed in frontal DAR, with an area under the curve of approximately 0.80. It exhibited approximately 75% sensitivity and 71% specificity for radiological and clinical outcomes when a threshold of 3.3 was used. CONCLUSIONS: QEEG techniques may be considered an efficient bedside monitoring method for assessing treatment efficacy, identifying patients at higher risk of severe CED and END, and predicting long-term functional outcomes. SIGNIFICANCE: QEEG can help identify patients at risk of severe neurological complications that can impact long-term functional recovery in AIS patients who underwent MT.


Subject(s)
Brain Edema , Electroencephalography , Thrombectomy , Humans , Male , Female , Aged , Brain Edema/physiopathology , Brain Edema/diagnostic imaging , Brain Edema/etiology , Middle Aged , Thrombectomy/methods , Electroencephalography/methods , Prospective Studies , Delta Rhythm/physiology , Treatment Outcome , Alpha Rhythm/physiology , Ischemic Stroke/physiopathology , Ischemic Stroke/surgery , Aged, 80 and over , Stroke/physiopathology , Stroke/surgery , Predictive Value of Tests
15.
Signal Transduct Target Ther ; 9(1): 152, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918390

ABSTRACT

CD8+ T cell immune responses are regulated by multi-layer networks, while the post-translational regulation remains largely unknown. Transmembrane ectodomain shedding is an important post-translational process orchestrating receptor expression and signal transduction through proteolytic cleavage of membrane proteins. Here, by targeting the sheddase A Disintegrin and Metalloprotease (ADAM)17, we defined a post-translational regulatory mechanism mediated by the ectodomain shedding in CD8+ T cells. Transcriptomic and proteomic analysis revealed the involvement of post-translational regulation in CD8+ T cells. T cell-specific deletion of ADAM17 led to a dramatic increase in effector CD8+ T cell differentiation and enhanced cytolytic effects to eliminate pathogens and tumors. Mechanistically, ADAM17 regulated CD8+ T cells through cleavage of membrane CD122. ADAM17 inhibition led to elevated CD122 expression and enhanced response to IL-2 and IL-15 stimulation in both mouse and human CD8+ T cells. Intriguingly, inhibition of ADAM17 in CD8+ T cells improved the efficacy of chimeric antigen receptor (CAR) T cells in solid tumors. Our findings reveal a critical post-translational regulation in CD8+ T cells, providing a potential therapeutic strategy of targeting ADAM17 for effective anti-tumor immunity.


Subject(s)
ADAM17 Protein , CD8-Positive T-Lymphocytes , Cell Differentiation , ADAM17 Protein/genetics , ADAM17 Protein/immunology , CD8-Positive T-Lymphocytes/immunology , Animals , Mice , Humans , Cell Differentiation/immunology , Cell Differentiation/genetics , Cell Differentiation/drug effects , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology
16.
Animals (Basel) ; 14(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38929400

ABSTRACT

A 60 day feeding trial was conducted to evaluate the impacts of dietary carbohydrates with different complexities and configurations on the growth, plasma parameters, apparent digestibility, intestinal microbiota, glucose, and lipid metabolism of soft-shelled turtles (Pelodiscus sinensis). Four experimental diets were formulated by adding 170 g/kg glucose, fructose, α-starch, or cellulose, respectively. A total of 280 turtles (initial body weight 5.11 ± 0.21 g) were distributed into 28 tanks and were fed twice daily. The results showed that the best growth performance and apparent digestibility was observed in the α-starch group, followed by the glucose, fructose, and cellulose groups (p < 0.05). Monosaccharides (glucose and fructose) significantly enhanced the postprandial plasma glucose levels and hepatosomatic index compared to polysaccharides, due to the un-inhibited gluconeogenesis (p < 0.05). Starch significantly up-regulated the expression of the genes involved in glycolysis, pentose phosphate pathway, lipid anabolism and catabolism, and the transcriptional regulation factors of glycolipid metabolism (srebp and chrebp) (p < 0.05), resulting in higher plasma triglyceride levels and lipid contents in the liver and the whole body. The fructose group exhibited a lower lipid deposition compared with the glucose group, mainly by inhibiting the expression of srebp and chrebp. Cellulose enhanced the proportion of opportunistic pathogenic bacteria. In conclusion, P. sinensis utilized α-starch better than glucose, fructose, and cellulose.

17.
Article in English | MEDLINE | ID: mdl-38800885

ABSTRACT

Uterine necrosis is a rare complication of uterine artery embolization for postpartum hemorrhage and most patients end up having a hysterectomy. Here we report a case in which the patient experienced a recurrent fever 28 days after uterine artery embolization as treatment for postpartum hemorrhage and had no response to antibiotics. Magnetic resonance imaging of the pelvis revealed a mass which was approximately 12-cm in size with air bubbles in the uterus, suggesting necrosis with infection. Transvaginal clamping of the uterine mass was performed and necrotic tissue removed under laparoscopic monitoring, which successfully spared the necessity for a hysterectomy. The patient's subsequent progress was favorable. In the present study we review the high-risk factors of uterine necrosis following uterine artery embolization and summarize the key points of early diagnosis. In addition, we propose a strategy to successfully spare the necessity for a hysterectomy without the spread of infection or uterine perforation.

18.
Lab Med ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801245

ABSTRACT

BACKGROUND: Glycated hemoglobin, or hemoglobin A1c (HbA1c), serves as a crucial marker for diagnosing diabetes and monitoring its progression. We aimed to assess the interference posed by common Hb variants on popular HbA1c measurement systems. METHODS: A total of 63 variant and nonvariant samples with target values assigned by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) reference method were included. We assessed 6 methods for measuring HbA1c in the presence of HbS, HbC, HbD, HbE, and fetal hemoglobin (HbF): 2 cation-exchange high-performance liquid chromatography (HPLC) methods (Bio-Rad D-100 and HLC-723 G8), a capillary electrophoresis (CE) method (Sebia Capillarys 3 TERA), an immunoassay (Roche c501), an enzyme assay system (Mindray BS-600M), and a boronate affinity method (Primus Premier Hb9210). RESULTS: The HbA1c results for nonvariant samples from the 6 methods were in good agreement with the IFCC reference method results. The Bio-Rad D-100, Capillarys 3, Mindray BS-600M, Premier Hb9210, and Roche c501 showed no interference from HbS, HbC, HbD, and HbE. Clinically significant interference was observed for the HLC-723 G8 standard mode. Elevated HbF levels caused significant negative biases for all 6 methods, which increased with increasing HbF concentration. CONCLUSION: Elevated levels of HbF can severely affect HbA1c measurements by borate affinity, immunoassays, and enzyme assays.

19.
BMC Nurs ; 23(1): 314, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720326

ABSTRACT

BACKGROUND: Artificial intelligence is a growing phenomenon that will soon facilitate wide-scale changes in many professions, and is expected to play an important role in the field of medical education. This study explored the realistic feelings and experiences of nursing undergraduates participating in different stages of artificial intelligence + project task driven learning, and provide a basis for artificial intelligence participation in nursing teaching. METHODS: We conducted face-to-face semi-structured interviews with nursing undergraduates participating in Nursing Research Course which adopts artificial intelligence + project task driven learning from a medical university in Ningxia from September to November 2023, to understand their experience of using artificial intelligence for learning and the emotional changes at different stages. The interview guide included items about their personal experience and feelings of completing project tasks through dialogue with artificial intelligence, and suggestions for course content. Thematic analysis was used to analyze interview data. This study followed the COREQ checklist. RESULTS: According to the interview data, three themes were summarized. Undergraduate nursing students have different experiences in participating in artificial intelligence + project task driven learning at different stages, mainly manifested as diverse emotional experiences under initial knowledge deficiency, the individual growth supported by external forces during the adaptation period, and the expectations and suggestions after the birth of the results in the end period. CONCLUSIONS: Nursing undergraduates can actively adapt to the integration of artificial intelligence into nursing teaching, dynamically observe students' learning experience, strengthen positive guidance, and provide support for personalized teaching models, better leveraging the advantages of artificial intelligence participation in teaching.

20.
ACS Appl Mater Interfaces ; 16(21): 27419-27428, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743926

ABSTRACT

Phenolic resin (PF) is considered a promising precursor of hard carbon (HC) for advanced-performance anodes in sodium-ion batteries (SIBs) because of its facile designability and high residual carbon yield. However, understanding how the structure of PF precursors influences sodium storage in their derived HC remains a significant challenge. Herein, the microstructure of HC is controlled by the degree of cross-linking of resorcinol-benzaldehyde (RB) resin. We reveal that robust molecular cross-linking in RB resin induced by hydrothermal treatment promotes closed-pore formation in the derived HC. The mechanism is devised for the decomposition of a highly cross-linked RB three-dimensional network into randomly stacked short-range graphitic microcrystals during high-temperature carbonization, contributing to the abundant closed pores in the derived HC. In addition, the high cross-linking degree of RB resin endows its derived HC with a small-sized spherical morphology and large interlayer spacing, which improves the rate performance of HC. Consequently, the optimized hydrothermal treatment HC anode shows a higher specific capacity of 372.7 mAh g-1 and better rate performance than the HC anode without hydrothermal treatment (276.0 mAh g-1). This strategy can provide feasible molecular cross-linking engineering for the development of closed pores in PF-based HC toward enhanced sodium storage.

SELECTION OF CITATIONS
SEARCH DETAIL