Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Pharmacol Res ; 205: 107222, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782147

ABSTRACT

5-methylcytosine (m5C) is among the most common epigenetic modification in DNA and RNA molecules, and plays an important role in the animal development and disease pathogenesis. Interestingly, unlike other m5C DNA methyltransferases (DNMTs), DNMT2/TRDMT1 has the double-substrate specificity and adopts a DNMT-similar catalytic mechanism to methylate RNA. Moreover, it is widely involved in a variety of physiological regulatory processes, such as the gene expression, precise protein synthesis, immune response, and disease occurrence. Thus, comprehending the epigenetic mechanism and function of DNMT2/TRDMT1 will probably provide new strategies to treat some refractory diseases. Here, we discuss recent studies on the spatiotemporal expression pattern and post-translational modifications of DNMT2/TRDMT1, and summarize the research advances in substrate characteristics, catalytic recognition mechanism, DNMT2/TRDMT1-related genes or proteins, pharmacological application, and inhibitor development. This review will shed light on the pharmacological design by targeting DNMT2/TRDMT1 to treat parasitic, viral and oncologic diseases.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , Humans , Animals , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/genetics , Epigenesis, Genetic/drug effects , Protein Processing, Post-Translational/drug effects , DNA Methylation/drug effects
2.
Nat Prod Res ; : 1-7, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38586954

ABSTRACT

Huai Yam (Dioscoreae Rhizoma) contains many active ingredients such as flavonoids, saponins, and amino acids. In this study, an efficient method for the classification and rapid identification of yam components was established based on UPLC-Q-Exactive-MS and data post-processing techniques. First, the mass spectrometry information including the characteristic fragmentations (CFs) and neutral losses (NLs) of yam reported in the literature were summarised and a database of compounds was established. Then, the mass spectrometry data detected by the yam sample are compared with those described in database for rapid identification of target compounds. Finally, 60 compounds were identified, including 18 flavones, 2 saponins, 10 amino acids, 7 organic acids, 3 carbohydrates, 8 fatty acids and 12 others. A new strategy for identifying target constituents based on CFs and NLs was successfully established, laying the foundation for further research on yam and promoting the development of composition analysis of Traditional Chinese Medicine (TCM).

3.
Eur J Pharmacol ; 971: 176496, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38508437

ABSTRACT

Patients with myocardial infarction have a much worse prognosis when they have myocardial ischemia-reperfusion (I/R) injury. Further research into the molecular basis of myocardial I/R injury is therefore urgently needed, as well as the identification of novel therapeutic targets and linkages to interventions. Three cysteine residues are present in DJ-1 at amino acids 46, 53, and 106 sites, with the cysteine at position 106 being the most oxidation-prone. This study sought to understand how oxidized DJ-1(C106) contributes to myocardial I/R damage. Rats' left anterior descending branches were tied off to establish a myocardial I/R model in vivo. A myocardial I/R model in vitro was established via anoxia/reoxygenation (A/R) of H9c2 cells. The results showed that autophagy increased after I/R, accompanied by the increased expression of oxidized DJ-1 (ox-DJ-1). In contrast, after pretreatment with NAC (N-acetylcysteine, a ROS scavenger) or Comp-23 (Compound-23, a specific antioxidant binding to the C106 site of DJ-1), the levels of ox-DJ-1, autophagy and LDH release decreased, and cell survival rate increased. Furthermore, the inhibition of interaction between ox-DJ-1 and PTEN could increase PTEN phosphatase activity, inhibit the p-IKK/NF-κB/Beclin1 pathway, reduce injurious autophagy, and alleviate A/R injury. However, BA (Betulinic acid, a NF-κB agonist) was able to reverse the protective effects produced by Comp-23 pretreatment. In conclusion, ox-DJ-1 could activate detrimental autophagy through the PTEN/p-IKK/NF-κB/Beclin1 pathway and exacerbate myocardial I/R injury.


Subject(s)
Myocardial Reperfusion Injury , NF-kappa B , Animals , Humans , Rats , Autophagy , Beclin-1 , Cysteine/pharmacology , Myocardial Reperfusion Injury/metabolism , NF-kappa B/metabolism , PTEN Phosphohydrolase , Rats, Sprague-Dawley
4.
Mar Pollut Bull ; 200: 116161, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364644

ABSTRACT

Microplastics (MPs) and polychlorinated biphenyls (PCBs) are pervasive pollutants in the marine environment, exerting adverse effects on marine organisms. While it is suggested that their exposure may compromise the immune responses of marine organisms, the cumulative immunotoxic effects remain uncertain. Additionally, the intricate mechanisms underlying the immunotoxicity of PCBs and MPs in marine organisms are not yet fully comprehended. To illuminate their combined biological impacts, Crassostrea gigas were exposed to 50 µg/L MPs (30-µm porous) alone, as well as 10 or 100 ng/L PCBs individually or in combination with 50 µg/L of MPs for 28 days. Our data demonstrated that oysters treated with the pollutants examined led to decreased total haemocyte count, inhibited phagocytosis of haemocytes, enhanced the intracellular contents of reactive oxygen species, lipid peroxidation and DNA damage, reduced lysozyme concentration and activity, gave rise to superoxide dismutase. Catalaseand glutathione S-transferaseactivity. The expression of three immune-related genes (NF-κB, TNF-α, TLR-6) was drastically suppressed by the PCBs and MPs treatment, while the apoptosis pathway-related genes (BAX and Caspase-3) showed a significant increase. In addition, compared to oysters treated with a single type of pollutant, coexposure to MPs and PCBs exerted more severe adverse impacts on all the parameters investigated, indicating a significant synergistic effect. Therefore, the risk of MPs and PCBs chemicals on marine organisms should be paid more attention.


Subject(s)
Crassostrea , Environmental Pollutants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Plastics/metabolism , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/metabolism , Water Pollutants, Chemical/analysis , Environmental Pollutants/metabolism
5.
Cancers (Basel) ; 15(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067374

ABSTRACT

A total of 457 patients, including 241 HR+/HER2- patients, 134 HER2+ patients, and 82 TN patients, were studied. The percentage of TILs in the stroma adjacent to the tumor cells was assessed using a 10% cutoff. The low TIL percentages were 82% in the HR+ patients, 63% in the HER2+ patients, and 56% in the TN patients (p < 0.001). MRI features such as morphology as mass or non-mass enhancement (NME), shape, margin, internal enhancement, presence of peritumoral edema, and the DCE kinetic pattern were assessed. Tumor sizes were smaller in the HR+/HER2- group (p < 0.001); HER2+ was more likely to present as NME (p = 0.031); homogeneous enhancement was mostly seen in HR+ (p < 0.001); and the peritumoral edema was present in 45% HR+, 71% HER2+, and 80% TN (p < 0.001). In each subtype, the MR features between the high- vs. low-TIL groups were compared. In HR+/HER2-, peritumoral edema was more likely to be present in those with high TILs (70%) than in those with low TILs (40%, p < 0.001). In TN, those with high TILs were more likely to present a regular shape (33%) than those with low TILs (13%, p = 0.029) and more likely to present the circumscribed margin (19%) than those with low TILs (2%, p = 0.009).

6.
Nat Prod Res ; : 1-8, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37950736

ABSTRACT

As a compound preparation of traditional Chinese medicine, Jianwei Xiaoshi Tablets (JXT) is made from five Chinese herbs: Taizishen (Pseudostellariae Radix), Chenpi (Citri Reticulatae Pericarpium), Shanyao (Dioscoreae Rhizoma), Maiya (Hordei Fructus Germinatus) and Shanzha (Crataegi Fructus). It is mainly used to treat dyspepsia. However, the chemical composition of JXT is complex and unclear. In this study, ultra performance liquid chromatography-quadrupole-orbitrap-mass spectrometry and data post-processing technologies were used to analyse the samples of JXT. Firstly, the mass spectrometric information of the main components of five traditional Chinese herbs in JXT was summarised and a compound database was established. Then, the mass spectrometric data detected by the prepared samples was compared with the database. Finally, 93 chemical components were successfully identified, including 6 amino acids, 34 flavonoids, 18 alkaloids, 15 organic acids, 9 cyclic peptides and 11 other components, and the rapid classification and identification of chemical components of JXT were realised.

7.
Clin Breast Cancer ; 23(7): e451-e457.e1, 2023 10.
Article in English | MEDLINE | ID: mdl-37640598

ABSTRACT

OBJECTIVES: To evaluate the influence of menstrual cycle timing on quantitative background parenchymal enhancement and to assess an optimal timing of breast MRI in premenopausal women. METHODS: A total of 197 premenopausal women were enrolled, 120 of which were in the malignant group and 77 in the benign group. Two radiologists depicted the regions of interest (ROI) of the three consecutive biggest slices of glandular tissue in the unaffected side and calculated the ratio (=[SIpost - SIpre]/SIpre) in ROI from the precontrast and early phase to assess BPE quantitatively. Association of BPE with menstrual cycle timing was compared in three categories. The relationships between BPE and age /body mass index (BMI) were also explored. RESULTS: We found that the BPE ratio presented lower in patients with the follicular phase (day1-14) compared to the luteal phase (day15-30) in the benign group (P = .036). Also, the BPE ratio presented significantly lower in the proliferative phase (day5-14) than the menstrual phase (day1-4) and the secretory phase(day15-30) in the benign group (P = .006). While the BPE ratio was not significantly different among the respective weeks (1-4) of the menstrual cycle in the benign group (P > .05). In the malignant group, the BPE ratio did not significantly differ between/among any menstrual cycle phase or week (all P > .05). CONCLUSION: It seems more suitable for Asian women whose lesions need to follow up or are suspected of malignant to undergo breast MRI within the 1st to 14th day of the menstrual cycle, especially on the 5th to 14th day.


Subject(s)
Breast Neoplasms , Contrast Media , Female , Humans , Image Enhancement , Breast Neoplasms/diagnostic imaging , Menstrual Cycle , Magnetic Resonance Imaging , Retrospective Studies
8.
J Sep Sci ; 46(19): e2300302, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37568249

ABSTRACT

Hugan tablet is a Chinese medicine preparation. It is composed of Bupleuri Radix, Artemisiae Scopariae Herba, Isatidis Radix, Schisandrae Chinensis Fructus, Suis Fellis Pulvis, and Vigna radiata L. It has the effects of dispersing stagnated liver qi, strengthening the spleen and eliminating food to be used for the treatment of chronic hepatitis and early cirrhosis. However, the chemical composition of Hugan tablet is complex and not fully understood, which hampers the research in pharmacology. In this study, a reliable method for the rapid analysis and identification of the chemical components in Hugan tablet by their characteristic fragments and neutral losses using ultra-performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry was developed. A total of 144 chemical components were tentatively identified, including 57 organic acids, 19 flavonoids, 23 alkaloids, 18 lignans, 7 saponins, and 20 others. These components may be the active ingredients of Hugan tablet. The established method can systematically and rapidly analyze the chemical components in Hugan tablet, which provides a basis for the pharmacodynamic substance study and is meaningful for the quality control of Hugan tablet.

9.
Microorganisms ; 11(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37512913

ABSTRACT

The gut microbiota, as a major source of opportunistic pathogens, poses a great threat to systemic infection, whereas the role of the gut microbiota in sepsis is underestimated. Here, we aimed to explore the effects of different gut microbiota patterns (namely, enterotypes) in cecal ligation and puncture (CLP)-induced murine sepsis. To achieve this purpose, we built four kinds of enterotypes by exposing mice to different types of antibiotics (azithromycin, amoxicillin, metronidazole, and levofloxacin). The results showed that antibiotic exposure induced different enterotypes, which, in turn, led to varying levels of systemic inflammation in septic mice, with amoxicillin-associated enterotypes exhibiting the most severe inflammation, followed by metronidazole, azithromycin, and levofloxacin. Specifically, the amoxicillin-associated enterotype was characterized by an abundance of intestinal opportunistic pathogens, including Enterobacteriaceae, Sutterellaceae, and Morganellaceae. This enterotype played a significant role in promoting the pathogenic potential of the gut microbiota, ultimately contributing to the development of severe systemic inflammation. Furthermore, the amoxicillin-associated enterotype exaggerated the sepsis-related liver injury, as evidenced by higher levels of alanine aminotransferase, aspartate transaminase, and hepatic malondialdehyde. The results of the RNA sequencing and the fecal suspension intraperitoneal injection sepsis model indicated that the amoxicillin-associated enterotype provoked acute hepatic immune responses and led to more significant metabolic compensation in the event of sepsis. Collectively, we concluded that the gut microbiota was one crucial factor for heterogeneity in sepsis, where the modulated gut microbiota likely prevented or reduced the serious consequences of sepsis, at least in gut-derived sepsis.

10.
Nat Commun ; 14(1): 3690, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37344475

ABSTRACT

Polaron is a composite quasiparticle derived from an excess carrier trapped by local lattice distortion, and it has been studied extensively for decades both theoretically and experimentally. However, atomic-scale creation and manipulation of single-polarons in real space have still not been achieved so far, which precludes the atomistic understanding of the properties of polarons as well as their applications. Herein, using scanning tunneling microscopy, we succeeded to create single polarons in a monolayer two-dimensional (2D) semiconductor, CoCl2. Combined with first-principles calculations, two stable polaron configurations, centered at atop and hollow sites, respectively, have been revealed. Remarkably, a series of manipulation progresses - from creation, erasure, to transition - can be accurately implemented on individual polarons. Our results pave the way to understand the physics of polaron at atomic level, and the easy control of single polarons in 2D semiconductor may open the door to 2D polaronics including the data storage.

11.
Eur J Pharmacol ; 951: 175748, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37149277

ABSTRACT

Resveratrol (RES), a natural polyphenolic compound found in red wine and grape skins, has attracted significant attention due to its cardioprotective properties. DJ-1, a multifunctional protein that participated in transcription regulation and antioxidant defense, was shown to provide a significant protective impact in cardiac cells treated with ischemia-reperfusion. We created a myocardial ischemia-reperfusion (I/R) model in vivo and in vitro by ligating the left anterior descending branch of rats and subjecting H9c2 cells to anoxia/reoxygenation (A/R) to investigate whether RES reduces myocardial ischemia-reperfusion injury by upregulating DJ-1. We discovered that RES dramatically enhanced cardiac function in rats with I/R. Subsequently, we found that RES prevented the rise in autophagy (P62 degradation and LC3-II/LC3-I increase) induced by cardiac ischemia-reperfusion in vitro and in vivo. Notably, the autophagic agonist rapamycin (RAPA) eliminated RES-induced cardioprotective effects. In addition, Further data showed that RES significantly increased the expression of DJ-1 in the myocardium with the treatment of I/R. At the same time, pretreatment with RES reduced phosphorylation of MAPK/ERK kinase kinase 1 (MEKK1) and Jun N-terminal Kinase (JNK) stimulated by cardiac ischemia-reperfusion, and Beclin-1 mRNA and protein levels while decreasing lactate dehydrogenase (LDH) and improving cell viability. However, the lentiviral shDJ-1 and JNK agonist anisomycin disrupted the effects of RES. In summary, RES could inhibit autophagy against myocardial ischemia-reperfusion injury through DJ-1 modulation of the MEKK1/JNK pathway, providing a novel therapeutic strategy for cardiac homeostasis.


Subject(s)
Myocardial Ischemia , Myocardial Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/metabolism , Resveratrol/therapeutic use , MAP Kinase Signaling System , MAP Kinase Kinase Kinases/metabolism , Autophagy , Myocytes, Cardiac , Apoptosis
12.
Nat Commun ; 14(1): 2100, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055409

ABSTRACT

The origin of homochirality in nature is an important but open question. Here, we demonstrate a simple organizational chiral system constructed by achiral carbon monoxide (CO) molecules adsorbed on an achiral Au(111) substrate. Combining scanning tunneling microscope (STM) measurements with density-functional-theory (DFT) calculations, two dissymmetric cluster phases consisting of chiral CO heptamers are revealed. By applied high bias voltage, the stable racemic cluster phase can be transformed into a metastable uniform phase consisting of CO monomers. Further, during the recondensation of a cluster phase after lowering down bias voltage, an enantiomeric excess and its chiral amplification occur, resulting in a homochirality. Such asymmetry amplification is found to be both kinetically feasible and thermodynamically favorable. Our observations provide insight into the physicochemical origin of homochirality through surface adsorption and suggest a general phenomenon that can influence enantioselective chemical processes such as chiral separations and heterogeneous asymmetric catalysis.

13.
Fish Shellfish Immunol ; 136: 108734, 2023 May.
Article in English | MEDLINE | ID: mdl-37028689

ABSTRACT

Antimicrobial peptides (AMPs) play an important role in innate immunity against microorganisms. AMPs is an effective antibacterial agent, and the chances of causing pathogens to develop is very low. However, there is little information about AMPs in the giant Triton snail Charonia tritonis. In this research, an antimicrobial peptide gene (termed Ct-20534) was identified in C. tritonis. The open reading frame of Ct-20534 is 381 bp in size and it encodes a basic peptide precursor containing 126 amino acids. Ct-20534 gene was found to be expressed in all five tissues examined by real-time fluorescence quantitative PCR (qPCR), but the highest expression was found in the proboscis. This is the first report that antibacterial peptides have been found in C. tritonis, and it has been proved that Ct-20534 has antibacterial activity against Gram-positive bacteria and Gram-negative bacteria, among which the activity of Staphylococcus aureus is most significantly inhibited, this suggests that the newly discovered antimicrobial peptides in C. tritonis may play an important role in the immune system and bacterial resistance of C. tritonis. This study presents the discovery of a newly identified antibacterial peptide from C. tritonis, with its structural properties fully characterized and potent antibacterial activity confirmed. The results provide essential fundamental data for the development of preventive and therapeutic measures against aquatic animal diseases, which in turn can promote the sustainable and stable growth of the aquaculture industry and create economic benefits. Additionally, this research lays the foundation for future development of novel anti-infective drugs.


Subject(s)
Antimicrobial Peptides , Peptides , Animals , Amino Acid Sequence , Peptides/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Snails/genetics , Microbial Sensitivity Tests
14.
Biochem Biophys Res Commun ; 637: 276-285, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36410277

ABSTRACT

Myocardial Ischemic Injury is a serious threat to human health, and DJ-1 is involved in cardioprotection. The research intended to explore the effects and mechanism of DJ-1 to protect myocardium against ischemia injury. DJ-1 overexpression lentivirus vectors were transduced into the myocardium of SD rats and H9c2 cells, and an AMI model in vivo and a hypoxia model in vitro were established, respectively. Results showed that DJ-1 overexpression alleviated myocardial ischemia injury, as demonstrated by reduced the extent of myocardial infarction, improved cell survival, decreased LDH activity and CK-MB release. Furthermore, DJ-1 interacted with RACK1, activated AMPK/mTOR pathway, induced adaptive autophagy and protected the myocardium. However, RACK1 siRNA or compound C (an AMPK inhibitor) could weaken the above effect of DJ-1 on myocardium. In conclusion, DJ-1 could activate adaptive autophagy by the RACK1/AMPK/mTOR pathway and protect the myocardium against ischemia injury.


Subject(s)
AMP-Activated Protein Kinases , Heart Injuries , Protein Deglycase DJ-1 , Animals , Humans , Rats , Autophagy , Hypoxia , Ischemia , Myocardium , Neoplasm Proteins , Rats, Sprague-Dawley , Receptors for Activated C Kinase , TOR Serine-Threonine Kinases , Protein Deglycase DJ-1/metabolism
15.
Fish Shellfish Immunol ; 131: 631-636, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36309324

ABSTRACT

The effects of a traditional Chinese herbal mixture (TCHM) composed of Glycyrrhiza uralensis, Astragalus membranaceus, Rheum palmatum, Catsia tora and Lonicera japonica on immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco) were studied. Fish were fed diets containing 0% (control), 1.0%, 3.0% or 5.0% TCHM (w/w) for 28 d. Immune parameters including cytokine genes interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) and Immunoglobulin M (IgM), acid phosphatase (ACP), alkaline phosphatase (AKP), lysozyme (LZM), catalase (CAT), superoxide dismutase (SOD) and immunoglobulin M (IgM) were measured during the test period. After 28 d of feeding, fish were infected with Aeromonas hydrophila, and mortality was recorded. The TCHM-supplementation diet stimulated ACP, AKP, LZM, CAT, SOD, and IgM activity in serum and induced IL-1ß, TNF-α, and IgM mRNA expression in the spleen. All TCHM groups showed reduced mortality after A. hydrophila infection compared to the control group. These results suggest that the TCHM-supplemented diet can improve fish immunity and disease resistance against A. hydrophila.


Subject(s)
Catfishes , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Aeromonas hydrophila/physiology , Animal Feed/analysis , Diet/veterinary , Dietary Supplements , Disease Resistance , Gram-Negative Bacterial Infections/veterinary , Immunity, Innate/genetics , Immunoglobulin M , Superoxide Dismutase/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
16.
Biomed Pharmacother ; 153: 113268, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35777221

ABSTRACT

Fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI), increases the serotonin levels in the brain to treat depression. Antidepressants have been demonstrated to modulate circadian rhythm, but the underlying mechanisms by which antidepressants regulate circadian rhythm require more research. This study aimed to investigate the role of FLX on circadian rhythm by analyzing the movement behavior and internal circadian oscillations in zebrafish. The results showed that the expression of clock genes clock1a and bmal1b was significantly down-regulated, and the amplitude reduction and phase shift were observed after FLX treatment. Furthermore, FLX exposure inhibited the expression of aanat2, which led to a decrease in nocturnal melatonin secretion. aanat2-/- larvae showed disrupted circadian rhythm. These findings may help reveal the effect of FLX exposure on the circadian rhythm and locomotor activity. It may provide theoretical data for the clinical application of FLX.


Subject(s)
Fluoxetine , Melatonin , Animals , Antidepressive Agents/pharmacology , Circadian Rhythm/genetics , Fluoxetine/pharmacology , Melatonin/metabolism , Melatonin/pharmacology , Zebrafish/metabolism
17.
J Chem Phys ; 156(20): 204301, 2022 May 28.
Article in English | MEDLINE | ID: mdl-35649828

ABSTRACT

The adsorption and self-assembly structures of melamine molecules on an Ag(111) surface are studied by low temperature scanning tunneling microscopy (STM) combined with tip-enhanced Raman spectroscopy (TERS). Two ordered self-assembly phases of melamine molecules on Ag(111) were studied by STM and TERS, combining with first-principles simulations. The α-phase consists of flat-lying melamine molecules, while the ß-phase consists of mixed up-standing/tilted melamine molecules. Moreover, dehydrogenation of melamine can be controlled by annealing the sample as well as by a tip-enhanced photo-catalytic effect. Our work demonstrates TERS as a powerful tool not only for investigating the configuration and vibration properties of molecules on a metal surface with high spatial resolution but also for manipulating the chemical reactions with tip and photo-induced effects.

18.
Eur Radiol ; 32(10): 6608-6618, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35726099

ABSTRACT

OBJECTIVES: To evaluate the diagnostic performance of Kaiser score (KS) adjusted with the apparent diffusion coefficient (ADC) (KS+) and machine learning (ML) modeling. METHODS: A dataset of 402 malignant and 257 benign lesions was identified. Two radiologists assigned the KS. If a lesion with KS > 4 had ADC > 1.4 × 10-3 mm2/s, the KS was reduced by 4 to become KS+. In order to consider the full spectrum of ADC as a continuous variable, the KS and ADC values were used to train diagnostic models using 5 ML algorithms. The performance was evaluated using the ROC analysis, compared by the DeLong test. The sensitivity, specificity, and accuracy achieved using the threshold of KS > 4, KS+ > 4, and ADC ≤ 1.4 × 10-3 mm2/s were obtained and compared by the McNemar test. RESULTS: The ROC curves of KS, KS+, and all ML models had comparable AUC in the range of 0.883-0.921, significantly higher than that of ADC (0.837, p < 0.0001). The KS had sensitivity = 97.3% and specificity = 59.1%; and the KS+ had sensitivity = 95.5% with significantly improved specificity to 68.5% (p < 0.0001). However, when setting at the same sensitivity of 97.3%, KS+ could not improve specificity. In ML analysis, the logistic regression model had the best performance. At sensitivity = 97.3% and specificity = 65.3%, i.e., compared to KS, 16 false-positives may be avoided without affecting true cancer diagnosis (p = 0.0015). CONCLUSION: Using dichotomized ADC to modify KS to KS+ can improve specificity, but at the price of lowered sensitivity. Machine learning algorithms may be applied to consider the ADC as a continuous variable to build more accurate diagnostic models. KEY POINTS: • When using ADC to modify the Kaiser score to KS+, the diagnostic specificity according to the results of two independent readers was improved by 9.4-9.7%, at the price of slightly degraded sensitivity by 1.5-1.8%, and overall had improved accuracy by 2.6-2.9%. • When the KS and the continuous ADC values were combined to train models by machine learning algorithms, the diagnostic specificity achieved by the logistic regression model could be significantly improved from 59.1 to 65.3% (p = 0.0015), while maintaining at the high sensitivity of KS = 97.3%, and thus, the results demonstrated the potential of ML modeling to further evaluate the contribution of ADC. • When setting the sensitivity at the same levels, the modified KS+ and the original KS have comparable specificity; therefore, KS+ with consideration of ADC may not offer much practical help, and the original KS without ADC remains as an excellent robust diagnostic method.


Subject(s)
Breast Neoplasms , Diffusion Magnetic Resonance Imaging , Breast Neoplasms/diagnostic imaging , Diagnosis, Differential , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Machine Learning , Magnetic Resonance Imaging/methods , ROC Curve , Retrospective Studies , Sensitivity and Specificity
19.
Fish Shellfish Immunol ; 125: 212-219, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35569778

ABSTRACT

Normal dissolved oxygen in water is essential for maintaining the physiological functions of fish, but environmental pollution, such as eutrophication can lead to a decrease in oxygen content in water. How this reduction of dissolved oxygen in water affects the immune functions of fish and the potential regulatory mechanisms have not been thoroughly elucidated. In this study, we made full use of the aquatic model animal zebrafish to explore this question. In a model of LPS-induced inflammation, we found that hypoxia induced by infusing nitrogen into water increased the expression of pro-inflammatory cytokines, such as il-1ß, il-6, and il-8. In vivo imaging also showed that hypoxia significantly increased neutrophil migration to the site of caudal fin injury in the transgenic line. Subsequently, we found that the phosphorylation level of ERK protein was significantly activated upon hypoxia and proved the roles of ERK signaling in the expression of pro-inflammatory cytokines and neutrophil migration in zebrafish. This study indicated that reduced water oxygen significantly increases the inflammatory response of the zebrafish.


Subject(s)
Cytokines , Zebrafish , Animals , Cytokines/genetics , Cytokines/metabolism , Hypoxia/genetics , Inflammation/chemically induced , Inflammation/genetics , Neutrophils , Oxygen/metabolism , Water , Zebrafish/genetics , Zebrafish/metabolism
20.
Front Pharmacol ; 13: 1074286, 2022.
Article in English | MEDLINE | ID: mdl-36712682

ABSTRACT

The objective of this study was to investigate the effects and molecular mechanisms of total flavonoids from Cortex Juglandis Mandshuricae (TFC) on preventing alcohol-induced chronic liver injury and regulating gut microbiota in mice. The results showed that oral administration of TFC significantly attenuated alcoholic liver injury in mice. TFC improved lipid accumulation in mice with chronic alcoholic liver injury through activation of the AMPK/PPARα pathway. In addition, TFC maintained the integrity of the intestinal barrier in alcoholic mice, reducing endotoxin leakage from the intestine and further inhibiting the TLR4/NF-κB inflammatory pathway. More importantly, TFC regulated the intestinal microbiota composition and certain bacteria, including Akkermansia muciniphila, Lactobacillus and others. At the same time, reduced levels of short-chain fatty acids due to alcohol consumption were restored. In summary, TFC upregulated AMPK/PPARα signaling pathway to improve hepatic fat accumulation and oxidative stress; TFC positively regulated intestinal flora composition to reduce intestinal disorders caused by alcohol consumption, and further inhibited alcohol-induced inflammatory responses through the intestinal-liver axis. The above findings may be the mechanism of TFC's pharmacological effects against alcoholic liver injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...