Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.773
Filter
1.
Diabetes Metab Syndr Obes ; 17: 3535-3546, 2024.
Article in English | MEDLINE | ID: mdl-39328263

ABSTRACT

Introduction: The long-acting insulin analogue insulin degludec (IDeg) is increasingly recommended for type two diabetes (T2DM), yet clinical experience in China remains limited. This retrospective study aimed to delineate the initiation strategy for IDeg in Chinese hospitalized patients with T2DM. Methods: We retrospectively analyzed 217 Chinese hospitalized patients with T2DM who initiated IDeg from December 2018 to June 2020, calculating the initial dose and examining correlations between clinical characteristics and glucose profiles. Results: The initial IDeg doses ranged from 0.15 to 0.18 IU/kg·d, showing no association with clinical characteristics. During titration, mean blood glucose levels (MEAN) correlated positively with diabetes duration, age, and Glycosylated Hemoglobin (HbA1c), and negatively with body mass index (BMI), triglycerides (TG), and low-density lipoprotein (LDL). The coefficient of variation (CV) in glucose levels correlated positively with HbA1c and negatively with BMI and TG. The mean amplitude of glycemic excursions (MAGE) mirrored these trends, with additional negative correlations to estimated glomerular filtration rate (eGFR) and serum albumin (ALB). Notably, glycemic variability parameters did not correlate with the presence of diabetic ketoacidosis (DKA) at admission. Hypoglycemia was observed in 21 patients, with differences in MEAN and CV during titration being the only significant findings. Conclusion: The initial IDeg dosing was inadequate and not tailored to clinical features, and there were weak correlations between diabetes duration, age, BMI, eGFR, LDL, and ALB levels and glucose profile post-initiation.

2.
Plants (Basel) ; 13(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39339518

ABSTRACT

Stevia rebaudiana (Bertoni) is a valuable sweetener plant whose sweetness primarily derives from steviol glycosides (SGs), especially rebaudioside A (RA). Polyploidization has the potential to enhance the content of active ingredients in medicinal plants, making this strategy a promising avenue for genetic improvement. However, the underlying regulatory mechanisms that contribute to the fluctuating SGs content between autotetraploid and diploid stevia remain unclear. In this study, we employed metabolic analysis to identify 916 differentially accumulated metabolites (DAMs), with the majority, specifically terpenoids, flavonoids, and lipids, exhibiting upregulation due to polyploidization. Notably, the content of stevia's signature metabolite SGs (including RA, steviolbioside, and rebaudioside C), along with their precursor steviol, increased significantly after polyploidization. Furthermore, a comprehensive analysis of the transcriptome and metabolome revealed that the majority of differentially expressed genes (DEGs) involved in the SG-synthesis pathway (ent-KAH, ent-KS1, UGT73E1, UGT74G1, UGT76G1, UGT85C2, and UGT91D2) were upregulated in autotetraploid stevia, and these DEGs exhibited a positive correlation with the polyploidization-enhanced SGs. Additionally, multi-omics network analysis indicated that several transcription factor families (such as five NACs, four WRKYs, three MYBs, eight bHLHs, and three AP2/ERFs), various transporter genes (four ABC transporters, three triose-phosphate transporters, and two sugar efflux transporters for intercellular exchange), as well as microorganisms (including Ceratobasidium and Flavobacterium) were positively correlated with the accumulation of RA and steviol. Overall, our results indicate the presence of a regulatory circuit orchestrated by polyploidization, which recruits beneficial rhizosphere microbes and modulates the expression of genes associated with SG biosynthesis, ultimately enhancing the SG content in stevia. This finding will provide new insights for promoting the propagation and industrial development of stevia.

3.
J Hazard Mater ; 480: 135681, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39276740

ABSTRACT

Air pollutants combined with Hg, Cd, Cr, Pb, etc. in many global populated areas were studied comprehensively, while our understanding towards thallium (Tl), an extremely toxic heavy metal, remains very limited. Further, the knowledge on atmospheric emissions, distribution, and the hidden risks associated with Tl is of great scarcity. Hence, this work aims to review recent data on significant sources of ambient Tl resulting from industrial activities, including Pb/Zn/Cu/Fe sulfide ore smelting, steel-making, coal burning, and cement production that involves the use of Tl-bearing wastes. Through the examination of Tl emissions and transfer pathways in the atmosphere, it is found that Tl is present at lower than ng/m3 in aerosols and air particulates but can increase to much higher levels even at 1000 µg/m3 in atmospheric fine particulate matters near the mining and smelting industrialized zones located near populated areas. This study highlights the importance of creating a comprehensive emission inventory for Tl, particularly in developing countries where this data is currently lacking. The time has come to develop a precise national emission inventory for Tl in order to prevent and mitigate the risks associated with ambient exposure to this element. This review offers novel insights for the scientific community and policy-makers in establishing effective control and management strategies to curb hidden Tl hazards derived from industrial activities.

4.
Front Pharmacol ; 15: 1392385, 2024.
Article in English | MEDLINE | ID: mdl-39323631

ABSTRACT

Introduction: As a widely used traditional Chinese medicine with hot property, aconite can significantly promote energy metabolism. However, it is unclear whether the gut microbiota and bile acids contribute to the energy metabolism-promoting properties of aconite. The aim of this experiment was to verify whether the energy metabolism-promoting effect of aconite aqueous extract (AA) is related to gut microbiota and bile acid (BA) metabolism. Methods: The effect of AA on energy metabolism in rats was detected based on body weight, body temperature, and adipose tissue by HE staining and immunohistochemistry. In addition, 16S rRNA high-throughput sequencing and targeted metabolomics were used to detect changes in gut microbiota and BA concentrations, respectively. Antibiotic treatment and fecal microbiota transplantation (FMT) were also performed to demonstrate the importance of gut microbiota. Results: Rats given AA experienced an increase in body temperature, a decrease in body weight, and an increase in BAT (brown adipose tissue) activity and browning of WAT (white adipose tissue). Sequencing analysis and targeted metabolomics indicated that AA modulated gut microbiota and BA metabolism. The energy metabolism promotion of AA was found to be mediated by gut microbiota, as demonstrated through antibiotic treatment and FMT. Moreover, the energy metabolism-promoting effect of aconite is associated with the bile acid receptor TGR5 (Takeda G-protein-coupled receptor 5)-UCP1 (uncoupling protein 1) signaling pathway. Conclusion: The energy metabolism-promoting effect of aconite is associated with gut microbiota and bile acid receptor TGR5-UCP1 signaling.

5.
Exp Gerontol ; : 112594, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326808

ABSTRACT

BACKGROUND: Frailty increases the incidence of geriatric syndromes and even the risk of death in old adults. However, the diagnostic criteria for frailty are inconsistent because of complex pathological processes and diverse clinical manifestations. To determine the effective biomarker and recognize frail status early, we investigated the correlation of mitochondrial morphology and function of human peripheral blood mononuclear cells (PBMCs) with frailty status in older adults. METHODS: This Cross-sectional study followed 393 participants (aged 25-100 years, female 31.04 %) from the First Affiliated Hospital of Nanjing Medical University. The frailty status of subjects was assessed by the physical frailty phenotype (PFP) scale. We analyzed mitochondria functions including mitochondria copy number (mtDNAcn), the mRNA expressions of mitochondrial dynamics-related genes mitofusin 1(MFN1), mitofusin 2(MFN2), optic atrophy protein-1(OPA1), fission protein-1(FIS1) and dynamin-related protein 1(DRP1), mitochondrial oxidative respiration and reactive oxygen species(ROS) levels in PBMCs. Mitochondria morphology, size, and number were observed by transmission electron microscopy (TEM). RESULTS: After adjustment for sex and BMI, mtDNAcn, the mRNA expression of FIS1, mitochondrial respiratory function (proton leak, maximum oxygen consumption, and respiratory reserve) and ROS level were significantly correlated with age (P = 0.031, 0.030, 0.042, 0.003, 0.002, 0.022, respectively). After correcting for age, sex, and BMI, mtDNAcn and the mRNA expression of OPA1 were correlated with 4 m gait speed respectively (P = 0.003, 0.028, respectively). Compared with non-frail people, mtDNAcn, the mRNA expression of MFN1, mitochondrial basal respiration, proton leak, maximum oxygen consumption, ATP production and space capacity were significantly decreased in frail older adults (P = 0.013, 0.036, 0.026, 0.024, 0.012, 0.029, 0.032, 0.020, respectively). ROS levels were significantly increased in the frail group (P = 0.016). Compared with non-frail people, the number, length, and perimeter, area of mitochondria were reduced in frail group under TEM (all P < 0.001). CONCLUSION: Mitochondrial dysfunctions (decreased mtDNAcn, impaired mitochondrial morphology, imbalanced mitochondrial dynamic, impaired mitochondrial respiratory function, and increased ROS levels) were significantly correlated with frail status.

6.
Theor Appl Genet ; 137(10): 233, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325221

ABSTRACT

KEY MESSAGE: This study mapped and screened three candidate genes related to kernel dehydration in maize. The slow development rate of maize kernels during later stages leads to high kernel moisture content at harvest, posing a challenge for mechanized maize harvesting in China. This study utilized a recombinant inbred line population derived from Zheng 58 (slow dehydration) and PH6WC (fast dehydration) as parents. After four years of trait investigation and analysis, 25 quantitative trait loci (QTLs) associated with kernel dehydration rate and moisture content were identified, with six QTLs showing a significant contribution value exceeding 10% in the phenotype. Furthermore, a comparison was made between the QTLs identified in this study and those from previous research on maize kernel moisture content and dehydration rate, followed by screening through the omics analysis of the parental lines. Three candidate genes related to kernel dehydration rate were identified, primarily involving carbohydrate metabolism, energy metabolism processes (Zm00001d014030 and Zm00001d006476), and stimulus resistance (Zm00001d040113). These findings provide valuable insights to assist and guide future breeding efforts for mechanical harvesting of maize.


Subject(s)
Chromosome Mapping , Phenotype , Quantitative Trait Loci , Seeds , Zea mays , Zea mays/genetics , Seeds/genetics , Seeds/growth & development , Dehydration/genetics , Genes, Plant , Plant Breeding
7.
Sci Total Environ ; 954: 176376, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39304166

ABSTRACT

Iron (oxyhydr)oxides are ubiquitous in terrestrial environments and play a crucial role in controling the fate of arsenic in sediments and groundwater. Although there is evidence that different iron (oxyhydr)oxides have different affinities towards As(III) and As(V), it is still unclear why As(V) adsorption on some iron (oxyhydr)oxides is larger than As(III) adsorption, while it is opposite for other ones. In this study, six typical iron (oxyhydr)oxides are selected to evaluate their adsorption capacities for As(III) and As(V). The characteristics of these iron minerals such as morphology, arsenic adsorption species, and pore size distribution are carefully examined using transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), positron annihilation lifetime (PAL) spectroscopy, and X-ray absorption spectroscopy (XAS). We confirm a seesaw effect occurred in different iron minerals for As(III) and As(V) immobilization, i.e., at pH 6.0, adsorption of As(V) on hematite (0.73 µmol m-2) and magnetite (0.33 µmol m-2) is higher than for As(III) (0.61 µmol m-2 and 0.27 µmol m-2, respectively), for goethite and lepidocrocite it is almost equal, while As(III) sorption on ferrihydrite (5.77 µmol m-2) and schwertmannite (28.41 µmol m-2) showed higher sorption than As(V) (1.53 µmol m-2 and 12.99 µmol m-2, respectively). PAL analysis demonstrates that ferrihydrite and schwertmannite have a large concentration of vacancy cluster-like micropores, significantly more than goethite and lepidocrocite, followed by hematite and magnetite. The difference of adsorption of As(III) and As(V) to different iron (oxyhydr)oxides is due to differences in the abundance of vacancy cluster-like micropore sites, which are conducive for smaller size As(III) immobilization but not for larger size of As(V). The findings of this study provide novel insights into a seesaw effect for As(III) and As(V) immobilization on naturally occurring iron mineral.

8.
Bone ; 189: 117261, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303930

ABSTRACT

Glucocorticoids (GCs) are extensively used as anti-inflammatory and immunosuppressive medications in the long-term treatment of rheumatic disorders, respiratory diseases, renal diseases, and organ transplantation. Prolonged use of GCs can reduce bone mineral density, leading to osteoporosis (Glucocorticoid Induced Osteoporosis, GIOP) and fracture. All-trans retinoic acid (ATRA) is an active vitamin A metabolite that regulates embryonic development and adult organ function. ATRA has been found in studies to enhance osteogenesis. To examine the interventional effects of ATRA on GIOP and the mechanisms of ATRA activities, we first performed bioinformatic analysis to identify potential gene targets of ATRA. Zebrafish larvae were recruited as experimental animals, and the frequently used GC, prednisolone, was administered to larvae to construct a GIOP model. We evaluated the influence of exogenous ATRA on the activities of bone metabolic enzymes, the expression of genes linked to osteoblasts and osteoclasts, and the restoration of bone mineral density and bone mass in GIOP zebrafish larvae. Furthermore, we studied the influence of RBM14, a transcriptional coactivator and negative reciprocal factor of ATRA, on the regulation of osteoblastic gene expression during the anti-GIOP process of ATRA using the morpholino knockdown approach. The findings of bone metabolic enzyme activity (alkaline phosphatase, ALP and tartrate-resistant acid phosphatase, TRAP) and expression assays of osteoblastic marker genes (Runx2a, Runx2b, SP7, Csf1a, RANKL, and CTSK) indicated that ATRA had bidirectional effects on osteogenesis. However, in the GIOP model, ATRA reversed the GIOP-induced osteoporosis phenotype by inhibiting the GIOP-induced suppression of osteoblastic metabolic enzyme (ALP) activities and osteoblastic marker gene expression (Runx2a, Runx2b, and SP7), and this antagonism was concentration-dependent. We also observed that ATRA inhibited RBM14 expression in zebrafish larvae, while ATRA alone and RBM14 knockdown showed a consistent induction of osteoblast marker gene expression, implying that ATRA's inhibitory effect on RBM14 expression may underlie ATRA's osteogenic effects. Based on these data, we postulated that ATRA may ameliorate GIOP by decreasing RBM14 expression, thereby enhancing osteoblastic marker gene expression.

9.
Phytomedicine ; 135: 156019, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39305747

ABSTRACT

BACKGROUND: Neurological diseases are the primary cause of disability and death and impose substantial financial burdens. However, existing treatments only relieve symptoms and may cause many adverse effects. Natural products are a promising source of neurological therapeutic agents due to their excellent neuroprotective effect and safety. The gut microbiota has an essential impact on maintaining brain homeostasis via the gut-brain axis. Multiple investigations show that natural products offer neuroprotective effects by regulating gut microbiota-driven signaling networks. OBJECTIVES: This review aims to provide a systematic review of how natural products promote neurological health by harnessing the power of gut microbiota. METHODS: The pre-January 1, 2024 literature was gathered from several databases, including Scopus, PubMed, Google Scholar, and Web of Science, utilizing appropriate keywords. The gathered publications underwent a review process and were classified based on their study content, specifically focusing on the impact of natural products on gut microbiota and neurological health. RESULTS: Here, we review how natural products promote neurological health by regulating the gut microbiota-brain axis. Specifically, we focus on the following areas. (1) Altering microorganism community structure, including increasing α-diversity and altering ß-diversity. (2) Regulating the population of certain bacteria, including enriching beneficial microorganisms Akkermansia and Bifidobacterium, and inhibiting potentially hazardous microorganisms Bilophila, Klebsiella, and Helicobacter. (3) Regulating microbial neuroactive metabolites levels, including short-chain fatty acids, tryptophan and its derivatives, trimethylamine N-oxide, dopa/dopamine, γ-aminobutyric acid, and lipopolysaccharide. Furthermore, we review how natural products promote neurological health by regulating intestinal barrier homeostasis. CONCLUSION: Natural products promote neurological health by harnessing the power of gut microbiota. This review will contribute to understanding how natural products promote neurological health by orchestrating the gut microbiota-brain axis.

10.
Heliyon ; 10(16): e35744, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39224355

ABSTRACT

Objective: To investigate the material basis, targets and molecular mechanism of Scutellariae Radix against periodontitis to provide theoretical basis for clinical applications. Materials and methods: The active compounds and targets of Scutellariae Radix were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, and the periodontitis-related targets were collected by integrating Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), Genecards and Gene Expression Omnibus (GEO) database together. The potential targets of Scutellariae Radix against periodontitis were obtained from the intersection of two target sets. Metascape database was used for Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Discovery Studio software was used for molecular docking between key targets and compounds to evaluate their binding affinity. Western blot was used to check the expression of PTGS2 and MMP9 to verify the regulatory effects of baicalein, the main active compound of Scutellariae Radix, on human periodontal ligament stem cells (hPDLSCs) cultured under inflammatory environment which induced by lipopolysaccharide (LPS). Results: 15 active compounds of Scutellariae Radix and 53 common targets for periodontitis treatment were identified. Among these targets, the 10 core targets were AKT1, IL-6, TNF, VEGFA, TP53, PTGS2, CASP3, JUN, MMP9 and HIF1A. GO and KEGG analysis mainly focused on response to LPS and pathways in cancer. Molecular docking showed that the main active compounds had good binding affinity with key targets. Cell experiments confirmed that baicalein can interfere the expression of pro-inflammatory factors PTGS2 and MMP9 proteins and exert anti-inflammatory effects. Conclusion: Current study preliminarily analyzed the mechanism of Scutellariae Radix against periodontitis, which provide a new idea for the utilization of Scutellariae Radix and the development of novel medicine for the clinical treatment of periodontitis.

12.
Int Immunopharmacol ; 142(Pt A): 113047, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39236458

ABSTRACT

BACKGROUND: Schizophrenia (SCZ) is a heterogeneous psychiatric disorder that is poorly treated by current therapies. Emerging evidence indicates that SCZ is closely correlated with a persistent neuroinflammation. α-linolenic acid (ALA) is highly concentrated in the brain and represents a modulator of the immune system by decreasing the inflammatory response in chronic metabolic diseases. This study was first designed to investigate the potential role of dietary ALA on cognitive function and neuroinflammation in mice with SCZ. METHODS: In vivo, after 2 weeks of modeling, mice were treated with dietary ALA treatment for 6 weeks. In vitro, inflammation model was created using lipopolysaccharide as an inducer in BV2 microglial cells. RESULTS: Our results demonstrated that ALA alleviated cognitive impairment and enhanced synaptic plasticity in mice with SCZ. Moreover, ALA mitigated systematic and cerebral inflammation through elevating IL-10 and inhibiting IL-1ß, IL-6, IL-18 and TNF-α. Furthermore, ALA notably inhibited microglia and pro-inflammatory monocytes, as well as microglial activation andpolarization. Mechanistically, ALA up-regulated the expressions of G protein coupled receptor (GPR) 120 and associated ß-inhibitor protein 2 (ß-arrestin2), accompanied by observable weakened levels of transforming growth factor-ß activated kinase 1 (TAK1), NF-κB p65, cysteine proteinase-1 (caspase-1), pro-caspase-1, associated speck-like protein (ASC) and NLRP3. In vitro, ALA directly restrained the inflammation of microglia by decreasing the levels of pro-inflammatory factors and regulating microglial polarization via GPR120-NF-κB/NLRP3inflammasome signaling pathway, whereas AH7614 definitely eliminated this anti-inflammatory effect of ALA. CONCLUSION: Dietary ALA ameliorates microglia-mediated neuroinflammation by suppressing the NF-κB/NLRP3 pathway via binding GPR120-ß-arrestin2.

13.
J Cell Physiol ; : e31427, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39239803

ABSTRACT

Iron (Fe) storage in cereal seeds is the principal source of dietary Fe for humans. In maize (Zea mays), the accumulation of Fe in seeds is known to be negatively correlated with crop yield. Hence, it is essential to understand the underlying mechanism, which is crucial for developing and breeding maize cultivars with high yields and high Fe concentrations in the kernels. Here, through the successful application of in vitro kernel culture, we demonstrated that excess Fe supply in the medium caused the kernel to become collapsed and lighter in color, consistent with those found in yellow strip like 2 (ysl2, a small kernel mutant), implicated a crucial role of Fe concentration in kernel development. Indeed, over-accumulation of Fe in endosperm inhibited the abundance and activity of ADP-glucose pyrophosphorylase (AGPase) and the kernel development defect was alleviated by overexpression of Briittle 2 (Bt2, encoding a small subunit of AGPase) in ysl2 mutant. Imaging and quantitative analyses of reactive oxygen species (ROS) and cell death showed that Fe stress-induced ROS burst and severe DNA damage in endosperm cells. In addition, we have successfully identified candidate genes that are associated with iron homeostasis within the kernel, as well as upstream transcription factors that regulate ZmYSL2 by yeast one-hybrid screening. Collectively, our study will provide insights into the molecular mechanism of Fe accumulation-regulated seed development and promote the future efficient application of Fe element in corn improvement.

14.
Hematology ; 29(1): 2399421, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39240224

ABSTRACT

BACKGROUND: Previous observational studies have hinted at a potential correlation between aplastic anemia (AA) and the gut microbiome. However, the precise nature of this bidirectional causal relationship remains uncertain. METHODS: We conducted a bidirectional two-sample Mendelian randomization (MR) study to investigate the potential causal link between the gut microbiome and AA. Statistical analysis of the gut microbiome was based on data from an extensive meta-analysis (genome-wide association study) conducted by the MiBioGen Alliance, involving 18,340 samples. Summary statistical data for AA were obtained from the Integrative Epidemiology Unit database. Single -nucleotide polymorphisms (SNPs) were estimated and summarized using inverse variance weighted (IVW), MR Egger, and weighted median methods in the bidirectional MR analysis. Cochran's Q test, MR Egger intercept test, and sensitivity analysis were employed to assess SNP heterogeneity, horizontal pleiotropy, and stability. RESULTS: The IVW analysis revealed a significant correlation between AA and 10 bacterial taxa. However, there is currently insufficient evidence to support a causal relationship between AA and the composition of gut microbiome. CONCLUSION: This study suggests a causal connection between the prevalence of specific gut microbiome and AA. Further investigation into the interaction between particular bacterial communities and AA could enhance efforts in prevention, monitoring, and treatment of the condition.


Subject(s)
Anemia, Aplastic , Gastrointestinal Microbiome , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Anemia, Aplastic/genetics , Anemia, Aplastic/microbiology , Genome-Wide Association Study
15.
Cardiovasc Toxicol ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240426

ABSTRACT

To uncover the possible role of TRAF3IP3 in the progression of myocardial infarction (MI), clarify its role in mitophagy and mitochondrial function, and explore the underlying mechanism. GEO chip analysis, RT-qPCR, and LDH release assay were used to detect the expression of TRAF3IP3 in tissues and cells and its effects on cell damage. Immunostaining and ATP product assays were performed to examine the effects of TRAF3IP3 on mitochondrial function. Co-IP, CHX assays, Immunoblot and Immunostaining assays were conducted to determine the effects of TRAF3IP3 on mitophagy. TRAF3IP3 was highly expressed in IR rats and HR-induced H9C2 cells. TRAF3IP3 knockdown can alleviate H/R-induced H9C2 cell damage. In addition, TRAF3IP3 knockdown can induce mitophagy, thus enhancing mitochondrial function. We further revealed that TRAF3IP3 can promote the degradation of NEDD4 protein. Moreover, TRAF3IP3 knockdown suppressed myocardial injury in I/R rats. TRAF3IP3 blocks mitophagy to exacerbate myocardial injury induced by I/R via mediating NEDD4 expression.

16.
Article in English | MEDLINE | ID: mdl-39226155

ABSTRACT

This study was conducted to investigate the association between alcohol consumption in adolescence and the risk of hypertension or prehypertension development in early adulthood. This cohort study included adolescent participants aged 12-18 years from the 2000-2011 China Health and Nutrition Survey. Cox proportional risk regression models were used to analyze the associations of the frequency of alcohol consumption, alcohol intake, and type of alcohol with the risk of developing hypertension or prehypertension. Restricted cubic spline analysis was used to assess the dose-response relationships for alcohol intake and their hazard ratios (HRs). A total of 1556 participants were included in the final analysis. Among the overall population, 448 (30.81%) and 35 (34.31%) participants developed hypertension or prehypertension, respectively. Compared with no alcohol consumption, alcohol consumption ≥ 2 times/week and consumption of ≥2 types of alcohol were associated with an increased risk of hypertension and prehypertension, with HRs of 1.97 (95% confidence interval [CI] 1.17-3.34; p = 0.011) and 1.77 (95% CI 1.01-3.09; p = 0.046), respectively. Alcohol intake of > 96 mL/week was associated with an increased risk of hypertension and prehypertension, with HRs of 2.09 (95% CI 1.12-3.90; p = 0.020) and 2.07 (95% CI 1.11-3.84; p = 0.021), respectively. The restricted cubic spline analysis showed that the risk of developing high blood pressure or prehypertension tends to increase with increasing alcohol consumption. Heavy alcohol consumption in adolescence increased the risk of developing hypertension and prehypertension in early adulthood.

17.
Chem Biol Drug Des ; 104(3): e14616, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39245793

ABSTRACT

The purpose of this study was to investigate the protective effect of echinacoside (Ech) on carbon tetrachloride (CCL4)-induced chronic liver injury in rats and its potential mechanisms. Thirty Sprague-Dawley (SD) rats were randomly divided into five groups: the Control group, the CCL4 group, the CCL4 + Ech 25 mg/kg group, the CCL4 + Ech 50 mg/kg group, and the CCL4 + Ech 100 mg/kg group. The rats were injected intraperitoneally with CCL4 solution twice a week to induce chronic liver injury, and Ech intervention lasted for 4 weeks. After the intervention, the liver and blood samples from rats were collected for subsequent analysis. Ech effectively reduced the levels of serum liver injury markers (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, alkaline phosphatase, and total bilirubin), attenuated the hepatocyte degeneration and necrosis, improved the severity of liver fibrosis, and inhibited the local inflammatory response of the liver in a dose-dependent manner. Ech effectively mitigated CCL4-induced chronic liver injury in rats by downregulating the NF-κB/NLRP3 inflammasome pathway.


Subject(s)
Carbon Tetrachloride , Glycosides , Inflammasomes , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Glycosides/pharmacology , Glycosides/chemistry , Glycosides/therapeutic use , Rats , Inflammasomes/metabolism , Male , Signal Transduction/drug effects , Liver/metabolism , Liver/drug effects , Liver/pathology
18.
Int J Biol Macromol ; 279(Pt 3): 135209, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39244135

ABSTRACT

This study aimed to evaluate the efficacy and therapeutic mechanism of parthenolide (PTL) in breast cancer (BC) through a comprehensive strategy integrating network pharmacology, single-cell RNA sequencing (scRNA-seq) and metabolomics. In network pharmacology, 70 therapeutic targets were identified, of which 16 core targets were filtered out through seven classical algorithms of Cytohubba plugin. Additionally, the hub module of PPI network was extracted using MCODE plugin. Molecular docking and molecular dynamics simulation showed a potent binding affinity between PTL and JNK, subsequently validated by MST and SPR assays. Further, Mendelian randomization analysis indicated that JNK was causally associated with BC. GO and KEGG enrichment analyses revealed that PTL counteracted BC via promoting ROS generation, inducing apoptosis and suppressing proliferation, which potentially involved the coordinated regulation of MAPK and FoxO1 pathways. Moreover, ssGSEA and scRNA-seq analysis suggested that PTL may act on T cell immune microenvironment of BC. Subsequently, these bioinformatics-based predictions were experimentally validated using in-vitro and in-vivo models. Finally, metabolome profiling unveiled that PTL remodeled the glycine, serine and threonine metabolism as well as biosynthesis of unsaturated fatty acids, and thereby contributed to BC inhibition. From molecular, immune and metabolic perspectives, this study not only provided a unique insight into the mechanistic details of PTL against BC, but also proposed a novel promising therapeutic strategy for BC.

19.
Exp Cell Res ; 442(2): 114238, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39251057

ABSTRACT

Diabetic nephropathy (DN), an eminent etiology of renal disease in patients with diabetes, involves intricate molecular mechanisms. Recent investigations have elucidated microRNA-193a (miR-193a) as a pivotal modulator in DN, although its precise function in podocyte impairment remains obscure. The present study investigated the role of miR-193a in podocyte injury via the WT1/EZH2/ß-catenin/NLRP3 pathway. This study employed a comprehensive experimental approach involving both in vitro and in vivo analyses. We utilized human podocyte cell lines and renal biopsy samples from pediatric patients with DN. The miR-193a expression levels in podocytes and glomeruli were quantified via qRT‒PCR. Western blotting and immunofluorescence were used to assess the expression of WT1, EZH2, ß-catenin, and NLRP3 inflammasome components. Additionally, the study used luciferase reporter assays to confirm the interaction between miR-193a and WT1. The impact of miR-193a manipulation was observed by overexpressing WT1 and inhibiting miR-193a in podocytes, followed by analysis of downstream pathway activation and inflammatory markers. We found upregulated miR-193a in podocytes and glomeruli, which directly targeted and suppressed WT1, a crucial podocyte transcription factor. WT1 suppression, in turn, activated the EZH2/ß-catenin/NLRP3 pathway, leading to inflammasome assembly and proinflammatory cytokine production. Overexpression of WT1 or inhibition of miR-193a attenuated these effects, protecting podocytes from injury. This study identified a novel mechanism by which miR-193a-mediated WT1 suppression triggers podocyte injury in DN via the EZH2/ß-catenin/NLRP3 pathway. Targeting this pathway or inhibiting miR-193a may be potential therapeutic strategies for DN.

20.
Front Allergy ; 5: 1453446, 2024.
Article in English | MEDLINE | ID: mdl-39239620

ABSTRACT

Background: The clinical efficacy of allergen-specific immunotherapy (AIT) for Alternaria alternata (A. alt) and Dermatophagoides farinae (Der f) extracts remains largely unknown in China. We sought to retrospectively evaluate the efficacy caused by AIT agents manufactured in China of patients who are sensitized to A. alt and Der f. Methods: Patients aged 5-27 years with asthma and perennial allergic rhinitis (AR), and AIT with A. alt and Der f were recruited, and then classified into two groups: A. alt-AIT (n = 31) and A. alt + Der f-AIT group (n = 39). All data were gathered retrospectively, including biological parameters, pulmonary function, and symptom and medication scores. Results: 70 patients who underwent A. alt and Der f AIT were enrolled. A significant improvement was observed in the values of FEV1% (P < 0.0001) and MEF 25 (P = 0.023) of lung function. Both the rhinitis symptoms and combined symptoms and medication scores for asthma decreased after AIT (by 45.3% and 80.3%, respectively, P < 0.0001 for each). Nearly 67% improvement rate (P < 0.0001) occurred in rhinoconjunctivitis quality of life, and a great increase existed in Asthma Control Test (ACT) score (P < 0.0001) after at least 1 year AIT, although there were no significant changes between these two groups. Besides, no significance was displayed in specific IgE to different allergens. Conclusion: AIT with A. alt and Der f extracts had clinical efficacy for many patients in China, with a reduction of symptom and medication scores, and great improvement in spirometry function.

SELECTION OF CITATIONS
SEARCH DETAIL