Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 22(1): 663, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010157

ABSTRACT

The T-helper 17 (Th17) cell and regulatory T cell (Treg) axis plays a crucial role in the development of multiple sclerosis (MS), which is regarded as an immune imbalance between pro-inflammatory cytokines and the maintenance of immune tolerance. Mesenchymal stem cell (MSC)-mediated therapies have received increasing attention in MS research. In MS and its animal model experimental autoimmune encephalomyelitis, MSC injection was shown to alter the differentiation of CD4+T cells. This alteration occurred by inducing anergy and reduction in the number of Th17 cells, stimulating the polarization of antigen-specific Treg to reverse the imbalance of the Th17/Treg axis, reducing the inflammatory cascade response and demyelination, and restoring an overall state of immune tolerance. In this review, we summarize the mechanisms by which MSCs regulate the balance between Th17 cells and Tregs, including extracellular vesicles, mitochondrial transfer, metabolic reprogramming, and autophagy. We aimed to identify new targets for MS treatment using cellular therapy by analyzing MSC-mediated Th17-to-Treg polarization.


Subject(s)
Immune Tolerance , Mesenchymal Stem Cells , Multiple Sclerosis , T-Lymphocytes, Regulatory , Th17 Cells , Humans , Th17 Cells/immunology , T-Lymphocytes, Regulatory/immunology , Mesenchymal Stem Cells/immunology , Animals , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Mesenchymal Stem Cell Transplantation
2.
J Orthop Translat ; 44: 26-34, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38179126

ABSTRACT

Background: Osteoarthritis (OA) is a common chronic degenerative joint disease. Due to the limited understanding of its complex pathological mechanism, there is currently no effective treatment that can alleviate or even reverse cartilage damage associated with OA. With improvement in public databases, researchers have successfully identified the key factors involved in the occurrence and development of OA through bioinformatics analysis. The aim of this study was to screen for the differentially expressed genes (DEGs) between the normal and OA cartilage through bioinformatics, and validate the function of the TGF-ß1/Smad2/3 pathway-related neuron regeneration related protein (NREP) in the articular cartilage. Methods: The DEGs between the cartilage tissues of OA patients and healthy controls were screened by bioinformatics, and functionally annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The expression levels of the DEG in human and murine OA cartilage was verified by reverse transcription-quantitative PCR (RT-qPCR), Western blotting and immunohistochemistry (IHC). RT-qPCR, Western-blotting, Cell Counting Kit-8(CCK8) and EdU assays were used to evaluate the effects of knocking down NREP in normal chondrocytes, and the molecular mechanisms were investigated by RT-qPCR, Western blotting and IHC. Results: In this study, we identified NREP as a DEG in OA through bioinformatics analysis, and found that NREP was downregulated in the damaged articular cartilage of OA patients and mouse model with surgically-induced OA. In addition, knockdown of NREP in normal chondrocytes reduced their proliferative capacity, which is the pathological basis of OA. At the molecular level, knock-down of NREP inactivated the TGF-ß1/Smad2/3 pathway, resulting in the downregulation of the anabolic markers Col2a1 and Sox9, and an increase in the expression of the catabolic markers MMP3 and MMP13. Conclusion: NREP plays a key role in the progression of OA by regulating the TGF-ß1/Smad2/3 pathway in chondrocytes, and warrants further study as a potential therapeutic target.

SELECTION OF CITATIONS
SEARCH DETAIL