Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Chemosphere ; 365: 143336, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39277039

ABSTRACT

Photoelectrochemical (PEC) detection technology is key for fighting pollution, leveraging the photoelectric conversion of the photoelectrode material. A specialized photoelectrode was developed to detect Hg2+ ions with exceptional sensitivity, utilizing an anodic PEC sensor composed of Er3NbO7/P@g-C3N4/SnS2 ternary nanocomposite. Rare earth metal niobates (RENs) were chosen due to their underexplored potential, whose performance was enhanced through bandgap engineering and surface modification, facilitated by P@g-C3N4 as an immobilization matrix and SnS2, belonging to the I-IV semiconductors category fostering hybrid heterojunction formation for boasting optical properties and suitable redox potentials. Introducing Hg2+ into the system, a specific amalgamation reaction occurs between reduced Hg and Sn. This reaction obstructs electron transfer to the FTO electrode surface, leading to the recombination of charges. The proposed PEC sensor exhibited remarkable analytical performance for Hg2+ detection, high sensitivity, a detection limit of 0.019 pM, excellent selectivity, and a detectable concentration range of 0.002-0.15 nM. Additionally, it demonstrated good recovery and low relative standard deviation when analyzing Hg2+ in water samples, highlighting the potential application of the heterostructure in detecting heavy metal ions via PEC technology.

2.
Mikrochim Acta ; 191(10): 576, 2024 09 06.
Article in English | MEDLINE | ID: mdl-39240389

ABSTRACT

Hydroquinone-based organic molecules are often used as unavoidable preservatives in the food industry. Among these additives, tertiary butylated hydroquinone (TBHQ) is widely employed as a preservative in various processed foods. However, the potential health risks associated with the excessive presence of TBHQ in food products have raised significant concerns. To address this pressing issuea novel binder-free composite composed of a manganese metal-organic framework and functionalized carbon nanofibers (Mn-MOF/f-CNF) has been developed as an electrode modifier for the ultrasensitive detection of TBHQ in food samples. The Mn-MOF/f-CNF composite was achieved using the ultrasonication method, revealing a lamellar sheet-like structure of the Mn-MOF and the curly thread-like fibrous structure of f-CNF. The developed Mn-MOF/f-CNF/SPE sensor system resulted in well-defined redox signals for TBHQ detection in a neutral pH solution. Compared to the unmodified SPE system, the modified system showed approximately a 300 mV reduction in overpotential and a twofold increase in peak current signal for TBHQ detection. The Mn-MOF/f-CNF/SPE sensor system showed a linear concentration window of 0.01 to 800 µM with a sensitivity of 6.28 µA µM-1 cm-2 and the obtained detection limit was 1.36 nM. Additionally, the proposed sensor displayed excellent reproducibility and repeatable results with an RSD of less than 5%. The real-time applicability of the Mn-MOF/f-CNF/SPE sensor system was demonstrated using real samples such as potato chips and instant noodles, showing excellent results with a recovery range of 95.1-98.5%.


Subject(s)
Electrochemical Techniques , Electrodes , Hydroquinones , Limit of Detection , Manganese , Metal-Organic Frameworks , Hydroquinones/chemistry , Hydroquinones/analysis , Metal-Organic Frameworks/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Manganese/chemistry , Food Contamination/analysis , Food Analysis/methods , Food Preservatives/analysis , Food Preservatives/chemistry
3.
Chemosphere ; 363: 142746, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969223

ABSTRACT

Vanadate-based photocatalysts have recently attracted substantial attention owing to their outstanding photocatalytic activity for degrading organic pollutants and generating energy via photocatalytic processes. However, the relatively high price of vanadium has hindered the development of vanadate-based photocatalysts for various applications. Spent catalysts obtained from oil refineries typically contain a significant quantity of vanadium, making them valuable for recovery and utilization as precursors for the production of high-value-added photocatalysts. In this study, we transformed the V present in spent catalysts produced by the petrochemical industry into ternary vanadate-based photocatalysts [BiVO4/InVO4/Ag3VO4 (BVO/IVO/AVO, respectively)] designed for water remediation. The ternary composites revealed an enhanced photocatalytic capability, which was 1.42 and 5.1 times higher than those of the binary BVO/IVO and pristine AVO due to the facilitated charge separation. The ternary photocatalysts not only effectively treated wastewater containing various organic dyes, such as methylene blue (MB), rhodamine 6G (R6G), and brilliant green (BG), but also exhibited remarkable photocatalytic performance in the degradation of antibiotics, reduction of Cr(VI), and bacterial inactivation. This paper proposes a feasible route for recycling industrial waste as a source of vanadium to produce highly efficient vanadate-based photocatalysts.


Subject(s)
Bismuth , Vanadates , Vanadium , Water Pollutants, Chemical , Water Purification , Catalysis , Vanadates/chemistry , Water Pollutants, Chemical/chemistry , Vanadium/chemistry , Water Purification/methods , Bismuth/chemistry , Coloring Agents/chemistry , Wastewater/chemistry , Photochemical Processes
4.
Food Chem ; 455: 139920, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850994

ABSTRACT

This work presents a hydrothermal method followed by a sonochemical treatment for synthesizing tantalum decorated on iron selenide (Ta/FeSe2) integrated with nitrogen-doped graphene (NGR) as a susceptible electrode material for detecting trolox (TRX) in berries samples. The surface morphology, structural characterizations, and electrochemical performances of the synthesized Ta/FeSe2/NGR composite were analyzed via spectrophotometric and voltammetry techniques. The GCE modified with Ta/FeSe2/NGR demonstrated an impressive linear range of 0.1 to 580.3 µM for TRX detection. Additionally, it achieved a remarkable limit of detection (LOD) of 0.059 µM, and it shows a high sensitivity of 2.266 µA µÐœ-1 cm-2. Here, we used density functional theory (DFT) to investigate the structures of TRX and TRX quinone and the locations of energy levels and electron transfer sites. The developed sensor exhibits significant selectivity, satisfactory cyclic and storage stability, and notable reproducibility. Moreover, the practicality of TRX was assessed in different types of berries, yielding satisfactory recoveries.


Subject(s)
Chromans , Fruit , Graphite , Nitrogen , Tantalum , Graphite/chemistry , Fruit/chemistry , Nitrogen/chemistry , Tantalum/chemistry , Chromans/chemistry , Chromans/analysis , Density Functional Theory , Electrochemical Techniques , Limit of Detection , Electrodes , Iron/chemistry , Iron/analysis
5.
Chemosphere ; 355: 141744, 2024 May.
Article in English | MEDLINE | ID: mdl-38522669

ABSTRACT

Pesticides pollute natural water reservoirs through persistent accumulation. Therefore, their toxicity and degradability are serious issues. Carbendazim (CBZ) is a pesticide used against fungal infections in agricultural crops, and its overexploitation detrimentally affects aquatic ecosystems and organisms. It is necessary to design a logical, efficient, and field-deployable method for monitoring the amount of CBZ in environmental samples. Herein, a nano-engineered bismuth selenide (Bi2Se3)/functionalized carbon nanofiber (f-CNF) nanocomposite was utilized as an electrocatalyst to fabricate an electrochemical sensing platform for CBZ. Bi2Se3/f-CNF exhibited a substantial electroactive surface area, high electrocatalytic activity, and high conductivity owing to the synergistic interaction of Bi2Se3 with f-CNF. The structural chemical compositions and morphology of the Bi2Se3/f-CNF nanocomposite were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Electrochemical analysis was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The voltammetry and impedance experiments exposed that the Bi2Se3/f-CNF-modified GCE has attained adequate electrocatalytic function with amended features of electron transportation (Rct = 35.93 Ω) and improved reaction sites (0.082 cm2) accessible by CBZ moiety along with exemplary electrochemical stability (98.92%). The Bi2Se3/f-CNF nanocomposite exhibited higher sensitivity of 0.2974 µA µM-1cm-2 and a remarkably low limit of detection (LOD) of 1.04 nM at a broad linera range 0.001-100 µM. The practicability of the nanocomposite was tested in environmental (tap and pond water) samples, which supports excellent signal amplification with satisfactory recoveries. Hence, the Bi2Se3/f-CNF nanocomposite is a promising electrode modifier for detecting CBZ.


Subject(s)
Benzimidazoles , Bismuth , Carbamates , Carbon , Nanofibers , Selenium Compounds , Carbon/chemistry , Nanofibers/chemistry , Ecosystem , Water , Electrochemical Techniques/methods , Electrodes
6.
Phytomedicine ; 124: 155326, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185068

ABSTRACT

BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI) is a phenomenon that pathological injury of ischemic brain tissue is further aggravated after the restoration of blood supply. The complex pathological mechanism of CIRI has led to the failure of multiple neuroprotective agents in clinical studies. Salvianolic acid A (SAA) is a neuroprotective extract from Salvia miltiorrhiza Bge., with significant pharmacological activities in the treatment of brain injury. However, the neuroprotective mechanisms of SAA remain unclear. PURPOSE: To explore the potential protective effect of SAA on CIRI and its mechanism, and to provide experimental basis for the research of new drugs for CIRI. STUDY DESIGN: A model of transient middle cerebral artery occlusion (tMCAO) in rats was used to simulate clinical CIRI, and the neuroprotective effect of SAA on tMCAO rats was investigated within 14 days after reperfusion. The improvement effects of SAA on cognitive impairment of tMCAO rats were investigated by behavioral tests from days 7-14. Finally, the neuroprotective mechanism of SAA was investigated on day 14. METHODS: The neuroprotective effects and mechanism of SAA were investigated by behavioral tests, HE and TUNEL staining, RNA sequence (RNA-seq) analysis and Western blot in tMCAO rats. RESULTS: The brain protective effects of SAA were achieved by alleviating cerebral infarction, cerebral edema, cerebral atrophy and nerve injury in tMCAO rats. Meanwhile, SAA could effectively improve the cognitive impairment and pathological damage of hippocampal tissue, and inhibit cell apoptosis in tMCAO rats. Besides, SAA could provide neuroprotective effects by up-regulating the expression of Bcl-2, inhibiting the activation of Caspase 3, and regulating PKA/CREB/c-Fos signaling pathway. CONCLUSION: SAA can significantly improve brain injury and cognitive impairment in CIRI rats, and this neuroprotective effect may be achieved through the anti-apoptotic effect and the regulation of PKA/CREB/c-Fos signaling pathway.


Subject(s)
Brain Injuries , Brain Ischemia , Caffeic Acids , Lactates , Neuroprotective Agents , Reperfusion Injury , Rats , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Sprague-Dawley , Signal Transduction , Brain Ischemia/pathology , Reperfusion Injury/metabolism , Apoptosis , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Brain Injuries/drug therapy
7.
Biosens Bioelectron ; 249: 116021, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38219466

ABSTRACT

Flexible laser-scribed graphene (LSG) substrates with gold nanoislands have been developed as biochips for in situ electrochemical (EC) and surface-enhanced Raman scattering (SERS) biodetection (biomolecules and viral proteins). A flexible biochip was fabricated using CO2 laser engraving polyimide (PI) films to form a 3D porous graphene-like nanostructure. Gold nanoislands were deposited on the LSG substrates to enhance the intensity of the Raman signals. Moreover, the addition of auxiliary and reference electrodes induced a dual-function EC-SERS biochip with significantly enhanced detection sensitivity. The biochip could selectively and easily capture SARS-CoV-2 S1 protein through the SARS-CoV-2 S1 antibody immobilized on EC-SERS substrates using 1-ethyl-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The grafted antibody specifically bound to SARS-CoV-2, resulting in a significant increase in the SERS signal of the target analyte. The limit of detection (LOD) of the SARS-CoV-2 S1 protein was 5 and 100 ng/mL by using EC and SERS detection, respectively. Although the LOD of the SARS-CoV-2 S1 protein detected using SERS is only 100 ng/mL, it can provide fingerprint information for identification. To improve the LOD, EC detection was integrated with SERS detection. The three-electrode detection chip enables the simultaneous detection of SERS and EC signals, which provides complementary information for target identification. The dual-functional detection technology demonstrated in this study has great potential for biomedical applications, such as the rapid and sensitive detection of SARS-CoV-2.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , Humans , SARS-CoV-2 , COVID-19/diagnosis , Antibodies , Gold , Spectrum Analysis, Raman
8.
Mikrochim Acta ; 191(2): 112, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38286966

ABSTRACT

For the first time, a tumour hypoxia marker detection has been developed using two-dimensional layered composite modified electrodes in biological and environmental samples. The concept of TaB2 and V4C3-based MXene composite materials is not reported hitherto using ball-milling and thermal methods and it remains the potentiality of the present work. The successful formation is confirmed through various characterisation techniques like X-ray crystallography, scanning electron microscopy photoelectron, and impedance spectroscopy. A reliable and repeatable electrochemical sensor based on TaB2@V4C3/SPCE was developed for quick and extremely sensitive detection of pimonidazole by various electroanalytical methods. It has been shown that the modified electrode intensifies the reduction peak current and causes a decrease in the potential for reduction, in comparison with the bare electrode. The proposed sensor for pimonidazole reduction has strong electrocatalytic activity and high sensitivity, as demonstrated by the cyclic voltammetry approach. Under the optimal experimental circumstances, differential pulse voltammetry techniques were utilised for generating the wide linear range (0.02 to 928.51 µM) with a detection limit of 0.0072 µM. The resultant data demonstrates that TaB2@V4C3/SPCE nano-sensor exhibits excellent stability, reliability, and repeatability in the determination of pimonidazole. Additionally, the suggested sensor was successfully used to determine the presence of pimonidazole in several real samples, such as human blood serum, urine, water, and drugs.


Subject(s)
Carbon , Nitroimidazoles , Tantalum , Humans , Carbon/chemistry , Vanadium , Reproducibility of Results , Limit of Detection , Electrodes , Boron Compounds
9.
FEBS J ; 291(6): 1131-1150, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37935441

ABSTRACT

Gastric neoplasm is a high-mortality cancer worldwide. Chemoresistance is the obstacle against gastric cancer treatment. Mitochondrial dysfunction has been observed to promote malignant progression. However, the underlying mechanism is still unclear. The mitokine growth differentiation factor 15 (GDF15) is a significant biomarker for mitochondrial disorder and is activated by the integrated stress response (ISR) pathway. The serum level of GDF15 was found to be correlated with the poor prognosis of gastric cancer patients. In this study, we found that high GDF15 protein expression might increase disease recurrence in adjuvant chemotherapy-treated gastric cancer patients. Moreover, treatment with mitochondrial inhibitors, especially oligomycin (a complex V inhibitor) and salubrinal (an ISR activator), respectively, was found to upregulate GDF15 and enhance cisplatin insensitivity of human gastric cancer cells. Mechanistically, it was found that the activating transcription factor 4-C/EBP homologous protein pathway has a crucial function in the heightened manifestation of GDF15. In addition, reactive oxygen species-activated general control nonderepressible 2 mediates the oligomycin-induced ISR, and upregulates GDF15. The GDF15-glial cell-derived neurotrophic factor family receptor a-like-ISR-cystine/glutamate transporter-enhanced glutathione production was found to be involved in cisplatin resistance. These results suggest that mitochondrial dysfunction might enhance cisplatin insensitivity through GDF15 upregulation, and targeting mitokine GDF15-ISR regulation might be a strategy against cisplatin resistance of gastric cancer.


Subject(s)
Cisplatin , Stomach Neoplasms , Humans , Cisplatin/pharmacology , Stomach Neoplasms/pathology , Up-Regulation , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Oligomycins
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123190, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37499474

ABSTRACT

Gold (Au) nano-island arrays were deposited on the glass substrate to fabricate surface-enhanced Raman scattering (SERS) substrates by in-situ thermal evaporation (deposited and annealed samples at the same time). The optimal SERS intensity deposited by various thicknesses and in-situ annealing temperatures of Au nano-island arrays would be investigated. The biomolecules (adenine) were dropped on the well-designed SERS substrate for precise and quantitative SERS detection. The characterization of Au nano-island arrays SERS substrate would be evaluated by scanning electron microscope (SEM) and Raman spectroscopy. The results showed that the optimal deposition thickness and annealing temperature of Au nano-island arrays SERS substrate is about 14 nm and 200 °C respectively, which can construct the smallest interparticle spacing (W)/ particle diameter (D) ratio and the lowest reflection (%) and transmittance (%) to form the strongest SERS intensity. Moreover, finite-difference time-domain (FDTD) simulation of the electromagnetic field distributions on Au nano-island arrays displays the similar trend with the experimental results. The 14 nm deposition with 200 °C in-situ annealing temperature would display the highest density of hot-spots by FDTD simulation. The reproducible Au nano-island arrays SERS substrates with tunable surface roughness, W/D ratio, and lower reflection and transmittance show promising potential for SERS detection of biomolecules, bacteria, and viruses.

11.
Polymers (Basel) ; 15(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37299301

ABSTRACT

Li3VO4 (LVO) is a highly promising anode material for lithium-ion batteries, owing to its high capacity and stable discharge plateau. However, LVO faces a significant challenge due to its poor rate capability, which is mainly attributed to its low electronic conductivity. To enhance the kinetics of lithium ion insertion and extraction in LVO anode materials, a conductive polymer called poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is applied to coat the surface of LVO. This uniform coating of PEDOT:PSS improves the electronic conductivity of LVO, thereby enhancing the corresponding electrochemical properties of the resulting PEDOT:PSS-decorated LVO (P-LVO) half-cell. The charge/discharge curves between 0.2 and 3.0 V (vs. Li+/Li) indicate that the P-LVO electrode displays a capacity of 191.9 mAh/g at 8 C, while the LVO only delivers a capacity of 111.3 mAh/g at the same current density. To evaluate the practical application of P-LVO, lithium-ion capacitors (LICs) are constructed with P-LVO composite as the negative electrode and active carbon (AC) as the positive electrode. The P-LVO//AC LIC demonstrates an energy density of 107.0 Wh/kg at a power density of 125 W/kg, along with superior cycling stability and 97.4% retention after 2000 cycles. These results highlight the great potential of P-LVO for energy storage applications.

12.
Children (Basel) ; 10(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36980061

ABSTRACT

BACKGROUND: Congenital pseudoarthrosis of the tibia (CPT) remains a challenge for physicians. Several treatment options have been proposed, but the standard of care remains inconclusive. In this study, we present three patients for whom the failure of prior treatments was managed with a contralateral vascularized fibular bone graft (VFG) and an anatomic distal tibial locking plate. METHODS: Between 2017 and 2021, three patients were referred for failed treatment of CPT. All patients had undergone multiple prior surgeries, including tumor excision and fixation with ring external fixators, plates, and screws. We performed radical tumor resection and reconstruction of bone defects with a VFG. The construct was fixed with an anatomic locking plate, and the patients were followed up for a mean of 45.7 months. RESULTS: All three patients were able to obtain graft union at 19.3 weeks. At the final follow-up, all grafts achieved bony hypertrophy without evidence of bone resorption or local tumor recurrence. There was a mean leg length difference of 8.5 cm preoperatively, compared with 6.3 cm postoperatively. The average lower leg angulation was 7.4 degrees and the average ankle range of motion was 58.3 degrees. The mean VAS score was 0 and the mean AOFAS score was 88.3. No significant complications were noted. CONCLUSIONS: Implantation of a VFG and an anatomic distal tibia locking plate can be considered an option for treatment-refractory CPT. Patients can expect to achieve bone consolidation, ambulate as tolerated, and have a low complication rate.

13.
Sci Rep ; 13(1): 3552, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36864121

ABSTRACT

On 17-18 September 2022, an earthquake sequence with a moment magnitude of 6.6 foreshock and a 7.0 mainshock occurred in southeast Taiwan along the Longitudinal Valley. Several surface breaks and collapsed buildings were observed after the event and one person died. The focal mechanisms of the foreshock and mainshock both had a west-dipping fault plane, which is different from the known active east-dipping boundary fault between the Eurasian Plate and the Philippine Sea Plate. Joint source inversions were performed to better understand the rupture mechanism of this earthquake sequence. The results show that the ruptures mainly occurred on a west-dipping fault. In the mainshock, the slip originated from the hypocenter and propagated toward the north with a rupture velocity of approximately 2.5 km/s. The east-dipping Longitudinal Valley Fault also ruptured, which could be passive and dynamically triggered by the significant rupture on the west-dipping fault. Most importantly, this source rupture model together with the occurrence of large local earthquakes over the past decade strongly supports the existence of the Central Range Fault, which is a west-dipping boundary fault that lies along the north to south ends of the Longitudinal Valley suture.

14.
Biochem Pharmacol ; 211: 115498, 2023 05.
Article in English | MEDLINE | ID: mdl-36913990

ABSTRACT

Despite the use of targeted therapy in non-small cell lung cancer (NSCLC) patients, cisplatin (DDP)-based chemotherapy is still the main option. However, DDP resistance is the major factor contributing to the failure of chemotherapy. In this study, we tried to screen DDP sensitizers from an FDA-approved drug library containing 1374 small-molecule drugs to overcome DDP resistance in NSCLC. As a result, disulfiram (DSF) was identified as a DDP sensitizer: DSF and DDP had synergistic anti-NSCLC effects, which are mainly reflected in inhibiting tumor cell proliferation, plate colony formation and 3D spheroidogenesis and inducing apoptosis in vitro, as well as the growth of NSCLC xenografts in mice. Although DSF has recently been reported to promote the antitumor effect of DDP by inhibiting ALDH activity or modulating some important factors or pathways, unexpectedly, we found that DSF reacted with DDP to form a new platinum chelate, Pt(DDTC)3+, which might be one of the important mechanisms for their synergistic effect. Moreover, Pt(DDTC)3+ has a stronger anti-NSCLC effect than DDP, and its antitumor activity is broad-spectrum. These findings reveal a novel mechanism underlying the synergistic antitumor effect of DDP and DSF, and provide a drug candidate or a lead compound for the development of a new antitumor drug.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Mice , Animals , Cisplatin/pharmacology , Cisplatin/metabolism , Disulfiram/pharmacology , Platinum/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Cell Proliferation , Drug Resistance, Neoplasm , Cell Line, Tumor
15.
Ultrason Sonochem ; 93: 106293, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36638650

ABSTRACT

A sonochemical based green synthesis method playa powerful role in nanomaterials and composite development. In this work, we developed a perovskite type of strontium titanate via sonochemical process. SrTiO3 particles were incorporated with nitrogen doped graphene oxide through simple ultrasonic irradiation method. The SrTiO3/NGO was characterized by various analytical methods. The nanocomposite of SrTiO3/NGO was modified with laser-induced graphene electrode (LIGE). The SrTiO3/NGO/LIGE was applied for electrochemical sensor towards chemotherapeutic drug detection (nilutamide). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques have been used to examine the electrochemical performance of nilutamide (anti-cancer drug). DPV was found to be more sensitive and found to exhibit a sensitivity 8.627 µA µM-1 cm-2 for SrTiO3/NGO/LIGE with a wide linear range (0.02-892 µM) and low Limit of detection (LOD: 1.16 µM). SrTiO3/NGO/LIGE has been examined for the detection of nilutamide in blood serum and urine samples and obtained a good recovery in the range of 97.2-99.72 %. The enhanced stability and selectivity and practical application results indicates the suitability of SrTiO3/NGO/LIGE towards the detection of nilutamide drug in pharmaceutical industries.


Subject(s)
Antineoplastic Agents , Graphite , Graphite/chemistry , Electrochemical Techniques/methods , Electrodes
16.
J Ethnopharmacol ; 307: 116192, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36706933

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tiepishihu Xiyangshen granules (TXG) is a traditional Chinese medicine formula composed of Panax quinquefolius L, Dendrobium officinale Kimura & Migo and Ganoderma lucidum (Curtis) P. Karst. It has long been used as a nutritional supplement and an immune enhancer in China. However, the immunomodulatory effects and the underlying mechanisms of TXG have not been clarified. AIM OF THE STUDY: This study aims to investigate the immunomodulatory effects of TXG and clarify the underlying mechanism. MATERIALS AND METHOD: TXG was administered by gavage for 18 days. From the 15th day, the immunosuppression model was induced by intraperitoneally injecting 80 mg/kg CTX for 3 days. The immune regulatory effects of TXG on immune organs were verified by calculating the organ index and observing the spleen tissue structure through HE staining. The effects of TXG on immune cells were examined by recording the PBWC, the proliferation rate of lymphocyte and the T lymphocyte phenotype. The effects of TXG on immune molecules were measured by detecting serum hemolysin and the content of cytokines. In parallel, kit was utilized to detect its antioxidant capacity. RNA seq and Western blot were used to analyze the possible immune regulation mechanism of TXG. HPLC and UPLC-Q-TOF-MS were used to identify the chemical components in TXG. RESULTS: At the level of immune organs, TXG effectively reduced the adverse reaction to the body and the substantial damage to the spleen after chemotherapy by improving the spleen damage. At the level of immune molecules, TXG upregulated the expression of cytokines and antibodies. At the level of immune cells, TXG antagonized bone marrow suppression by increasing the PBWC of immunosuppressed mice. Meanwhile, TXG upregulated the ratio of CD4+/CD8+ lymphocytes and ameliorated the proliferation of T and B lymphocytes. And the mechanism of TXG to improve immunity might be through TLR4/MAPKs and PI3K/AKT/FOXO3a signaling pathways. CONCLUSION: The results of this study confirmed that TXG has prominent immunomodulatory activities, and the immunity regulations of TXG may be achieved by regulating TLR4/MAPKs and PI3K/AKT/FOXO3a signal pathways.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Toll-Like Receptor 4 , Cyclophosphamide/pharmacology , Signal Transduction , Immunosuppression Therapy , Cytokines/pharmacology
17.
Psychol Med ; 53(10): 4364-4372, 2023 07.
Article in English | MEDLINE | ID: mdl-35477437

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is an unprecedented global health crisis that may cause mental health problems and heighten suicide risk. We investigated the impact of the COVID-19 pandemic on trends in suicide attempts and suicide deaths in New Taipei City, Taiwan. METHODS: The current study used the official daily data on suicide attempts and deaths in New Taipei City, Taiwan (4 million inhabitants) between 2015 and 2020 from the Taiwan National Suicide Prevention Reporting System. Interrupted time-series (ITS) analyses with parameters corrected by the estimated autocorrelations were applied on weekly aggregated data to examine whether the suicide trends during the early COVID-19 pandemic (late January to July 2020) deviated from previous trends (January 2015 to late January 2020). The impact due to the suicide prevention policy change was also examined (since August 2020). RESULTS: ITS analyses revealed no significant increases in both mean and trend on weekly suicide deaths during the COVID-19 pandemic and after the policy change. In contrast, there was a significant increasing trend in weekly suicide attempts since the COVID-19 outbreak at the rate of 1.54 attempts per week (95% confidence interval 0.49-2.60; p = 0.004). Sex difference analysis revealed that, however, this increasing trend was observed only in females not in males. CONCLUSIONS: The COVID-19 pandemic has different impacts on suicides attempts and deaths during the early pandemic in New Taipei City, Taiwan. The COVID-19 outbreak drastically increased the trend of suicide attempts. In contrast, the number of suicide deaths had remained constant in the investigated periods.


Subject(s)
COVID-19 , Suicide, Attempted , Humans , Male , Female , Taiwan/epidemiology , Pandemics , Cities
18.
Environ Res ; 216(Pt 2): 114609, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36272591

ABSTRACT

Excessive use of nitrofurantoin (NFT) and its residues can be harmful to the ecosystem, and to mitigate this, rapid and cost-effective detection of NFT in water bodies is needed. In this regard, we prepared a three-dimensional (3D) copper-zeolitic imidazole framework (Cu/ZIF-8)-derived bimetallic Cu5Zn8 alloy-embedded hollow porous carbon nanocubes (Cu5Zn8/HPCNC) for electrochemical detection of NFT. The resultant material is characterized using suitable spectrophotometry and voltammetry methods. Cu5Zn8/HPCNC is an effective electrocatalyst with high electrical conductivity and a fast electron transfer rate. It also has more catalytic active sites for improved electrochemical reduction of NFT. Fabricated Cu5Zn8/HPCNC-modified screen-printed electrode (SPE) for NFT reduction have a wide linear range with a low detection limit, and high sensitivity (15.343 µA µÐœ-1 cm-2), appreciable anti-interference ability with related nitro compounds, storage stability, reproducibility, and repeatability. Also, the practicability of Cu5Zn8/HPCNC/SPE can be successfully employed in NFT monitoring in water bodies (drinking water, pond water, river water, and tap water) with satisfactory recoveries.


Subject(s)
Carbon , Environmental Pollutants , Carbon/chemistry , Electrochemical Techniques , Porosity , Alloys , Reproducibility of Results , Ecosystem , Water , Zinc
19.
Ultrason Sonochem ; 92: 106251, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36462467

ABSTRACT

Herbicides are used constantly in agriculture to enhance productivity across the globe. This herbicide monitoring requires utmost importance since its high dose leads to ecological imbalance and a negative impact on the environment. Moreover, a quantification of toxic herbicide is one of the important problems in the food analysis. In this work, deals with the development of a simple, and facile one-pot sonochemical synthesis of strontium doped La2S3 (Sr@La2S3). Morphological and structural characterization confirms the doping of Sr@La2S3 to generate a hierarchical layered structure. The electrochemical performance of modified with rotating disk electrode (RDE) using Sr@La2S3 composite is high, compared to La2S3 and bare electrodes towards the quantitative detection of mesotrione (MTO) in phosphate buffer. Sr@La2S3/RDE showed good sensitivity for MTO detection and it exhibit a range of 0.01-307.01 µM and limit of detection of 2.4 nM. Besides, the selectivity of fabricated electrode is high as it can electrochemically reduce MTO particularly, even in the presence of other chemicals, biological molecules and inorganic ions. The repeatability of MTO detection is high even after 30 days with a lower RSD values. Hence, simple fabrication of Sr@La2S3/RDE could be a novel electrode for the sensitive, selective, and reproducible determination of herbicides in real-time applications.


Subject(s)
Environmental Pollutants , Herbicides , Electrochemical Techniques , Electrodes , Environmental Pollutants/analysis , Herbicides/analysis , Lanthanum/chemistry , Food Contamination , Water Pollutants/analysis
20.
Polymers (Basel) ; 14(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36559771

ABSTRACT

Porous nanohybrid membranes of polysulfone (PSF) with graphene oxide (GO) nanosheets (PSF/GO membrane) were developed to serve as proton exchange membranes in a vanadium redox flow battery (VRFB). Various ratios of PSF/GO and thickness were investigated to evaluate the optimal voltage efficiency (VE), coulombic efficiency (CE), and energy efficiency (EE) of the VRFB. The pore size, distribution, and hydrophilicity of PSF/GO membranes were studied using scanning electron microscopy (SEM) images and contact angles. Functional groups of GO were evaluated using Raman spectroscopy. The mechanical properties and thermal stability of PSF/GO membranes were analyzed using a tensile tester and thermogravimetric analysis (TGA), respectively. The results show that the mechanical properties of the PSF porous membrane with GO nanosheets were significantly improved, indicating that the addition of graphene oxide nanosheets consolidated the internal structure of the PSF membrane. Cyclic voltammetry revealed an obviously different curve after the addition of GO nanosheets. The CE of the VRFB in the PSF/GO membrane was significantly higher than that in the pristine PSF membrane, increasing from 80% to 95% at 0.6 wt.% GO addition. Moreover, PSF/GO membranes displayed great chemical stability during long-term operation; thus, they can evolve as potential porous membranes for application in VRFBs for green energy storage.

SELECTION OF CITATIONS
SEARCH DETAIL