Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.183
Filter
1.
Med Clin (Barc) ; 2024 Jul 01.
Article in English, Spanish | MEDLINE | ID: mdl-38955605

ABSTRACT

Parkinsonism in liver diseases or dysfunction, mainly including neurological manifestations in hereditary liver diseases and neurological complications of advanced liver diseases, occur in isolation or in combination with other movement disorders, and progress along disease course. Prominent akinetic-rigidity syndrome, various onset and progression, poor levodopa response and metabolism abnormalities reflected by serum biomarkers and neuroimaging, make this atypical parkinsonism recognizable and notable in clinical practice. Different susceptibility of brain areas, especially in basal ganglia, to manganese, iron, copper, ammonia overload, together with subsequent oxidative stress, neurotransmitter alterations, disturbed glia-neuron homeostasis and eventually neurotoxicity, contribute to parkinsonism under the circumstances of insufficient liver clearance ability. These mechanisms are interrelated and may interact collectively, adding to the complexity of clinical manifestations and treatment responses. This review summarizes shared clinical features of parkinsonism in liver diseases or dysfunction, depicts their underlying mechanisms and suggests practical flowchart for differential diagnosis.

2.
Phys Med Biol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959907

ABSTRACT

OBJECTIVE: This study aims to develop a fully Automatic Planning framework for Functional Lung Avoidance Radiotherapy (AP-FLART). Approach: The AP-FLART integrates a dosimetric score-based beam angle selection method and a meta-optimization-based plan optimization method, both of which incorporate lung function information to guide dose redirection from high-functional lung (HFL) to low-functional lung (LFL). It is applicable to both contour-based FLART (cFLART) and voxel-based FLART (vFLART) optimization options. A cohort of 18 lung cancer patient cases underwent planning-CT and SPECT perfusion scans were collected. AP-FLART was applied to generate conventional RT (ConvRT), cFLART, and vFLART plans for all cases. We compared automatic against manual ConvRT plans as well as automatic ConvRT against FLART plans, to evaluate the effectiveness of AP-FLART. Ablation studies were performed to evaluate the contribution of function-guided beam angle selection and plan optimization to dose redirection. Main results: Automatic ConvRT plans generated by AP-FALRT exhibited similar quality compared to manual counterparts. Furthermore, compared to automatic ConvRT plans, HFL mean dose, V20, and V5 were significantly reduced by 1.13 Gy (p<.001), 2.01% (p<.001), and 6.66% (p<.001) respectively for cFLART plans. Besides, vFLART plans showed a decrease in lung functionally weighted mean dose by 0.64 Gy (p<.01), fV20 by 0.90% (p=0.099), and fV5 by 5.07% (p<.01) respectively. Though inferior conformity was observed, all dose constraints were well satisfied. The ablation study results indicated that both function-guided beam angle selection and plan optimization significantly contributed to dose redirection. Significance: AP-FLART can effectively redirect doses from HFL to LFL without severely degrading conventional dose metrics, producing high-quality FLART plans. It has the potential to advance the research and clinical application of FLART by providing labor-free, consistent, and high-quality plans. Keywords: Functional lung avoidance radiotherapy; Automatic planning; Beam angle selection; Plan optimization.

3.
Sci Rep ; 14(1): 15017, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951557

ABSTRACT

In recent years, clear aligner can enhance individual appearance with dental defects, so it used more and more widely. However, in manufacturing process, there are still some problems, such as low degree of automation and high equipment cost. The problem of coordinate system mismatch between gingival curve point cloud and dental CAD model is faced to. The PCA-ICP registration algorithm is proposed, which includes coarse match algorithm and improve-ICP registration algorithm. The principal component analysis (PCA) based method can roughly find the posture relationship between the two point clouds. Using z-level dynamic hierarchical, the ICP registration can accurately find the posture between these two clouds. The final registration maximum distance error is 0.03 mm, which is smaller than robot machining error. Secondly, the clear aligner machining process is conducted to verify the registration effectiveness. Before machining, the path is generated based on the well registered gingival curve. After full registration, the tool path is calculated by establishing a local coordinate system between the workpiece and the tool to avoid interference. This path is calculated and generated as an executable program for ABB industrial robots. Finally, the robot was used for flexible cutting of clear aligners and was able to extract products, ensuring the effectiveness of the proposed research. This method can effectively solve the limitations of traditional milling path planning under such complex conditions.

4.
Article in English | MEDLINE | ID: mdl-38964419

ABSTRACT

PURPOSE: To investigate the potential of virtual contrast-enhanced MRI (VCE-MRI) for gross-tumor-volume (GTV) delineation of nasopharyngeal carcinoma (NPC) using multi-institutional data. METHODS AND MATERIALS: This study retrospectively retrieved T1-weighted (T1w), T2-weighted (T2w) MRI, gadolinium-based contrast-enhanced MRI (CE-MRI) and planning CT of 348 biopsy-proven NPC patients from three oncology centers. A multimodality-guided synergistic neural network (MMgSN-Net) was trained using 288 patients to leverage complementary features in T1w and T2w MRI for VCE-MRI synthesis, which was independently evaluated using 60 patients. Three board-certified radiation oncologists and two medical physicists participated in clinical evaluations in three aspects: image quality assessment of the synthetic VCE-MRI, VCE-MRI in assisting target volume delineation, and effectiveness of VCE-MRI-based contours in treatment planning. The image quality assessment includes distinguishability between VCE-MRI and CE-MRI, clarity of tumor-to-normal tissue interface and veracity of contrast enhancement in tumor invasion risk areas. Primary tumor delineation and treatment planning were manually performed by radiation oncologists and medical physicists, respectively. RESULTS: The mean accuracy to distinguish VCE-MRI from CE-MRI was 31.67%; no significant difference was observed in the clarity of tumor-to-normal tissue interface between VCE-MRI and CE-MRI; for the veracity of contrast enhancement in tumor invasion risk areas, an accuracy of 85.8% was obtained. The image quality assessment results suggest that the image quality of VCE-MRI is highly similar to real CE-MRI. The mean dosimetric difference of planning target volumes were less than 1Gy. CONCLUSIONS: The VCE-MRI is highly promising to replace the use of gadolinium-based CE-MRI in tumor delineation of NPC patients.

5.
Article in English | MEDLINE | ID: mdl-38970598

ABSTRACT

BACKGROUND: Left bundle branch area pacing includes left bundle branch pacing (LBBP) and left ventricular septal pacing (LVSP), which is effective in patients with dyssynchronous heart failure (DHF). However, the basic mechanisms are unknown. OBJECTIVES: This study aimed to compare LBBP with LVSP and explore potential mechanisms underlying the better clinical outcomes of LBBP. METHODS: A total of 24 beagles were assigned to the following groups: 1) control group; 2) DHF group, left bundle branch ablation followed by 6 weeks of AOO pacing at 200 ppm; 3) LBBP group, DHF for 3 weeks followed by 3 weeks of DOO pacing at 200 ppm; and 4) LVSP with the same interventions in the LBBP group. Metrics of electrocardiogram, echocardiography, hemodynamics, and expression of left ventricular proteins were evaluated. RESULTS: Compared with LVSP, LBBP had better peak strain dispersion (44.67 ± 1.75 ms vs 55.50 ± 4.85 ms; P < 0.001) and hemodynamic effect (dP/dtmax improvement: 27.16% ± 7.79% vs 11.37% ± 4.73%; P < 0.001), whereas no significant differences in cardiac function were shown. The altered expressions of proteins in the lateral wall vs septum in the DHF group were partially reversed by LBBP and LVSP, which was associated with the contraction and adhesion process, separately. CONCLUSIONS: The animal study demonstrated that LBBP offered better mechanical synchrony and improved hemodynamics than LVSP, which might be explained by the reversed expression of contraction proteins. These results supported the potential superiority of left bundle branch area pacing with the capture of the conduction system in DHF model.

6.
Nat Commun ; 15(1): 5598, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961110

ABSTRACT

In situ exploration of the dynamic structure evolution of catalysts plays a key role in revealing reaction mechanisms and designing efficient catalysts. In this work, PtCu/MgO catalysts, synthesized via the co-impregnation method, outperforms monometallic Pt/MgO and Cu/MgO. Utilizing quasi/in-situ characterization techniques, it is discovered that there is an obvious structural evolution over PtCu/MgO from PtxCuyOz oxide cluster to PtCu alloy with surface CuOx species under different redox and CO oxidation reaction conditions. The synergistic effect between PtCu alloy and CuOx species enables good CO oxidation activity through the regulation of CO adsorption and O2 dissociation. At low temperatures, CO oxidation is predominantly catalyzed by surface CuOx species via the Mars-van Krevelen mechanism, in which CuOx can provide abundant active oxygen species. As the reaction temperature increases, both surface CuOx species and PtCu alloy collaborate to activate gaseous oxygen, facilitating CO oxidation mainly through the Langmuir-Hinshelwood mechanism.

7.
Biol Direct ; 19(1): 51, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956687

ABSTRACT

BACKGROUND: Esophageal carcinoma (EC) and gastric cardiac adenocarcinoma (GCA) have high incidence rates in the Chaoshan region of South China. Multifocal esophageal and cardiac cancer (MECC) is commonly observed in this region in clinical practice. However, the genomic characteristics of MECC remains unclear. MATERIALS AND METHODS: In this study, a total of 2123 clinical samples of EC and GCA were analyzed to determine the frequency of multifocal tumors, as well as their occurrence sites and pathological types. Cox proportional hazards regression was used to model the relationship between age, sex, and tumor state concerning survival in our analysis of the cohort of 541 patients with available follow-up data. We performed whole-genome sequencing on 20 tumor foci and 10 normal samples from 10 MECC patients to infer clonal structure on 6 MECC patients to explore genome characteristics. RESULT: The MECC rate of EC and GCA was 5.65% (121 of 2123). Age and sex were potential factors that may influence the risk of MECC (p < 0.001). Furthermore, MECC patients showed worse survival compared with single tumor patients. We found that 12 foci from 6 patients were multicentric origin model (MC), which exhibited significant heterogeneity of variations in paired foci and had an increased number of germline mutations in immune genes compared to metastatic model. In MC cases, different lesions in the same patient were driven by distinct mutation and copy number variation (CNV) events. Although TP53 and other driver mutation genes have a high frequency in the samples, their mutation sites show significant heterogeneity in paired tumor specimens. On the other hand, CNV genes exhibited higher concordance in paired samples, especially in the amplification of oncogenes and the deletion of tumor suppressor genes. CONCLUSIONS: The extent of inter-tumor heterogeneity suggests both monoclonal and polyclonal origins of MECC, which could provide insight into the genome diversity of MECC and guide clinical implementation.


Subject(s)
Esophageal Neoplasms , Stomach Neoplasms , Humans , Esophageal Neoplasms/genetics , Male , Female , Stomach Neoplasms/genetics , Middle Aged , Aged , Genomics , Whole Genome Sequencing , China/epidemiology , Adenocarcinoma/genetics , Adult
8.
iScience ; 27(6): 110053, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947525

ABSTRACT

Microorganisms are critical to the stability of aquatic environments, and understanding the ecological mechanisms of microbial community is essential. However, the distinctions and linkages across biogeographic patterns, ecological processes, and formation mechanisms of microbes in rivers and lakes remain unknown. Accordingly, microbiome-centric analysis was conducted in rivers and lakes in the Yangtze River watershed. Results revealed significant differences in the structure and diversity of microbial communities between rivers and lakes, with rivers showing higher diversity. Lakes exhibited lower community stability, despite higher species interactions. Although deterministic processes dominated microbial community assembly both in rivers and lakes, higher stochastic processes of rare and abundant taxa exhibited in rivers. Spatial factors influenced river microbial community, while environmental factors drove differences in the lake bacterial community. This study deepened the understanding of microbial biogeography and formation mechanisms in large watershed rivers and lakes, highlighting distinct community aggregation patterns between river and lake microorganisms.

9.
World J Stem Cells ; 16(6): 670-689, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38948098

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation, causing structural damage and lung failure. Stem cell therapy and mesenchymal stem cells-extracellular vesicles (MSC-EVs) offer new hope for PF treatment. AIM: To investigate the therapeutic potential of MSC-EVs in alleviating fibrosis, oxidative stress, and immune inflammation in A549 cells and bleomycin (BLM)-induced mouse model. METHODS: The effect of MSC-EVs on A549 cells was assessed by fibrosis markers [collagen I and α-smooth muscle actin (α-SMA), oxidative stress regulators [nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and inflammatory regulators [nuclear factor-kappaB (NF-κB) p65, interleukin (IL)-1ß, and IL-2]. Similarly, they were assessed in the lungs of mice where PF was induced by BLM after MSC-EV transfection. MSC-EVs ion PF mice were detected by pathological staining and western blot. Single-cell RNA sequencing was performed to investigate the effects of the MSC-EVs on gene expression profiles of macrophages after modeling in mice. RESULTS: Transforming growth factor (TGF)-ß1 enhanced fibrosis in A549 cells, significantly increasing collagen I and α-SMA levels. Notably, treatment with MSC-EVs demonstrated a remarkable alleviation of these effects. Similarly, the expression of oxidative stress regulators, such as Nrf2 and HO-1, along with inflammatory regulators, including NF-κB p65 and IL-1ß, were mitigated by MSC-EV treatment. Furthermore, in a parallel manner, MSC-EVs exhibited a downregulatory impact on collagen deposition, oxidative stress injuries, and inflammatory-related cytokines in the lungs of mice with PF. Additionally, the mRNA sequencing results suggested that BLM may induce PF in mice by upregulating pulmonary collagen fiber deposition and triggering an immune inflammatory response. The findings collectively highlight the potential therapeutic efficacy of MSC-EVs in ameliorating fibrotic processes, oxidative stress, and inflammatory responses associated with PF. CONCLUSION: MSC-EVs could ameliorate fibrosis in vitro and in vivo by downregulating collagen deposition, oxidative stress, and immune-inflammatory responses.

10.
Inorg Chem ; 63(26): 12100-12108, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38896443

ABSTRACT

Different from the previous neutral reaction solvent system, this work explores the synthesis of Al-oxo rings in ionic environments. Deep eutectic solvents (DESs) formed by quaternary ammonium salts hydrogen bond acceptor (HBA) and phenols hydrogen bond donor (HBD) further reduce the melting point of the reaction system and provide an ionic environment. Further, the quaternary ammonium salt was chosen as the HBA because it contains a halogen anion that matches the size of the central cavity of the molecular ring. Based on this thought, five Al8 ion pair cocrystals were synthesized via "DES thermal". The general formula is Q+ ⊂ {Cl@[Al8(BD)8(µ2-OH)4L12]} (AlOC-180-AlOC-185, Q+ = tetrabutylammonium, tetrapropylammonium, 1-butyl-3-methylimidazole; HBD = phenol, p-chlorophenol, p-fluorophenol; HL = benzoic acid, 1-naphthoic acid, 1-pyrenecarboxylic acid, anthracene-9-carboxylic acid). Structural studies reveal that the phenol-coordinated Al molecular ring and the quaternary ammonium ion pair form the cocrystal compounds. The halogen anions in the DES component are confined in the center of the molecular ring, and the quaternary ammonium cations are located in the organic shell. Such an adaptive cocrystal binding pattern is particularly evident in the structures coordinated with low-symmetry ligands such as naphthoic acid and pyrene acid. Finally, the optical behavior of these cocrystal compounds is understood from the analysis of crystal structure and theoretical calculation.

11.
Fitoterapia ; 177: 106079, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897252

ABSTRACT

This study aims to elucidate the potential targets and molecular mechanisms underlying the anticancer effects of Red fermented rice extract using molecular simulation techniques. The inhibitory effects of different elution fractions of Red fermented rice extract on A549 and MCF-7 cell proliferation were evaluated through CCK-8 assays. Liquid chromatography-mass spectrometry (LC-MS) was employed to elucidate the structural information of active components, while molecular simulation techniques aided in identifying target proteins based on small molecule structures. Protein immunoblotting was utilized to investigate the mechanisms of action of relevant targets. The study found that the petroleum ether-ethyl acetate and ethyl acetate elution fractions of Red fermented rice extract significantly inhibited A549 and MCF-7 cell proliferation, with stronger effects observed on A549 cells. LC-MS structural analysis identified 25 small molecule structures. Molecular simulations successfully revealed interaction between active elution fractions of Red fermented rice extract and the cancer-related protein FGFR1. Further investigation into the phosphorylation of FGFR1 and its downstream pathway targets PI3K/AKT demonstrated that the active elution fractions exerted their anticancer activity by inhibiting the phosphorylation of FGFR1, PI3K, and AKT proteins. This comprehensive study, integrating CCK-8 assays, LC-MS, molecular simulation techniques, and protein immunoblotting, provides a deep understanding of the anticancer mechanisms of Red fermented rice extract, guiding its further development and clinical application.

12.
J Alzheimers Dis ; 100(1): 321-332, 2024.
Article in English | MEDLINE | ID: mdl-38848190

ABSTRACT

Background: Evidence suggests that type 2 diabetes (T2D) is an independent risk factor for Alzheimer's disease (AD), sharing similar pathophysiological traits like impaired insulin signaling. Objective: To test the association between plasma insulin and cerebrospinal fluid (CSF) AD pathology. Methods: A total of 304 participants were included in the Alzheimer's Disease Neuroimaging Initiative, assessing plasma insulin and CSF AD pathology. We explored the cross-sectional and longitudinal associations between plasma insulin and AD pathology and compared their associations across different AD clinical and pathological stages. Results: In the non-demented group, amyloid-ß (Aß)+ participants (e.g., as reflected by CSF Aß42) exhibited significantly lower plasma insulin levels compared to non-demented Aß-participants (p < 0.001). This reduction in plasma insulin was more evident in the A+T+ group (as shown by CSF Aß42 and pTau181 levels) when compared to the A-T- group within the non-dementia group (p = 0.002). Additionally, higher plasma insulin levels were consistently associated with more normal CSF Aß42 levels (p < 0.001) across all participants. This association was particularly significant in the Aß-group (p = 0.002) and among non-demented individuals (p < 0.001). Notably, baseline plasma insulin was significantly correlated with longitudinal changes in CSF Aß42 (p = 0.006), whereas baseline CSF Aß42 did not show a similar correlation with changes in plasma insulin over time. Conclusions: These findings suggest an association between plasma insulin and early Aß pathology in the early stages of AD, indicating that plasma insulin may be a potential predictor of changes in early Aß pathology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Insulin , Peptide Fragments , tau Proteins , Humans , Alzheimer Disease/blood , Alzheimer Disease/pathology , Male , Female , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Insulin/blood , Aged , Cross-Sectional Studies , Peptide Fragments/blood , Peptide Fragments/cerebrospinal fluid , tau Proteins/blood , tau Proteins/cerebrospinal fluid , Longitudinal Studies , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Aged, 80 and over , Middle Aged
13.
Sci Rep ; 14(1): 14551, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914606

ABSTRACT

This study compares postoperative visual outcomes and optical aberrations after Small Incision Lenticule Extraction (SMILE) in patients with both small (S-Kappa: Kappa angle < 0.2 mm) and large Kappa (L-Kappa: Kappa angle ≥ 0.2 mm) angles. The evaluated aberrations include total higher-order aberrations (HOAs), horizontal coma (HC), vertical coma (VC), and spherical aberrations (SA), with procedures incorporating intraoperative Kappa angle adjustments. We retrospectively analyzed patient records undergoing SMILE utilizing linear mixed models (LMM). We assessed adjusted mean uncorrected distance visual acuity (UDVA), Strehl ratio (SR), total HOAs, VC, and SA at pupils of 3 mm and 6 mm for both S-Kappa and L-Kappa. The disparities between S-Kappa and L-Kappa were evaluated by LMM's adjusted mean differences. The differences in optical metrics were also assessed in eyes grouped by myopia levels: low, moderate, and high. A sensitivity analysis was conducted on a threshold of Kappa angle at 0.3 mm. Eight-five patients (169 eyes) were analyzed, and no significant pre-operative difference was found in UDVA (p = .222) or spherical equivalent (p = .433). Post-operative differences were found in SR at 3 mm pupil size (-0.06, p = .022), total HOA 3 mm (0.15, p = .022), HC 3 mm (0.04, p = .042), VC 3 mm and 6 mm (-0.08, p = .041; 0.04, p = .041). The stratified analysis for high myopia revealed significant differences in UDVA (-0.04, p = .037), HC 3 mm (0.07, p = .03), VC 6 mm (-0.21, p = .001), and SA 3 mm and 6 mm (0.07, p = .037; -0.09, p = .037). Sensitivity analysis showed no significant difference using a 0.3 mm Kappa threshold. While some optical aberrations exhibited statistical differences between S-Kappa and L-Kappa, their clinical significance is limited. Thus, a large Kappa angle might not substantially influence post-operative optical aberrations when intraoperative Kappa angle adjustments are implemented.


Subject(s)
Myopia , Visual Acuity , Humans , Female , Male , Adult , Retrospective Studies , Myopia/surgery , Young Adult , Corneal Surgery, Laser/methods , Corneal Surgery, Laser/adverse effects , Corneal Wavefront Aberration/physiopathology , Treatment Outcome , Refraction, Ocular
14.
Plant Sci ; 346: 112151, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848768

ABSTRACT

Endosperm, the major storage organ in cereal grains, determines the grain yield and quality. Mitochondria provide the energy for dry matter accumulation, in the endosperm development. Although mitochondrial single-stranded DNA-binding proteins (mtSSBs) play a canonical role in the maintenance of single-stranded mitochondrial DNA, their molecular functions in RNA processing and endosperm development remain obscure. Here, we report a defective rice endosperm mutant, floury endosperm26 (flo26), which develops abnormal starch grains in the endosperm. Map-based cloning and complementation experiments showed that FLO26 allele encodes a mitochondrial single-stranded DNA-binding protein, named as mtSSB1.1. Loss of function of mtSSB1.1 affects the transcriptional level of many mitochondrially-encoded genes and RNA splicing of nad1, a core component of respiratory chain complex I in mitochondria. As a result, dysfunctional mature nad1 led to dramatically decreased complex I activity, thereby reducing ATP production. Our results reveal that mtSSB1.1 plays an important role in the maintenance of mitochondrial function and endosperm development by stabilizing the splicing of mitochondrial RNA in rice.

15.
Proc Natl Acad Sci U S A ; 121(25): e2322403121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865273

ABSTRACT

Fluorine magnetic resonance imaging (19F-MRI) is particularly promising for biomedical applications owing to the absence of fluorine in most biological systems. However, its use has been limited by the lack of safe and water-soluble imaging agents with high fluorine contents and suitable relaxation properties. We report innovative 19F-MRI agents based on supramolecular dendrimers self-assembled by an amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic dendron. Specifically, this amphiphilic dendrimer bears multiple negatively charged terminals with high fluorine content, which effectively prevented intra- and intermolecular aggregation of fluorinated entities via electrostatic repulsion. This permitted high fluorine nuclei mobility alongside good water solubility with favorable relaxation properties for use in 19F-MRI. Importantly, the self-assembling 19F-MRI agent was able to encapsulate the near-infrared fluorescence (NIRF) agent DiR and the anticancer drug paclitaxel for multimodal 19F-MRI and NIRF imaging of and theranostics for pancreatic cancer, a deadly disease for which there remains no adequate early detection method or efficacious treatment. The 19F-MRI and multimodal 19F-MRI and NIRF imaging studies on human pancreatic cancer xenografts in mice confirmed the capability of both imaging modalities to specifically image the tumors and demonstrated the efficacy of the theranostic agent in cancer treatment, largely outperforming the clinical anticancer drug paclitaxel. Consequently, these dendrimer nanosystems constitute promising 19F-MRI agents for effective cancer management. This study offers a broad avenue to the construction of 19F-MRI agents and theranostics, exploiting self-assembling supramolecular dendrimer chemistry.


Subject(s)
Dendrimers , Fluorine , Theranostic Nanomedicine , Dendrimers/chemistry , Animals , Theranostic Nanomedicine/methods , Humans , Mice , Fluorine/chemistry , Paclitaxel/chemistry , Paclitaxel/therapeutic use , Magnetic Resonance Imaging/methods , Cell Line, Tumor , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/therapy , Fluorine-19 Magnetic Resonance Imaging/methods , Mice, Nude , Contrast Media/chemistry
16.
Int J Nanomedicine ; 19: 6253-6277, 2024.
Article in English | MEDLINE | ID: mdl-38911497

ABSTRACT

The tumor microenvironment (TME) is a complex and dynamic entity, comprising stromal cells, immune cells, blood vessels and extracellular matrix, which is intimately associated with the occurrence and development of cancers, as well as their therapy. Utilizing the shared characteristics of tumors, such as an acidic environment, enzymes and hypoxia, researchers have developed a promising cancer therapy strategy known as responsive release of nano-loaded drugs, specifically targeted at tumor tissues or cells. In this comprehensive review, we provide an in-depth overview of the current fundamentals and state-of-the-art intelligent strategies of TME-responsive nanoplatforms, which include acidic pH, high GSH levels, high-level adenosine triphosphate, overexpressed enzymes, hypoxia and reductive environment. Additionally, we showcase the latest advancements in TME-responsive nanoparticles. In conclusion, we thoroughly examine the immediate challenges and prospects of TME-responsive nanopharmaceuticals, with the expectation that the progress of these targeted nanoformulations will enable the exploitation, overcoming or modulation of the TME, ultimately leading to significantly more effective cancer therapy.


Subject(s)
Drug Delivery Systems , Nanoparticles , Neoplasms , Tumor Microenvironment , Tumor Microenvironment/drug effects , Humans , Neoplasms/drug therapy , Nanoparticles/chemistry , Drug Delivery Systems/methods , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Animals , Hydrogen-Ion Concentration
17.
Psychol Bull ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913732

ABSTRACT

Although health-promotion interventions that recommend changes across multiple behavioral domains are a newer alternative to single-behavior interventions, their general efficacy and their mechanisms of change have not been fully ascertained. This comprehensive meta-analysis (6,878 effect sizes from 803 independent samples from 364 research reports, N = 186,729 participants) examined the association between the number of behavioral recommendations in multiple-behavior interventions and behavioral and clinical change across eight domains (i.e., diet, smoking, exercise, HIV [Human Immunodeficiency Virus] prevention, HIV testing, HIV treatment, alcohol use, and substance use). Results showed a positive, linear effect of the number of behavioral recommendations associated with behavioral and clinical change across all domains, although approximately 87% of the samples included between 0 and 4 behavioral recommendations. This linear relation was mediated by improvements in the psychological well-being of intervention recipients and, in several domains (i.e., HIV, alcohol use, and drug use), suggested behavioral cuing. However, changes in information, motivation, and behavioral skills did not mediate the impact of the number of recommendations on behavioral and clinical change. The implications of these findings for theory and future intervention design are discussed. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

18.
Chem Commun (Camb) ; 60(55): 7069-7072, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38899972

ABSTRACT

Ru-doped Co9S8 hollow porous polyhedrons (Ru-Co9S8 HPPs) derived from zeolitic-imidazolate-frameworks were synthesized through hydrothermal coprecipitation and thermal decomposition methods. The results indicate that Ru-Co9S8-500 HPPs possess a strong Ru-Co synergistic effect, large electrochemical surface area, and sufficient active sites, endowing them with excellent hydrogen evolution reaction performance.

20.
RSC Adv ; 14(25): 17929-17944, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38836170

ABSTRACT

Cancer has become the leading cause of death worldwide. In recent years, molecular diagnosis has demonstrated great potential in the prediction and diagnosis of cancer. MicroRNAs (miRNAs) are short oligonucleotides that regulate gene expression and cell function and are considered ideal biomarkers for cancer detection, diagnosis, and patient prognosis. Therefore, the specific and sensitive detection of ultra-low quantities of miRNA is of great significance. MiRNA biosensors based on electrochemical technology have advantages of high sensitivity, low cost and fast response. Nanomaterials show great potential in miRNA electrochemical detection and promote the rapid development of electrochemical miRNA biosensors. Some methods and signal amplification strategies for miRNA detection in recent years are reviewed herein, followed by a discussion of the latest progress in electrochemical miRNA detection based on different types of nanomaterial. Future perspectives and challenges are also proposed for further exploration of nanomaterials to bring breakthroughs in electrochemical miRNA detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...