Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 8759, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384562

ABSTRACT

Protoberberine alkaloids and benzophenanthridine alkaloids (BZDAs) are subgroups of benzylisoquinoline alkaloids (BIAs), which represent a diverse class of plant-specialized natural metabolites with many pharmacological properties. Microbial biosynthesis has been allowed for accessibility and scalable production of high-value BIAs. Here, we engineer Saccharomyces cerevisiae to de novo produce a series of protoberberines and BZDAs, including palmatine, berberine, chelerythrine, sanguinarine and chelirubine. An ER compartmentalization strategy is developed to improve vacuole protein berberine bridge enzyme (BBE) activity, resulting in >200% increase on the production of the key intermediate (S)-scoulerine. Another promiscuous vacuole protein dihydrobenzophenanthridine oxidase (DBOX) has been identified to catalyze two-electron oxidation on various tetrahydroprotoberberines at N7-C8 position and dihydrobenzophenanthridine alkaloids. Furthermore, cytosolically expressed DBOX can alleviate the limitation on BBE. This study highlights the potential of microbial cell factories for the biosynthesis of a diverse group of BIAs through engineering of heterologous plant enzymes.


Subject(s)
Benzophenanthridines , Berberine Alkaloids , Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Benzophenanthridines/metabolism , Benzophenanthridines/biosynthesis , Metabolic Engineering/methods , Berberine Alkaloids/metabolism , Alkaloids/metabolism , Alkaloids/biosynthesis , Berberine/metabolism
2.
BMC Genomics ; 25(1): 925, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363209

ABSTRACT

BACKGROUND: Plant-specific TIFY proteins play crucial roles in regulating plant growth, development, and various stress responses. However, there is no information available about this family in Artemisia argyi, a well-known traditional medicinal plant with great economic value. RESULTS: A total of 34 AaTIFY genes were identified, including 4 TIFY, 22 JAZ, 5 PPD, and 3 ZML genes. Structural, motif scanning, and phylogenetic relationships analysis of these genes revealed that members within the same group or subgroup exhibit similar exon-intron structures and conserved motif compositions. The TIFY genes were unevenly distributed across the 15 chromosomes. Tandem duplication events and segmental duplication events have been identified in the TIFY family in A. argyi. These events have played a crucial role in the gene multiplication and compression of different subfamilies within the TIFY family. Promoter analysis revealed that most AaTIFY genes contain multiple cis-elements associated with stress response, phytohormone signal transduction, and plant growth and development. Expression analysis of roots and leaves using RNA-seq data revealed that certain AaTIFY genes showed tissue-specific expression patterns, and some AaTIFY genes, such as AaTIFY19/29, were found to be involved in regulating salt and saline-alkali stresses. In addition, RT-qPCR analysis showed that TIFY genes, especially AaTIFY19/23/27/29, respond to a variety of hormonal treatments, such as MeJA, ABA, SA, and IAA. This suggested that TIFY genes in A. argyi regulate plant growth and respond to different stresses by following different hormone signaling pathways. CONCLUSION: Taken together, our study conducted a comprehensive identification and analysis of the TIFY gene family in A. argyi. These findings suggested that TIFY might play an important role in plant development and stress responses, which laid a valuable foundation for further understanding the function of TIFY genes in multiple stress responses and phytohormone crosstalk in A. argyi.


Subject(s)
Artemisia , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Artemisia/genetics , Artemisia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Stress, Physiological/genetics , Genome, Plant , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Promoter Regions, Genetic , Chromosomes, Plant/genetics
3.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-39388604

ABSTRACT

BACKGROUND: Rabdosiae rubescentis herba (Isodon rubescens) is widely used as a folk medicine to treat esophageal cancer and sore throat in China. Its germplasm resources are abundant in China, with I. rubescens (Hemsl.) Hara and I. rubescens f. lushanensis as 2 typical forms. I. rubescens (Hemsl.) Hara is featured by biosynthesis of the diterpenoid oridonin with strong anticancer activity, while I. rubescens f. lushanensis produces another diterpenoid with anticancer activity, lushanrubescensin. However, the biosynthetic pathways of both still need to be fully understood. In particular, little is known about the genetic background of I. rubescens f. lushanensis. FINDINGS: We used Pacific Biosciences (PacBio) single-molecule real-time and Nanopore Ultra-long sequencing platforms, respectively, and obtained 139.07 Gb of high-quality data, with a sequencing depth of about 328×. We also obtained a high-quality reference genome for I. rubescens f. lushanensis, with a genome size of 349 Mb and a contig N50 of 28.8 Mb. The heterozygosity of the genome is 1.7% and the repeatability is 83.43%. In total, 34,865 protein-coding genes were predicted. Moreover, we found that most of the variant or unique genes in the diterpenoid synthesis pathways of I. rubescens f. lushanensis and I. rubescens (Hemsl.) Hara were enriched in diterpene synthases. CONCLUSIONS: We provide the first genome sequence and gene annotation for the I. rubescens f. lushanensis, which provides molecular evidence for understanding the chemotypic differences of I. rubescens.


Subject(s)
Genome, Plant , Isodon , Isodon/genetics , Isodon/chemistry , Genomics/methods , Molecular Sequence Annotation , High-Throughput Nucleotide Sequencing , Diterpenes
4.
PLoS One ; 19(8): e0308325, 2024.
Article in English | MEDLINE | ID: mdl-39121071

ABSTRACT

In the era of Internet information technology, the IT background of directors plays a significant role in corporate governance. However, existing research lacks sufficient discussion on the financing constraints faced by Internet startups. This paper examines Internet entrepreneurial enterprises listed on the New Third Board as the research sample. Using content analysis coding methods and Python software for text mining, the study empirically analyzes the impact of directors' IT backgrounds and media reports on the financing constraints of these enterprises. The results indicate the following: First, directors with IT backgrounds help reduce the financing constraints of Internet startups. The higher the directors' proficiency in information technology, the more favorable it is for obtaining financing. Second, directors with IT backgrounds have a significant positive impact on the tone of media reports. Third, the tone of media reports reflects the spirit and development of the enterprises, serving as a mediating factor between directors' IT backgrounds and the financing constraints of the enterprises. The findings of this study are valuable for guiding Internet startups to better leverage the IT expertise of their directors. Additionally, they provide useful insights for reducing the financing constraints faced by these startups.


Subject(s)
Data Mining , Information Technology , Internet , China , Data Mining/methods , Humans , Software , Entrepreneurship/economics
5.
ACS Biomater Sci Eng ; 10(9): 5513-5536, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39173130

ABSTRACT

Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.


Subject(s)
Hydrogels , Osteogenesis , Tissue Engineering , Hydrogels/chemistry , Humans , Osteogenesis/drug effects , Tissue Engineering/methods , Bone Regeneration/drug effects , Animals , Cellular Microenvironment , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Proteins/chemistry , Proteins/metabolism , Tissue Scaffolds/chemistry , Bone and Bones/metabolism , Bone and Bones/drug effects
6.
ACS Appl Mater Interfaces ; 16(20): 25757-25772, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738757

ABSTRACT

The development of therapeutics with high antimicrobial activity and immunomodulatory effects is urgently needed for the treatment of infected wounds due to the increasing danger posed by recalcitrant-infected wounds. In this study, we developed light-controlled antibacterial, photothermal, and immunomodulatory biomimetic N/hPDA@M nanoparticles (NPs). This nanoplatform was developed by loading flavonoid naringenin onto hollow mesoporous polydopamine NPs in a π-π-stacked configuration and encasing them with macrophage membranes. First, our N/hPDA@M NPs efficiently neutralized inflammatory factors present within the wound microenvironment by the integration of macrophage membranes. Afterward, the N/hPDA@M NPs effectively dismantled bacterial biofilms through a combination of the photothermal properties of PDA and the quorum sensing inhibitory effects of naringenin. It is worth noting that N/hPDA@M NPs near-infrared-enhanced release of naringenin exhibited specificity toward the NF-κB-signaling pathway, effectively mitigating the inflammatory response. This innovative design not only conferred remarkable antibacterial properties upon the N/hPDA@M NPs but also endowed them with the capacity to modulate inflammatory responses, curbing excessive inflammation and steering macrophage polarization toward the M2 phenotype. As a result, this multifaceted approach significantly contributes to expediting the healing process of infected skin wounds.


Subject(s)
Anti-Bacterial Agents , Biofilms , NF-kappa B , Nanoparticles , Quorum Sensing , Wound Healing , Animals , Humans , Mice , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Flavanones/chemistry , Flavanones/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/pharmacology , Indoles/chemistry , Indoles/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Nanoparticles/chemistry , Nanoparticles/therapeutic use , NF-kappa B/metabolism , Polymers/chemistry , Polymers/pharmacology , Quorum Sensing/drug effects , RAW 264.7 Cells , Signal Transduction/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Wound Healing/drug effects , Wound Infection/drug therapy
7.
Adv Healthc Mater ; 13(22): e2400545, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38706444

ABSTRACT

Early reconstruction of the vascular network is a prerequisite to the effective treatment of substantial bone defects. Traditional 3D printed tissue engineering scaffolds designed to repair large bone defects do not effectively regenerate the vascular network, and rely only on the porous structure within the scaffold for nutrient transfer and metabolic waste removal. This leads to delayed bone restoration and hence functional recovery. Therefore, strategies for generation scaffolds with the capacity to efficiently regenerate vascularization should be developed. This study loads roxarestat (RD), which can stabilize HIF-1α expression in a normoxic environment, onto the mesopore polydopamine nanoparticles (MPDA@RD) to enhance the reconstruction of vascular network in large bone defects. Subsequently, MPDA@RD is mixed with GelMA/HA hydrogel bioink to fabricate a multifunctional hydrogel scaffold (GHM@RD) through 3D printing. In vitro results show that the GHM@RD scaffolds achieve good angiogenic-osteogenic coupling by activating the PI3K/AKT/HSP90 pathway in BMSCs and the PI3K/AKT/HIF-1α pathway in HUVECs under mild thermotherapy. In vivo experiments reveal that RD and mild hyperthermia synergistically induce early vascularization and bone regeneration of critical bone defects. In conclusion, the designed GHM@RD drug delivery scaffold with mild hyperthermia holds great therapeutic value for future treatment of large bone defects.


Subject(s)
Bone Regeneration , Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Osteogenesis , Printing, Three-Dimensional , Tissue Scaffolds , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Animals , Osteogenesis/drug effects , Neovascularization, Physiologic/drug effects , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Indoles/chemistry , Indoles/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Hyperthermia, Induced/methods , Polymers/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Nanoparticles/chemistry , Tissue Engineering/methods , Mice , Rats, Sprague-Dawley , Male , Rats , Angiogenesis , Glycine/analogs & derivatives , Isoquinolines
8.
Plant Mol Biol ; 114(2): 23, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453737

ABSTRACT

Benzylisoquinoline alkaloids (BIAs) represent a significant class of secondary metabolites with crucial roles in plant physiology and substantial potential for clinical applications. CYP82 genes are involved in the formation and modification of various BIA skeletons, contributing to the structural diversity of compounds. In this study, Corydalis yanhusuo, a traditional Chinese medicine rich in BIAs, was investigated to identify the catalytic function of CYP82s during BIA formation. Specifically, 20 CyCYP82-encoding genes were cloned, and their functions were identified in vitro. Ten of these CyCYP82s were observed to catalyze hydroxylation, leading to the formation of protopine and benzophenanthridine scaffolds. Furthermore, the correlation between BIA accumulation and the expression of CyCYP82s in different tissues of C. yanhusuo was assessed their. The identification and characterization of CyCYP82s provide novel genetic elements that can advance the synthetic biology of BIA compounds such as protopine and benzophenanthridine, and offer insights into the biosynthesis of BIAs with diverse structures in C. yanhusuo.


Subject(s)
Alkaloids , Benzylisoquinolines , Corydalis , Benzophenanthridines , Corydalis/genetics , Corydalis/chemistry , Corydalis/metabolism , Alkaloids/metabolism , Plant Extracts/chemistry
9.
Plants (Basel) ; 13(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38475411

ABSTRACT

Artemisia argyi is a traditional herbal medicine plant, and its folium artemisia argyi is widely in demand due to moxibustion applications globally. The Auxin/indole-3-acetic acid (Aux/IAA, or IAA) gene family has critical roles in the primary auxin-response process, with extensive involvement in plant development and stresses, controlling various essential traits of plants. However, the systematic investigation of the Aux/IAA gene family in A. argyi remains limited. In this study, a total of 61 Aux/IAA genes were comprehensively identified and characterized. Gene structural analysis indicated that 46 Aux/IAA proteins contain the four typical domains, and 15 Aux/IAA proteins belong to non-canonical IAA proteins. Collinear prediction and phylogenetic relationship analyses suggested that Aux/IAA proteins were grouped into 13 distinct categories, and most Aux/IAA genes might experience gene loss during the tandem duplication process. Promoter cis-element investigation indicated that Aux/IAA promoters contain a variety of plant hormone response and stress response cis-elements. Protein interaction prediction analysis demonstrated that AaIAA26/29/7/34 proteins are possibly core members of the Aux/IAA family interaction. Expression analysis in roots and leaves via RNA-seq data indicated that the expression of some AaIAAs exhibited tissue-specific expression patterns, and some AaIAAs were involved in the regulation of salt and saline-alkali stresses. In addition, RT-qPCR results indicated that AaIAA genes have differential responses to auxin, with complex response patterns in response to other hormones, indicating that Aux/IAA may play a role in connecting auxin and other hormone signaling pathways. Overall, these findings shed more light on AaIAA genes and offer critical foundational knowledge toward the elucidation of their function during plant growth, stress response, and hormone networking of Aux/IAA family genes in A. argyi.

10.
J Clin Periodontol ; 51(6): 754-765, 2024 06.
Article in English | MEDLINE | ID: mdl-38379293

ABSTRACT

AIM: To discover the populations of mesenchymal stem cells (MSCs) derived from different layers of human maxillary sinus membrane (hMSM) and evaluate their osteogenic capability. MATERIALS AND METHODS: hMSM was isolated into a monolayer using the combined method of physical separation and enzymatic digestion. The localization of MSCs in hMSM was performed by immunohistological staining and other techniques. Lamina propria layer-derived MSCs (LMSCs) and periosteum layer-derived MSCs (PMSCs) from hMSM were expanded using the explant cell culture method and identified by multilineage differentiation assays, colony formation assay, flow cytometry and so on. The biological characteristics of LMSCs and PMSCs were compared using RNA sequencing, reverse transcription and quantitative polymerase chain reaction, immunofluorescence staining, transwell assay, western blotting and so forth. RESULTS: LMSCs and PMSCs from hMSMs were both CD73-, CD90- and CD105-positive, and CD34-, CD45- and HLA-DR-negative. LMSCs and PMSCs were identified as CD171+/CD90+ and CD171-/CD90+, respectively. LMSCs displayed stronger proliferation capability than PMSCs, and PMSCs presented stronger osteogenic differentiation capability than LMSCs. Moreover, PMSCs could recruit and promote osteogenic differentiation of LMSCs. CONCLUSIONS: This study identified and isolated two different types of MSCs from hMSMs. Both MSCs served as good potential candidates for bone regeneration.


Subject(s)
Cell Differentiation , Maxillary Sinus , Mesenchymal Stem Cells , Osteogenesis , Humans , Mesenchymal Stem Cells/cytology , Osteogenesis/physiology , Maxillary Sinus/cytology , Flow Cytometry , Cell Proliferation , Cells, Cultured , Cell Separation/methods , Male , Adult , Female , Periosteum/cytology
11.
Front Med (Lausanne) ; 11: 1335043, 2024.
Article in English | MEDLINE | ID: mdl-38288274

ABSTRACT

Background: Immediate implant placement (IIP), which preserves gingival height and papilla shape while simultaneously accelerating the implant treatment period, has become a popular method due to its commendable clinical outcomes. Nonetheless, deploying immediate implants demands specific preconditions concerning the remaining alveolar bone. This poses a challenge to the accuracy of implant surgery. Case presentation: In this report, we present the case of a 60-year-old woman with a left upper anterior tooth crown dislodged for over a month. Cone beam computed tomography (CBCT) revealed the absence of a labial bone wall on tooth 22, a remaining 1 mm bone wall on the labial side of the root apex, and a 17.2 mm*8.9 mm*4.7 mm shadow in the periapical region of the root apices of teeth 21 and 22, with the narrowest width on the sagittal plane being approximately 5 mm. After the surgeon removed the cyst, they completed the subsequent implantation surgery using an autonomous robot in a challenging aesthetic area. This method circumvented the potential exposure of the screw thread on the labial implant surface, assured initial implant stability. Conclusion: Five months after the operation, the dental crown was restored. The implant remained stable, with yielding notable clinical results. To the best of our knowledge, this clinical case is the first to report the feasibility and precision of immediate implantation in anterior teeth site with periapical cyst removal, performed by an autonomous robotic surgical system. Autonomous robots exhibit exceptional accuracy by accurately controlling axial and angular errors. It can improve the accuracy of implant surgery, which may become a key technology for changing implant surgery. However, further clinical trials are still needed to provide a basis for the rapid development of robotic surgery field.

12.
Int J Biol Macromol ; 260(Pt 1): 129398, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224814

ABSTRACT

Lignocellulose nanofibers (LCNF) obtained from agricultural waste are potential candidates for enhancing composite materials because of their excellent mechanical properties, abundant groups and high biocompatibility. However, the application of LCNF has received limited attention to date from researchers in the healthcare field. Herein, based on the bifunctional group (carboxyl and aldehyde groups) modified LCNF (DCLCNF) and chitosan (CS), we developed a multifunctional bio-based hydrogel (CS-DCLCNF). The addition of lignin-containing DCLCNF strengthened the internal crosslinking and the intermolecular interaction of hydrogels, and the presence of lignin and carboxyl groups increased the mechanical strength of the hydrogel and the adsorption of aromatic drugs. Results revealed that the hydrogels exhibited self-healing, injectable, and high swelling rates. The hydrogels had favorable mechanical strength (G'max of ~16.60 kPa), and the maximum compressive stress was 24 kPa. Moreover, the entire tetracycline hydrochloride (TH) release process was slow and pH-responsive, because of the rich noncovalent and π-π interactions between DCLCNF and TH. The hydrogels also exhibited excellent biocompatibility and antibacterial properties. Notably, the wound healing experiment showed that the hydrogels were beneficial in accelerating wounds healing, which could heal completely in 13 days. Therefore, CS-DCLCNF hydrogels may have promising applications in drug delivery for wound healing.


Subject(s)
Chitosan , Nanofibers , Hydrogels/pharmacology , Lignin/pharmacology , Wound Healing , Anti-Bacterial Agents/pharmacology , Tetracycline , Chitosan/pharmacology , Hydrogen-Ion Concentration
13.
Int J Biol Macromol ; 258(Pt 2): 129123, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38163496

ABSTRACT

Isodon rubescens has garnered much attention due to its anti-tumor or anti-cancer properties. However, little is known about the molecular mechanism of oridonin biosynthesis leveraging the regulatory network between small RNAs and mRNAs. In this study, the regulatory networks of miRNAs and targets were examined by combining mRNA, miRNA, and degradome. A total of 348 miRNAs, including 287 known miRNAs and 61 novel miRNAs, were identified. Among them, 51 miRNAs were significantly expressed, and 36 miRNAs responded to MeJA. A total of 3066 target genes were associated with 228 miRNAs via degradome sequencing. Multi-omics analysis demonstrated that 27 miRNA-mRNA pairs were speculated to be involved in MeJA regulation, and 36 miRNA-mRNA pairs were hypothesized to be involved in the genotype-dependence of I. rubescens. Furthermore, 151 and 7 miRNA-mRNA modules were likely engaged in oridonin biosynthesis as identified by psRNATarget and degradome sequencing, respectively. Some miRNA-mRNA modules were confirmed via RT-qPCR. Moreover, miRNAs targeting plant hormone signal transduction pathway genes were identified, such as miR156, miR167, miR393, and PC-3p-19822_242. Collectively, our results demonstrate for the first time that miRNAs are identified in I. rubescens, and laid a solid foundation for further research on the molecular mechanism of oridonin biosynthesis mediated by miRNA.


Subject(s)
Diterpenes, Kaurane , Isodon , MicroRNAs , MicroRNAs/genetics , Isodon/genetics , Isodon/metabolism , Multiomics , Transcriptome , RNA, Messenger/genetics , Gene Expression Regulation, Plant
14.
ACS Appl Mater Interfaces ; 16(5): 6261-6273, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38270078

ABSTRACT

The on-demand regulation of cell wall microstructures is crucial for developing wood as a functional building material for energy management and conversion. Here, a novel strategy based on reactive deep eutectic solvent is developed to one-step in situ fibrillate wood via disrupting the hydrogen bonding networks in cell walls and simultaneously carboxylating wood components, without significantly altering the native hierarchical structures of wood. Benefiting from its distinctive cell wall structure composed of individualized yet well-organized lignocellulose nanofibrils, in situ fibrillated wood exhibits a prominent mesoporous structure with a specific surface area of 81 m2/g. It represents a robust sponge material (5 MPa at 80% strain) with excellent durability. Due to the enhanced compressibility and charge polarization capacity, the in situ fibrillated wood (10 × 11 × 12 mm3) can generate a piezoelectric output voltage of up to 2 V under 221 kPa stress. The favorable microstructural characteristics render in situ fibrillated wood with highly thermal-insulating properties, high solar reflectivity, and mid-infrared emissivity, favoring outdoor passive cooling effects with a subambient temperature drop of 6 °C. Combining its controllable, durable, and eco-friendly attributes, our developed wood sponge represents a versatile structural material suitable for indoor/outdoor energy-saving applications.

15.
Front Bioeng Biotechnol ; 11: 1271629, 2023.
Article in English | MEDLINE | ID: mdl-37929192

ABSTRACT

Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer with an elastic modulus close to that of the jawbone. PEEK has the potential to become a new dental implant material for special patients due to its radiolucency, chemical stability, color similarity to teeth, and low allergy rate. However, the aromatic main chain and lack of surface charge and chemical functional groups make PEEK hydrophobic and biologically inert, which hinders subsequent protein adsorption and osteoblast adhesion and differentiation. This will be detrimental to the deposition and mineralization of apatite on the surface of PEEK and limit its clinical application. Researchers have explored different modification methods to effectively improve the biomechanical, antibacterial, immunomodulatory, angiogenic, antioxidative, osteogenic and anti-osteoclastogenic, and soft tissue adhesion properties. This review comprehensively summarizes the latest research progress in material property advantages, three-dimensional printing synthesis, and functional modification of PEEK in the fields of implant dentistry and provides solutions for existing difficulties. We confirm the broad prospects of PEEK as a dental implant material to promote the clinical conversion of PEEK-based dental implants.

16.
Int J Nanomedicine ; 18: 6563-6584, 2023.
Article in English | MEDLINE | ID: mdl-38026531

ABSTRACT

Antibiotics are the most commonly used means to treat bacterial infection at present, but the unreasonable use of antibiotics induces the generation of drug-resistant bacteria, which causes great problems for their clinical application. In recent years, researchers have found that nanomaterials with high specific surface area, special structure, photocatalytic activity and other properties show great potential in bacterial infection control. Among them, black phosphorus (BP), a two-dimensional (2D) nanomaterial, has been widely reported in the treatment of tumor and bone defect due to its excellent biocompatibility and degradability. However, the current theory about the antibacterial properties of BP is still insufficient, and the relevant mechanism of action needs to be further studied. In this paper, we introduced the structure and properties of BP, elaborated the mechanism of BP in bacterial infection, and systematically reviewed the application of BP composite materials in the field of antibacterial. At the same time, we also discussed the challenges faced by the current research and application of BP, which laid a solid theoretical foundation for the further study of BP in the future.


Subject(s)
Bacterial Infections , Nanostructures , Humans , Phosphorus/chemistry , Nanostructures/chemistry , Bacterial Infections/drug therapy , Bacteria , Anti-Bacterial Agents/chemistry
17.
Front Plant Sci ; 14: 1016890, 2023.
Article in English | MEDLINE | ID: mdl-37554555

ABSTRACT

Winter wheat is one of the major food crops in China, and timely and effective early-season identification of winter wheat is crucial for crop yield estimation and food security. However, traditional winter wheat mapping is based on post-season identification, which has a lag and relies heavily on sample data. Early-season identification of winter wheat faces the main difficulties of weak remote sensing response of the vegetation signal at the early growth stage, difficulty of acquiring sample data on winter wheat in the current season in real time, interference of crops in the same period, and limited image resolution. In this study, an early-season refined mapping method with winter wheat phenology information as priori knowledge is developed based on the Google Earth Engine cloud platform by using Sentinel-2 time series data as the main data source; these data are automated and highly interpretable. The normalized differential phenology index (NDPI) is adopted to enhance the weak vegetation signal at the early growth stage of winter wheat, and two winter wheat phenology feature enhancement indices based on NDPI, namely, wheat phenology differential index (WPDI) and normalized differential wheat phenology index (NDWPI) are developed. To address the issue of " different objects with the same spectra characteristics" between winter wheat and garlic, a plastic mulched index (PMI) is established through quantitative spectral analysis based on the differences in early planting patterns between winter wheat and garlic. The identification accuracy of the method is 82.64% and 88.76% in the early overwintering and regreening periods, respectively, These results were consistent with official statistics (R2 = 0.96 and 0.98, respectively). Generalization analysis demonstrated the spatiotemporal transferability of the method across different years and regions. In conclusion, the proposed methodology can obtain highly precise spatial distribution and planting area information of winter wheat 4_6 months before harvest. It provides theoretical and methodological guidance for early crop identification and has good scientific research and application value.

18.
Nanoscale ; 15(34): 14189-14204, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37593970

ABSTRACT

Nanofibrous scaffolds, which are morphologically/structurally similar to native extracellular matrix, are ideal biomaterials for tissue engineering and regenerative medicine. However, the use of traditional electrospinning techniques to produce three-dimensional (3D) nanofibrous scaffolds with desired structural properties presents difficulty. To address this challenge, we prepared a novel liquid-phase-collected photoinitiated polymerised aerogel 3D scaffold (LPPI-AG) using the thermally induced (nanofiber) self-aggregation method after liquid-phase electrospinning of the hydroxyapatite-doped methacrylated polyvinyl alcohol/methacrylated gelatine solution obtained by photoinitiated polymerisation. The fabricated aerogel scaffolds had a high porosity of approximately 99.01% ± 0.40% and an interconnected network structure with pore sizes ranging from submicron to ∼300 µm. The new aerogel rapidly became flowable when exposed to a solution, and it can fill gaps and repair gap edges effectively and be loaded with nutrients and growth factors that promote bone growth for bone tissue engineering. LPPI-AG scaffolds can considerably promote osteogenic differentiation of bone marrow mesenchymal stem cells in vitro. Furthermore, in vivo studies showed that the LPPI-AG scaffold significantly promoted bone formation in a mouse model of critical-size calvarial defects.


Subject(s)
Bone Regeneration , Osteogenesis , Animals , Mice , Biocompatible Materials , Bone and Bones , Cell Differentiation
19.
Molecules ; 28(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37375266

ABSTRACT

Salvia is a large genus with hundreds of species used in traditional Chinese medicine. Tanshinones are a highly representative class of exclusive compounds found in the Salvia genus that exhibit significant biological activity. Tanshinone components have been identified in 16 Salvia species. The CYP76AH subfamily (P450) is crucial for the synthesis of tanshinone due to its catalytic generation of polyhydroxy structures. In this study, a total of 420 CYP76AH genes were obtained, and phylogenetic analysis showed their clear clustering relationships. Fifteen CYP76AH genes from 10 Salvia species were cloned and studied from the perspectives of evolution and catalytic efficiency. Three CYP76AHs with significantly improved catalytic efficiency compared to SmCYP76AH3 were identified, providing efficient catalytic elements for the synthetic biological production of tanshinones. A structure-function relationship study revealed several conserved residues that might be related to the function of CYP76AHs and provided a new mutation direction for the study of the directed evolution of plant P450.


Subject(s)
Salvia miltiorrhiza , Salvia , Salvia/genetics , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/chemistry , Phylogeny , Abietanes/chemistry , Plant Roots/chemistry
20.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175732

ABSTRACT

The process of repairing significant bone defects requires the recruitment of a considerable number of cells for osteogenesis-related activities, which implies the consumption of a substantial amount of oxygen and nutrients. Therefore, the limited supply of nutrients and oxygen at the defect site is a vital constraint that affects the regenerative effect, which is closely related to the degree of a well-established vascular network. Hypoxia-inducible factor (HIF-1α), which is an essential transcription factor activated in hypoxic environments, plays a vital role in vascular network construction. HIF-1α, which plays a central role in regulating cartilage and bone formation, induces vascular invasion and differentiation of osteoprogenitor cells to promote and maintain extracellular matrix production by mediating the adaptive response of cells to changes in oxygen levels. However, the application of HIF-1α in bone tissue engineering is still controversial. As such, clarifying the function of HIF-1α in regulating the bone regeneration process is one of the urgent issues that need to be addressed. This review provides insight into the mechanisms of HIF-1α action in bone regeneration and related recent advances. It also describes current strategies for applying hypoxia induction and hypoxia mimicry in bone tissue engineering, providing theoretical support for the use of HIF-1α in establishing a novel and feasible bone repair strategy in clinical settings.


Subject(s)
Bone Regeneration , Bone and Bones , Hypoxia-Inducible Factor 1, alpha Subunit , Tissue Engineering , Humans , Bone Regeneration/genetics , Bone Regeneration/physiology , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL