Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.591
Filter
1.
Sci Rep ; 14(1): 15152, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956404

ABSTRACT

Removing texture while preserving the main structure of an image is a challenging task. To address this, this paper propose an image smoothing method based on global gradient sparsity and local relative gradient constraints optimization. To reduce the interference of complex texture details, adopting a multi-directional difference constrained global gradient sparsity decomposition method, which provides a guidance image with weaker texture detail gradients. Meanwhile, using the luminance channel as a reference, edge-aware operator is constructed based on local gradient constraints. This operator weakens the gradients of repetitive and similar texture details, enabling it to obtain more accurate structural information for guiding global optimization of the image. By projecting multi-directional differences onto the horizontal and vertical directions, a mapping from multi-directional differences to bi-directional gradients is achieved. Additionally, to ensure the consistency of measurement results, a multi-directional gradient normalization method is designed. Through experiments, we demonstrate that our method exhibits significant advantages in preserving image edges compared to current advanced smoothing methods.

2.
Discov Oncol ; 15(1): 266, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967893

ABSTRACT

Glioma is the most common malignant tumor in the central nervous system, and its unique pathogenesis often leads to poor treatment outcomes and prognosis. In 2021, the World Health Organization (WHO) divided gliomas into five categories based on their histological characteristics and molecular changes. Non-coding RNA is a type of RNA that does not encode proteins but can exert biological functions at the RNA level, and long non-coding RNA (lncRNA) is a type of non-coding RNA with a length exceeding 200 nt. It is controlled by various transcription factors and plays an indispensable role in the regulatory processes in various cells. Numerous studies have confirmed that the dysregulation of lncRNA is critical in the pathogenesis, progression, and malignancy of gliomas. Therefore, this article reviews the proliferation, apoptosis, invasion, migration, angiogenesis, immune regulation, glycolysis, stemness, and drug resistance changes caused by the dysregulation of lncRNA in gliomas, and summarizes their potential clinical significance in gliomas.

3.
Nat Commun ; 15(1): 5636, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965232

ABSTRACT

Natural antimicrobial peptides (AMPs) and enzymes (AMEs) are promising non-antibiotic candidates against antimicrobial resistance but suffer from low efficiency and poor stability. Here, we develop peptide nanozymes which mimic the mode of action of AMPs and AMEs through de novo design and peptide assembly. Through modelling a minimal building block of IHIHICI is proposed by combining critical amino acids in AMPs and AMEs and hydrophobic isoleucine to conduct assembly. Experimental validations reveal that IHIHICI assemble into helical ß-sheet nanotubes with acetate modulation and perform phospholipase C-like and peroxidase-like activities with Ni coordination, demonstrating high thermostability and resistance to enzymatic degradation. The assembled nanotubes demonstrate cascade antifungal actions including outer mannan docking, wall disruption, lipid peroxidation and subsequent ferroptotic death, synergistically killing >90% Candida albicans within 10 min on disinfection pad. These findings demonstrate an effective de novo design strategy for developing materials with multi-antimicrobial mode of actions.


Subject(s)
Antifungal Agents , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Candida albicans/drug effects , Microbial Sensitivity Tests , Nanotubes/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Lipid Peroxidation/drug effects , Peptides/pharmacology , Peptides/chemistry
4.
Sci Rep ; 14(1): 15368, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965410

ABSTRACT

To detect and analyze the changes of microorganisms in expressed prostatic secretion (EPS) of patients with IIIB prostatitis before and after low-intensity pulsed ultrasound (LIPUS) treatment, and to explore the mechanism of LIPUS in the treatment of chronic prostatitis (CP). 25 patients (study power was estimated using a Dirichlet-multinomial approach and reached 96.5% at α = 0.05 using a sample size of 25) with IIIB prostatitis who were effective in LIPUS treatment were divided into two groups before and after LIPUS treatment. High throughput second-generation sequencing technique was used to detect and analyze the relative abundance of bacterial 16 s ribosomal variable regions in EPS before and after treatment. The data were analyzed by bioinformatics software and database, and differences with P < 0.05 were considered statistically significant. Beta diversity analysis showed that there was a significant difference between groups (P = 0.046). LEfSe detected four kinds of characteristic microorganisms in the EPS of patients with IIIB prostatitis before and after LIPUS treatment. After multiple comparisons among groups by DESeq2 method, six different microorganisms were found. LIPUS may improve patients' clinical symptoms by changing the flora structure of EPS, stabilizing and affecting resident bacteria or opportunistic pathogens.


Subject(s)
Prostate , Prostatitis , Ultrasonic Waves , Humans , Male , Prostatitis/therapy , Prostatitis/microbiology , Prostatitis/metabolism , Prostate/microbiology , Prostate/metabolism , Prostate/pathology , Adult , Bacteria/metabolism , Bacteria/genetics , Middle Aged , Ultrasonic Therapy/methods , Microbiota , RNA, Ribosomal, 16S/genetics
5.
NPJ Breast Cancer ; 10(1): 54, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951507

ABSTRACT

Intrinsic breast cancer molecular subtyping (IBCMS) provides significant prognostic information for patients with breast cancer and helps determine treatment. This study compared IBCMS methods on various gene-expression platforms in PALOMA-2 and PALLET trials. PALOMA-2 tumor samples were profiled using EdgeSeq and nanostring and subtyped with AIMS, PAM50, and research-use-only (ruo)Prosigna. PALLET tumor biopsies were profiled using mRNA sequencing and subtyped with AIMS and PAM50. In PALOMA-2 (n = 222), a 54% agreement was observed between results from AIMS and gold-standard ruoProsigna, with AIMS assigning 67% basal-like to HER2-enriched. In PALLET (n = 224), a 69% agreement was observed between results from PAM50 and AIMS. Different IBCMS methods may lead to different results and could misguide treatment selection; hence, a standardized clinical PAM50 assay and computational approach should be used.Trial number: NCT01740427.

6.
Cell Rep ; 43(7): 114424, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959111

ABSTRACT

Metabolic reprogramming dictates tumor molecular attributes and therapeutic potentials. However, the comprehensive metabolic characteristics in gastric cancer (GC) remain obscure. Here, metabolic signature-based clustering analysis identifies three subtypes with distinct molecular and clinical features: MSC1 showed better prognosis and upregulation of the tricarboxylic acid (TCA) cycle and lipid metabolism, combined with frequent TP53 and RHOA mutation; MSC2 had moderate prognosis and elevated nucleotide and amino acid metabolism, enriched by intestinal histology and mismatch repair deficient (dMMR); and MSC3 exhibited poor prognosis and enhanced glycan and energy metabolism, accompanied by diffuse histology and frequent CDH1 mutation. The Shandong Provincial Hospital (SDPH) in-house dataset with matched transcriptomic, metabolomic, and spatial-metabolomic analysis also validated these findings. Further, we constructed the metabolic subtype-related prognosis gene (MSPG) scoring model to quantify the activity of individual tumors and found a positive correlation with cuproptosis signaling. In conclusion, comprehensive recognition of the metabolite signature can enhance the understanding of diversity and heterogeneity in GC.

7.
Sci Rep ; 14(1): 15137, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956226

ABSTRACT

In this study, a shaking table test was conducted on long-short composite anti-slide piles, the development process and dynamic response of cracks in a pile-supported slope were observed, and the failure mechanism of the slope was explored. The experiment showed that the failure of the pile-supported slope under an earthquake was a gradual process; cracks first occur at the top of the slope, where the support action of the piles was weak. As the input seismic action increased, cracks developed downwards along the slope. Owing to the support effect of the long-short anti-slide composite piles, the transmission path of the cracks changed, and the cracks developed along the top of the composite piles, ultimately leading to overtop failure. When cracks appeared on the slope or near final failure, the acceleration response law of the supported slope undergone a sudden change, which was an important indicator of slope instability. The distribution of dynamic soil stress on the pile body was greatly affected by the input peak ground acceleration, and the maximum bending moment of the long-short composite anti-slide piles was located near the weak interlayer.

8.
Cell Death Differ ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987382

ABSTRACT

Cuproptosis is characterized by the aggregation of lipoylated enzymes of the tricarboxylic acid cycle and subsequent loss of iron-sulfur cluster proteins as a unique copper-dependent form of regulated cell death. As dysregulation of copper homeostasis can induce cuproptosis, there is emerging interest in exploiting cuproptosis for cancer therapy. However, the molecular drivers of cancer cell evasion of cuproptosis were previously undefined. Here, we found that cuproptosis activates the Wnt/ß-catenin pathway. Mechanistically, copper binds PDK1 and promotes its interaction with AKT, resulting in activation of the Wnt/ß-catenin pathway and cancer stem cell (CSC) properties. Notably, aberrant activation of Wnt/ß-catenin signaling conferred resistance of CSCs to cuproptosis. Further studies showed the ß-catenin/TCF4 transcriptional complex directly binds the ATP7B promoter, inducing its expression. ATP7B effluxes copper ions, reducing intracellular copper and inhibiting cuproptosis. Knockdown of TCF4 or pharmacological Wnt/ß-catenin blockade increased the sensitivity of CSCs to elesclomol-Cu-induced cuproptosis. These findings reveal a link between copper homeostasis regulated by the Wnt/ß-catenin pathway and cuproptosis sensitivity, and suggest a precision medicine strategy for cancer treatment through selective cuproptosis induction.

9.
Eur Radiol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987399

ABSTRACT

OBJECTIVE: To investigate the value of radiomics analysis of dual-layer spectral-detector computed tomography (DLSCT)-derived iodine maps for predicting tumor deposits (TDs) preoperatively in patients with colorectal cancer (CRC). MATERIALS AND METHODS: A total of 264 pathologically confirmed CRC patients (TDs + (n = 80); TDs - (n = 184)) who underwent preoperative DLSCT from two hospitals were retrospectively enrolled, and divided into training (n = 124), testing (n = 54), and external validation cohort (n = 86). Conventional CT features and iodine concentration (IC) were analyzed and measured. Radiomics features were derived from venous phase iodine maps from DLSCT. The least absolute shrinkage and selection operator (LASSO) was performed for feature selection. Finally, a support vector machine (SVM) algorithm was employed to develop clinical, radiomics, and combined models based on the most valuable clinical parameters and radiomics features. Area under receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis were used to evaluate the model's efficacy. RESULTS: The combined model incorporating the valuable clinical parameters and radiomics features demonstrated excellent performance in predicting TDs in CRC (AUCs of 0.926, 0.881, and 0.887 in the training, testing, and external validation cohorts, respectively), which outperformed the clinical model in the training cohort and external validation cohorts (AUC: 0.839 and 0.695; p: 0.003 and 0.014) and the radiomics model in two cohorts (AUC: 0.922 and 0.792; p: 0.014 and 0.035). CONCLUSION: Radiomics analysis of DLSCT-derived iodine maps showed excellent predictive efficiency for preoperatively diagnosing TDs in CRC, and could guide clinicians in making individualized treatment strategies. CLINICAL RELEVANCE STATEMENT: The radiomics model based on DLSCT iodine maps has the potential to aid in the accurate preoperative prediction of TDs in CRC patients, offering valuable guidance for clinical decision-making. KEY POINTS: Accurately predicting TDs in CRC patients preoperatively based on conventional CT features poses a challenge. The Radiomics model based on DLSCT iodine maps outperformed conventional CT in predicting TDs. The model combing DLSCT iodine maps radiomics features and conventional CT features performed excellently in predicting TDs.

10.
Theranostics ; 14(10): 4161-4183, 2024.
Article in English | MEDLINE | ID: mdl-38994022

ABSTRACT

Extracellular vesicles (EVs) are enclosed by a nanoscale phospholipid bilayer membrane and typically range in size from 30 to 200 nm. They contain a high concentration of specific proteins, nucleic acids, and lipids, reflecting but not identical to the composition of the parent cell. The inherent characteristics and variety of EVs give them extensive and unique advantages in the field of cancer identification and treatment. Recently, EVs have been recognized as potential tumor markers for the detection of cancer. Aptamers, which are molecules of single-stranded DNA or RNA, demonstrate remarkable specificity and affinity for their targets by adopting distinct tertiary structures. Aptamers offer various advantages over their protein counterparts, such as reduced immunogenicity, the ability for convenient large-scale synthesis, and straightforward chemical modification. In this review, we summarized EVs biogenesis, sample collection, isolation, storage and characterization, and finally provided a comprehensive survey of analysis techniques for EVs detection that are based on aptamers.


Subject(s)
Aptamers, Nucleotide , Extracellular Vesicles , Neoplasms , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Humans , Neoplasms/diagnosis , Biomarkers, Tumor/metabolism , Animals
11.
Front Pharmacol ; 15: 1415445, 2024.
Article in English | MEDLINE | ID: mdl-38994205

ABSTRACT

Background: Ischemic Stroke (IS) stands as one of the primary cerebrovascular diseases profoundly linked with inflammation. In the context of neuroinflammation, an excessive activation of microglia has been observed. Consequently, regulating microglial activation emerges as a vital target for neuroinflammation treatment. Catalpol (CAT), a natural compound known for its anti-inflammatory properties, holds promise in this regard. However, its potential to modulate neuroinflammatory responses in the brain, especially on microglial cells, requires comprehensive exploration. Methods: In our study, we investigated into the potential anti-inflammatory effects of catalpol using lipopolysaccharide (LPS)-stimulated BV2 microglial cells as an experimental model. The production of nitric oxide (NO) by LPS-activated BV2 cells was quantified using the Griess reaction. Immunofluorescence was employed to measure glial cell activation markers. RT-qPCR was utilized to assess mRNA levels of various inflammatory markers. Western blot analysis examined protein expression in LPS-activated BV2 cells. NF-κB nuclear localization was detected by immunofluorescent staining. Additionally, molecular docking and molecular dynamics simulations (MDs) were conducted to explore the binding affinity of catalpol with key targets. Results: Catalpol effectively suppressed the production of nitric oxide (NO) induced by LPS and reduced the expression of microglial cell activation markers, including Iba-1. Furthermore, we observed that catalpol downregulated the mRNA expression of proinflammatory cytokines such as IL-6, TNF-α, and IL-1ß, as well as key molecules involved in the NLRP3 inflammasome and NF-κB pathway, including NLRP3, NF-κB, caspase-1, and ASC. Our mechanistic investigations shed light on how catalpol operates against neuroinflammation. It was evident that catalpol significantly inhibited the phosphorylation of NF-κB and NLRP3 inflammasome activation, both of which serve as upstream regulators of the inflammatory cascade. Molecular docking and MDs showed strong binding interactions between catalpol and key targets such as NF-κB, NLRP3, and IL-1ß. Conclusion: Our findings support the idea that catalpol holds the potential to alleviate neuroinflammation, and it is achieved by inhibiting the activation of NLRP3 inflammasome and NF-κB, ultimately leading to the downregulation of pro-inflammatory cytokines. Catalpol emerges as a promising candidate for the treatment of neuroinflammatory conditions.

12.
Int Immunopharmacol ; 139: 112666, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39002521

ABSTRACT

Immunotherapy has limited response rates in colorectal cancer (CRC) due to an immunosuppressive tumor microenvironment (TME). Combining transcriptome sequencing, clinical specimens, and functional experiments, we identified a unique group of CAF subpopulations (COX4I2 + ) with inhibited mitochondrial respiration and enhanced glycolysis. Through bioinformatics predictions and luciferase reporter assays, we determined that EBF1 can upstreamly regulate COX4I2 transcription. COX4I2 + CAFs functionally and phenotypically resemble myofibroblasts, are important for the formation of the fibrotic TME, and are capable of activating the M2 phenotype of macrophages. In vitro experiments demonstrated that COX4I2 + CAFs promote immunosuppressive TME by blocking CD8 + T cell infiltration and inducing CD8 + T cell dysfunction. Using multiple independent cohorts, we also found a strong correlation between the immunotherapy response rate of CRC patients and COX4I2 expression in their tumors. Our results identify a CAF subpopulation characterized by activation of the EBF1-COX4I2 axis, and this group of CAFs can be targeted to improve cancer immunotherapy outcomes.

13.
World J Clin Cases ; 12(18): 3385-3394, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983398

ABSTRACT

BACKGROUND: Endometrial cancer (EC) is a common gynecological malignancy that typically requires prompt surgical intervention; however, the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes. Previous studies have highlighted the prognostic potential of circulating tumor DNA (ctDNA) monitoring for minimal residual disease in patients with EC. AIM: To develop and validate an optimized ctDNA-based model for predicting short-term postoperative EC recurrence. METHODS: We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model, which was validated on 143 EC patients operated between 2020 and 2021. Prognostic factors were identified using univariate Cox, Lasso, and multivariate Cox regressions. A nomogram was created to predict the 1, 1.5, and 2-year recurrence-free survival (RFS). Model performance was assessed via receiver operating characteristic (ROC), calibration, and decision curve analyses (DCA), leading to a recurrence risk stratification system. RESULTS: Based on the regression analysis and the nomogram created, patients with postoperative ctDNA-negativity, postoperative carcinoembryonic antigen 125 (CA125) levels of < 19 U/mL, and grade G1 tumors had improved RFS after surgery. The nomogram's efficacy for recurrence prediction was confirmed through ROC analysis, calibration curves, and DCA methods, highlighting its high accuracy and clinical utility. Furthermore, using the nomogram, the patients were successfully classified into three risk subgroups. CONCLUSION: The nomogram accurately predicted RFS after EC surgery at 1, 1.5, and 2 years. This model will help clinicians personalize treatments, stratify risks, and enhance clinical outcomes for patients with EC.

14.
J Nanobiotechnology ; 22(1): 403, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982427

ABSTRACT

BACKGROUND: Following spinal cord injury (SCI), the inflammatory storm initiated by microglia/macrophages poses a significant impediment to the recovery process. Exosomes play a crucial role in the transport of miRNAs, facilitating essential cellular communication through the transfer of genetic material. However, the miRNAs from iPSC-NSCs-Exos and their potential mechanisms leading to repair after SCI remain unclear. This study aims to explore the role of iPSC-NSCs-Exos in microglia/macrophage pyroptosis and reveal their potential mechanisms. METHODS: iPSC-NSCs-Exos were characterized and identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. A mouse SCI model and a series of in vivo and in vitro experiments were conducted to investigate the therapeutic effects of iPSC-NSCs-Exos. Subsequently, miRNA microarray analysis and rescue experiments were performed to confirm the role of miRNAs in iPSC-NSCs-Exos in SCI. Mechanistic studies were carried out using Western blot, luciferase activity assays, and RNA-ChIP. RESULTS: Our findings revealed that iPSC-NSCs-derived exosomes inhibited microglia/macrophage pyroptosis at 7 days post-SCI, maintaining myelin integrity and promoting axonal growth, ultimately improving mice motor function. The miRNA microarray showed let-7b-5p to be highly enriched in iPSC-NSCs-Exos, and LRIG3 was identified as the target gene of let-7b-5p. Through a series of rescue experiments, we uncovered the connection between iPSC-NSCs and microglia/macrophages, revealing a novel target for treating SCI. CONCLUSION: In conclusion, we discovered that iPSC-NSCs-derived exosomes can package and deliver let-7b-5p, regulating the expression of LRIG3 to ameliorate microglia/macrophage pyroptosis and enhance motor function in mice after SCI. This highlights the potential of combined therapy with iPSC-NSCs-Exos and let-7b-5p in promoting functional recovery and limiting inflammation following SCI.


Subject(s)
Exosomes , Induced Pluripotent Stem Cells , Macrophages , MicroRNAs , Microglia , Pyroptosis , Spinal Cord Injuries , Animals , Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Induced Pluripotent Stem Cells/metabolism , Mice , Microglia/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Female , Male
15.
Nat Commun ; 15(1): 5774, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982079

ABSTRACT

Vertical transistors, in which the source and drain are aligned vertically and the current flow is normal to the wafer surface, have attracted considerable attention recently. However, the realization of high-density vertical transistors is challenging, and could be largely attributed to the incompatibility between vertical structures and conventional lateral fabrication processes. Here we report a T-shape lamination approach for realizing high-density vertical sidewall transistors, where lateral transistors could be pre-fabricated on planar substrates first and then laminated onto vertical substrates using T-shape stamps, hence overcoming the incompatibility between planar processes and vertical structures. Based on this technique, we vertically stacked 60 MoS2 transistors within a small vertical footprint, corresponding to a device density over 108 cm-2. Furthermore, we demonstrate two approaches for scalable fabrication of vertical sidewall transistor arrays, including simultaneous lamination onto multiple vertical substrates, as well as on the same vertical substrate using multi-cycle layer-by-layer laminations.

16.
Nano Lett ; 24(27): 8277-8286, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38949123

ABSTRACT

The controlled vapor-phase synthesis of two-dimensional (2D) transition metal dichalcogenides (TMDs) is essential for functional applications. While chemical vapor deposition (CVD) techniques have been successful for transition metal sulfides, extending these methods to selenides and tellurides often faces challenges due to uncertain roles of hydrogen (H2) in their synthesis. Using CVD growth of MoSe2 as an example, this study illustrates the role of a H2-free environment during temperature ramping in suppressing the reduction of MoO3, which promotes effective vaporization and selenization of the Mo precursor to form MoSe2 monolayers with excellent crystal quality. As-synthesized MoSe2 monolayer-based field-effect transistors show excellent carrier mobility of up to 20.9 cm2/(V·s) with an on-off ratio of 7 × 107. This approach can be extended to other TMDs, such as WSe2, MoTe2, and MoSe2/WSe2 in-plane heterostructures. Our work provides a rational and facile approach to reproducibly synthesize high-quality TMD monolayers, facilitating their translation from laboratory to manufacturing.

17.
J Transl Med ; 22(1): 644, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982507

ABSTRACT

BACKGROUND: Genetic disorders often manifest as abnormal fetal or childhood development. Copy number variations (CNVs) represent a significant genetic mechanism underlying such disorders. Despite their importance, the effectiveness of clinical exome sequencing (CES) in detecting CNVs, particularly small ones, remains incompletely understood. We aimed to evaluate the detection of both large and small CNVs using CES in a substantial clinical cohort, including parent-offspring trios and proband only analysis. METHODS: We conducted a retrospective analysis of CES data from 2428 families, collected from 2018 to 2021. Detected CNV were categorized as large or small, and various validation techniques including chromosome microarray (CMA), Multiplex ligation-dependent probe amplification assay (MLPA), and/or PCR-based methods, were employed for cross-validation. RESULTS: Our CNV discovery pipeline identified 171 CNV events in 154 cases, resulting in an overall detection rate of 6.3%. Validation was performed on 113 CNVs from 103 cases to assess CES reliability. The overall concordance rate between CES and other validation methods was 88.49% (100/113). Specifically, CES demonstrated complete consistency in detecting large CNV. However, for small CNVs, consistency rates were 81.08% (30/37) for deletions and 73.91% (17/23) for duplications. CONCLUSION: CES demonstrated high sensitivity and reliability in CNV detection. It emerges as an economical and dependable option for the clinical CNV detection in cases of developmental abnormalities, especially fetal structural abnormalities.


Subject(s)
DNA Copy Number Variations , Exome Sequencing , Genetic Diseases, Inborn , Humans , DNA Copy Number Variations/genetics , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Reproducibility of Results , Female , Predictive Value of Tests , Male , Retrospective Studies
18.
J Acoust Soc Am ; 156(1): 548-559, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39024384

ABSTRACT

Conventional near-field acoustic holography based on compressive sensing either does not fully exploit the underlying block-sparse structures of the signal or suffers from a mismatch between the actual and predefined block structure due to the lack of prior information about block partitions, resulting in poor accuracy in sound field reconstruction. In this paper, a pattern-coupled Bayesian compressive sensing method is proposed for sparse reconstruction of sound fields. The proposed method establishes a hierarchical Gaussian-Gamma probability model with a pattern-coupled prior based on the equivalent source method, transforming the sound field reconstruction problem into recovering the sparse coefficient vector of the equivalent source strengths within the compressive sensing framework. A set of hyperparameters is introduced to control the sparsity of each element in the sparse coefficient vector of the equivalent source strengths, where the sparsity of each element is determined by both its own hyperparameters and those of its immediate neighbors. This approach enables the promotion of block sparse solutions and achieves better performance in solving for the sparse coefficient vector of the equivalent source strengths without prior information of block partitions. The effectiveness and superiority of the proposed method in reconstructing sound fields are verified by simulations and experiments.

19.
Surgery ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39025692

ABSTRACT

BACKGROUND: Current surgical assessment tools are subjective and nonscalable. Objective performance indicators, calculated from robotic systems data, provide automated data regarding surgeon movements and robotic arm kinematics. We identified objective performance indicators that significantly differed among expert and trainee surgeons during specific steps of robotic right colectomy. METHODS: Endoscopic videos were annotated to delineate surgical steps during robotic right colectomies. Objective performance indicators were compared during mesenteric dissection, ascending colon mobilization, hepatic flexure mobilization, and bowel preparation for transection. RESULTS: Twenty-five robotic right colectomy procedures (461 total surgical steps) performed by 2 experts and 8 trainees were analyzed. Experts exhibited faster camera acceleration and jerk during all steps, as well as faster dominant and nondominant arm acceleration and dominant arm jerk during all steps except distal bowel preparation. During mesenteric dissection, experts used faster camera and dominant arm velocity. During medial-to-lateral ascending colon mobilization, experts used less-dominant wrist yaw and pitch, faster nondominant arm velocity, shorter dominant arm path length, and shorter moving times for camera, dominant arm, and nondominant arm. During lateral-to-medial ascending colon mobilization, experts had faster dominant and nondominant arm velocity and third-arm acceleration. During hepatic flexure mobilization, experts exhibited more camera movements, greater velocity for camera, dominant and nondominant arms, and faster third-arm acceleration. During distal bowel preparation, experts used greater dominant wrist articulation, faster camera velocity, and longer nondominant arm path length. During proximal bowel preparation, experts demonstrated faster nondominant arm velocity. CONCLUSION: Objective performance indicators can differentiate experts from trainees during distinct steps of robotic right colectomy. These automated, objective and scalable metrics can provide personalized feedback for trainees.

20.
Front Oncol ; 14: 1404799, 2024.
Article in English | MEDLINE | ID: mdl-39007100

ABSTRACT

Background: Our study aimed to develop a nomogram incorporating cytokeratin fragment antigen 21-1 (CYFRA21-1) to assist in differentiating between patients with intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC). Methods: A total of 487 patients who were diagnosed with ICC and HCC at Qilu Hospital of Shandong University were included in this study. The patients were divided into a training cohort and a validation cohort based on whether the data collection was retrospective or prospective. Univariate and multivariate analyses were employed to select variables for the nomogram. The discrimination and calibration of the nomogram were evaluated using the area under the receiver operating characteristic curve (AUC) and calibration plots. Decision curve analysis (DCA) was used to assess the nomogram's net benefits at various threshold probabilities. Results: Six variables, including CYFRA21-1, were incorporated to establish the nomogram. Its satisfactory discriminative ability was indicated by the AUC (0.972 for the training cohort, 0.994 for the validation cohort), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) values. The Hosmer-Lemeshow test and the calibration plots demonstrated favorable consistency between the nomogram predictions and the actual observations. Moreover, DCA revealed the clinical utility and superior discriminative ability of the nomogram compared to the model without CYFRA21-1 and the model consisting of the logarithm of alpha-fetoprotein (Log AFP) and the logarithm of carbohydrate antigen 19-9 (Log CA19-9). Additionally, the AUC values suggested that the discriminative ability of Log CYFRA21-1 was greater than that of the other variables used as diagnostic biomarkers. Conclusions: This study developed and validated a nomogram including CYFRA21-1, which can aid clinicians in the differential diagnosis of ICC and HCC patients.

SELECTION OF CITATIONS
SEARCH DETAIL