Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.472
1.
Cell ; 2024 May 30.
Article En | MEDLINE | ID: mdl-38838668

Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe's robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.

2.
Bioact Mater ; 40: 1-18, 2024 Oct.
Article En | MEDLINE | ID: mdl-38873262

Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to "cool-down" the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (mTOR) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the "mito-engine coolant" could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment.

3.
IEEE Trans Cybern ; PP2024 Jun 13.
Article En | MEDLINE | ID: mdl-38869998

Optimal control is developed to guarantee nonlinear systems run in an optimum operating state. However, since the operation demands of systems are dynamically changeable, it is difficult for optimal control to obtain reliable optimal solutions to achieve satisfying operation performance. To overcome this problem, a knowledge-data driven optimal control (KDDOC) for nonlinear systems is designed in this article. First, an adaptive initialization strategy, using the knowledge from historical operation information of nonlinear systems, is employed to dynamically preset parameters of KDDOC. Then, the initial performance of KDDOC can be enhanced for nonlinear systems. Second, a knowledge guide-based global best selection mechanism is used to assist KDDOC in searching for the optimal solutions under different operation demands. Then, dynamic optimal solutions of KDDOC can be obtained to adapt to flexible changes in nonlinear systems. Third, a knowledge direct-based exploitation mechanism is presented to accelerate the solving process of KDDOC. Then, the demand response speed of KDDOC can be improved to ensure nonlinear systems with optimal operation performance in different states. Finally, the performance of KDDOC is validated on a simulation and a practical process. Several experimental results illustrate the effectiveness of the proposed optimal control for nonlinear systems.

4.
Aging (Albany NY) ; 162024 Jun 11.
Article En | MEDLINE | ID: mdl-38862240

The global prevalence of osteoporosis is being exacerbated by the increasing number of aging societies and longer life expectancies. In response, numerous drugs have been developed in recent years to mitigate bone resorption and enhance bone density. Nonetheless, the efficacy and safety of these pharmaceutical interventions remain constrained. Corylin (CL), a naturally occurring compound derived from the anti-osteoporosis plant Psoralea corylifolia L., has exhibited promising potential in impeding osteoclast differentiation. This study aims to evaluate the effect and molecular mechanisms of CL regulating osteoclast differentiation in vitro and its potential as a therapeutic agent for osteoporosis treatment in vivo. Our investigation revealed that CL effectively inhibits osteoclast formation and their bone resorption capacity by downregulating the transcription factors NFATc1 and c-fos, consequently resulting in the downregulation of genes associated with bone resorption. Furthermore, it has been observed that CL can effectively mitigate the migration and fusion of pre-osteoclast, while also attenuating the activation of mitochondrial mass and function. The results obtained from an in vivo study have demonstrated that CL is capable of attenuating the bone loss induced by ovariectomy (OVX). Based on these significant findings, it is proposed that CL exhibits considerable potential as a novel drug strategy for inhibiting osteoclast differentiation, thereby offering a promising approach for the treatment of osteoporosis.

5.
Adv Mater ; : e2403494, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38863206

The ambient stability is one of the focal points for applications of 2D materials, especially for those well-known air-sensitive ones such as black phosphorus (BP) and transitional metal telluride. Traditional methods of encapsulation, such as atomic layer deposition of oxides and heterogeneous integration of hexagonal boron nitride, can hardly avoid removal of encapsulation layer when the 2D materials are encapsulated for further device fabrication, which causes complexity and damage during the procedure. Here, a van der Waals encapsulation method that allows direct device fabrication without removal of encapsulation layer is introduced using Ga2O3 from liquid gallium. Taking advantage of the robust isolation ability against ambient environment of the dense native oxide of gallium, hundreds of times longer retention time of (opto)electronic properties of encapsulated BP and MoTe2 devices is realized than unencapsulated devices. Due to the ultra-thin high-κ properties of Ga2O3, top-gated devices are directly fabricated with the encapsulation layer, simultaneously as a dielectric layer. This direct device fabrication is realized by selective etching of Ga2O3, leaving the encapsulated materials intact. Encapsulated 1T' MoTe2 exhibits high conductivity even after 150 days in ambient environment. This method is therefore highlighted as a promising and distinctive one compared with traditional passivation approaches. This article is protected by copyright. All rights reserved.

6.
J Phys Chem Lett ; 15(23): 6230-6236, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38840314

A bioinspired in-sensing computing paradigm using emerging photoelectronic memristors pursues multifunctionality with low power consumption and high efficiency for processing large amounts of sensing information. An organic semiconductor memristor strategy based on the CuPc functional layer integrates a negative photoconductance (NPC) effect and an analogue switching memory (ASM) effect in the same pixel. The NPC effect, present in the pure capacitance state at low bias voltage, provides high-performance short/long-term synaptic plasticity modulable by light pulse parameters. The interface charge effect along with defeat site trapping and detrapping is responsible for the pure capacitance effect and the NPC effect, with electron tunneling and electric-field-driven band dynamics responsible for ASM. This work reveals an organic memristor approach for hardware implementation of a neuromorphic vision computing system, emulating retinal bipolar cells via light-dominated NPC and electrically induced ASM with stable, tunable conductance states.

7.
Chem Sci ; 15(22): 8478-8487, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38846387

Hard carbon (HC) is one of the most promising anode materials for sodium-ion batteries (SIBs) due to its cost-effectiveness and low-voltage plateau capacity. Heteroatom doping is considered as an effective strategy to improve the sodium storage capacity of HC. However, most of the previous heteroatom doping strategies are performed at a relatively low temperature, which could not be utilized to raise the low-voltage plateau capacity. Moreover, extra doping of heteroatoms could create new defects, leading to a low initial coulombic efficiency (ICE). Herein, we propose a repair strategy based on doping a trace amount of P to achieve a high capacity along with a high ICE. By employing the cross-linked interaction between glucose and phytic acid to achieve the in situ P doped spherical hard carbon, the obtained PHC-0.2 possesses a large interlayer space that facilitates Na+ storage and transportation. In addition, doping a suitable amount of P could repair some defects in carbon layers. When used as an anode material for SIBs, the PHC-0.2 exhibits an enhanced reversible capacity of 343 mA h g-1 at 20 mA g-1 with a high ICE of 92%. Full cells consisting of a PHC-0.2 anode and a Na2Fe0.5Mn0.5[Fe(CN)6] cathode exhibited an average potential of 3.1 V with an initial discharge capacity of 255 mA h g-1 and an ICE of 85%. The full cell displays excellent cycling stability with a capacity retention of 80.3% after 170 cycles. This method is simple and low-cost, which can be extended to other energy storage materials.

8.
Nat Commun ; 15(1): 4843, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844440

Carbon quantum dots (CQDs) have versatile applications in luminescence, whereas identifying optimal synthesis conditions has been challenging due to numerous synthesis parameters and multiple desired outcomes, creating an enormous search space. In this study, we present a novel multi-objective optimization strategy utilizing a machine learning (ML) algorithm to intelligently guide the hydrothermal synthesis of CQDs. Our closed-loop approach learns from limited and sparse data, greatly reducing the research cycle and surpassing traditional trial-and-error methods. Moreover, it also reveals the intricate links between synthesis parameters and target properties and unifies the objective function to optimize multiple desired properties like full-color photoluminescence (PL) wavelength and high PL quantum yields (PLQY). With only 63 experiments, we achieve the synthesis of full-color fluorescent CQDs with high PLQY exceeding 60% across all colors. Our study represents a significant advancement in ML-guided CQDs synthesis, setting the stage for developing new materials with multiple desired properties.

9.
Biomaterials ; 311: 122645, 2024 May 28.
Article En | MEDLINE | ID: mdl-38850717

Immunotherapy through the activation of the stimulator of interferon genes (STING) signaling pathway is increasingly recognized for its robust anti-tumor efficacy. However, the effectiveness of STING activation is often compromised by inadequate anti-tumor immunity and a scarcity of primed immune cells in the tumor microenvironment. Herein, we design and fabricate a co-axial 3D-printed scaffold integrating a non-nucleotide STING agonist, SR-717, and an AKT inhibitor, MK-2206, in its respective shell and core layers, to synergistically enhance STING activation, thereby suppressing tumor recurrence and growth. SR-717 initiates the STING activation to enhance the phosphorylation of the factors along the STING pathway, while MK-2206 concurrently inhibits the AKT phosphorylation to facilitate the TBK1 phosphorylation of the STING pathway. The sequential and sustained release of SR-717 and MK-2206 from the scaffold results in a synergistic STING activation, demonstrating substantial anti-tumor efficacy across multiple tumor models. Furthermore, the scaffold promotes the recruitment and enrichment of activated dendritic cells and M1 macrophages, subsequently stimulating anti-tumor T cell activity, thereby amplifying the immunotherapeutic effect. This precise and synergistic activation of STING by the scaffold offers promising potential in tumor immunotherapy.

12.
Adv Mater ; : e2304867, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38837502

A disordered crystal structure is an asymmetrical atomic lattice resulting from the missing atoms (vacancies) or the lattice misarrangement in a solid-state material. It has been widely proven to improve the electrocatalytic hydrogen evolution reaction (HER) process. In the present work, due to the special physical properties (the low evaporation temperature of below 900 °C), Zn is utilized as a sacrificial component to create senary PtIrNiCoFeZn high-entropy alloy (HEA) with highly disordered lattices. The structure of the lattice-disordered PtIrNiCoFeZn HEA is characterized by the thermal diffusion scattering (TDS) in transmission electron microscope. Density functional theory calculations reveal that lattice disorder not only accelerates both the Volmer step and Tafel step during the HER process but also optimizes the intensity and distribution of projected density of states near the Fermi energy after the H2O and H adsorption. Anomalously high alkaline HER activity and stability are proven by experimental measurements. This work introduces a novel approach to preparing irregular lattices offering highly efficient HEA and a TDS characterization method to reveal the disordered lattice in materials. It provides a new route toward exploring and developing the catalytic activities of materials with asymmetrically disordered lattices.

13.
Inorg Chem ; 63(24): 11146-11154, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38838348

Surface ligands play crucial roles in modifying the properties of metal nanoclusters and stabilizing atomically precise structures, and also serve as vital linkers for constructing cluster-based coordination polymers. In this study, we present the results of the solvothermal synthesis of eight novel copper alkynyl clusters incorporating pyridine ligands using a one-pot method. The resulting compounds underwent characterization through elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD). Our observations revealed that distinct pyridine ligands with varying lengths and coordination sites exert significant influence on the structure and dimensionality of the clusters. The structural diversity of these clusters led to the formation of one-dimensional (1D), two-dimensional (2D), or dimer arrangements linked by seven pyridine bridging ligands. Remarkably, these complexes exhibited unique UV-vis absorption and photoluminescence properties, which were influenced by the specific bridging ligand and structural framework. Furthermore, density functional theory (DFT) calculations demonstrated the capability of the conjugated system in the pyridine ligand to impact the band gap of clusters. This study not only unveils the inherent structural diversity in coordination polymers based on copper alkynyl clusters but also offers valuable insights into harnessing ligand engineering for structural and property modulation.

14.
Adv Mater ; : e2404833, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847439

The development of new near-infrared-responsive photocatalysts is a fascinating and challenging approach to acquire high photocatalytic hydrogen evolution (PHE) performance. Herein, near-infrared-responsive black CuVP2S6 and CuCrP2S6 flakes, as well as CuInP2S6 flakes, are designed and constructed for PHE. Atom-resolved scanning transmission electron microscopy images and X-ray absorption fine structure evidence the formation of ultrathin single-crystalline sheet-like structure of CuVP2S6 and CuCrP2S6. The synthetic CuVP2S6 and CuCrP2S6, with a narrow bandgap of ≈1.0 eV, shows the high light-absorption edge exceeding 1100 nm. Moreover, through the femtosecond-resolved transient absorption spectroscopy, CuCrP2S6 displays the efficient charge transfer and long charge lifetime (18318.1 ps), which is nearly 3 and 29 times longer than that of CuVP2S6 and CuInP2S6, respectively. In addition, CuCrP2S6, with the appropriate d-band and p-band, is thermodynamically favorable for the H+ adsorption and H2 desorption by contrast with CuVP2S6 and CuInP2S6. As a result, CuCrP2S6 exhibits high PHE rates of 9.12 and 0.66 mmol h-1 g-1 under simulated sunlight and near-infrared light irradiation, respectively, far exceeding other layered metal phospho-sulfides. This work offers a distinctive perspective for the development of new near-infrared-responsive photocatalysts.

15.
J Environ Manage ; 363: 121389, 2024 Jul.
Article En | MEDLINE | ID: mdl-38850923

Understanding the changes in the chemical compositions of dissolved trace elements from source to sink is important for determining their spatiotemporal variations and the contributions from each sub-catchment in the Ganges, Brahmaputra, and Meghna Rivers. To estimate weathering and matter transfer in these Rivers and the Ganges-Brahmaputra-Meghna (G-B-M) Estuary, we measured 15 dissolved trace element concentrations from surface and bottom water samples and exchangeable trace metals from suspended particulate matter (SPM). From December 2019 to January 2020, post-monsoon samples were collected from the upstream of the three rivers and the G-B-M Estuary. Dissolved trace elements in the Ganges and Meghna Rivers exhibited remarkable spatial variations, whereas those in the Brahmaputra River and the G-B-M Estuary were uniform. The dissolved trace elements, basic information (river length and drainage area), and physicochemical parameters (pH, dissolved oxygen, and conductivity) of the three rivers were inconsistent. The sample sites near urban areas and industrial centers had high concentrations of dissolved trace elements. In the G-B-M Estuary, iron and lead concentrations decreased along the salinity gradient, whereas selenium levels gradually increased, which may have been released by the SPM owing to its highly exchangeable trace metals. Compared with historical concentrations, trace elements that entered the G-B Estuary from the Ganges and Brahmaputra Rivers exhibited either decreased or increased metal fluxes due to additional terrigenous sources, suggesting that the inputs of trace element flux from the Ganges and Brahmaputra Rivers into the oceans may need to be re-evaluated. Furthermore, Fe and Pb concentrations and river fluxes in the Ganges and Changjiang have decreased in recent years. Hence, the fluxes of certain trace elements that enter the oceans from large rivers may require re-evaluation.


Environmental Monitoring , Rivers , Trace Elements , Trace Elements/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Oceans and Seas
16.
Gene ; : 148697, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38880186

Protocatechualdehyde is a plant natural phenolic aldehyde and an active ingredient with important bioactivities in traditional Chinese medicine. Protocatechualdehyde is also a key intermediate in the synthesis of Amaryllidaceae alkaloids for supplying the C6-C1 skeleton. However, the biosynthesis of protocatechualdehyde in plants remains obscure. In this study, we measured the protocatechualdehyde contents in the root, bulb, scape and flower of the Amaryllidaceae plant Lycoris aurea (L'Hér.) Herb., and performed the correlation analysis between the protocatechualdehyde contents and the transcriptional levels of the phenolic oxidization candidate protein encoding genes. We found that a novel ascorbate peroxidase encoded by the contig_24999 in the L. aurea transcriptome database had potential role in the biosynthesis of protocatechualdehyde. The LauAPX_24999 gene was then cloned from the cDNA mix of the scape of L. aurea. The transient expression of LauAPX_24999 protein in Arabidopsis protoplasts demonstrated that LauAPX_24999 protein was localized in the cytoplasm, thus belonging to Class II L-ascorbate peroxidase. Subsequently, LauAPX_24999 protein was heterogenously expressed in Escherichia coli, and identified that LauAPX_24999 biosynthesized protocatechualdehyde from p-hydroxybenzaldehyde using L-ascorbic acid as the electron donor. The protein structure modelling and molecular docking indicated that p-hydroxybenzaldehyde could access to the active pocket of LauAPX_24999 protein, and reside at the δ-edge of the heme group while L-ascorbic acid binds at the γ-heme edge. To our knowledge, LauAPX_24999 is the first enzyme discovered in plants able to biosynthesize protocatechualdehyde from p-hydroxybenzaldehyde, and offers a competent enzyme resource for the biosynthesis of Amaryllidaceae alkaloids via synthetic biology.

17.
Sci Total Environ ; 944: 173840, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38866166

Long-term, high spatiotemporal resolution of surface water area, water level, and storage changes in the Yangtze River Basin (YRB) has great scientific and practical importance for improving the management of water resources. Here, three distinct area estimations were first derived using the water classification enhancement method, automated water extraction method based on random forest, and the modified normalized difference water index. The optimized area data was determined by comparing against Sentinel-2 with the minimum root mean square error. A new area data was constructed with the optimized area as the primary data, while the remaining datasets were employed to fill in gaps. The elevation-area relationship was used to derive monthly water level. Changes in water storage were calculated by applying the pyramidal frustum formula from surface water area and water level data. Finally, a new comprehensive dataset of the monthly area, level, and storage changes in the 119 lakes and 75 reservoirs across the YRB with area larger than 10 km2 from 1990 to 2021 were first reconstructed. The spatiotemporal trends of surface water area/level/storage in lakes and reservoirs over 11 sub-basins of the YRB were quantified from 1990 to 2021, as well as before (1990-2003) and after (2003-2021) the construction of the Three Gorges Dam (TGD). During 1990-2021, there was a marked decrease in surface water area/level/storage in most of the YRB sub-basins, which contain 79 % of the lakes and 30 % of the reservoirs. After TGD was constructed, the surface water in lakes decreased by 10 %, while that of reservoirs remained consistent with the pre-construction. The surface water area/level/storage in the lower sub-basins of YRB exhibited a decline to an upward trend before and after the construction of TGD. This study provides a new comprehensive dataset for understanding the dynamic changes of water resource and climate change.

18.
Angew Chem Int Ed Engl ; : e202405337, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38877857

In this work, six benzothioxanthene-based oxime esters were employed as photoinitiators for photopolymerization with visible light (LED) and sunlight. Their abilities to behave as Type I photoinitiators by mean of a photocleavage mechanism of oxime esters but also in multicomponent photoinitiating system with an iodonium salt (through an electron transfer mechanism) were both explored with the different structures. Due to their broad absorption spectra tailing up 600 nm, photoinitiating properties of the benzothioxanthene-based oxime esters were systematically tested under excitation with low-intensity LED light at wavelengths of 405 nm and 450 nm. Additionally, to the polymerization tests done under artificial light, different benzothioxanthene-based oxime esters were also investigated as solar photoinitiators and displayed a high reactivity in France (Western Europe) even in winter conditions. For the best candidates i.e. the most reactive structures, direct laser write experiments were carried out, evidencing the interest of these structures.

19.
Angew Chem Int Ed Engl ; : e202410255, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38881320

Metal-organic frameworks (MOFs) are considered as a promising candidate for advancing energy storage owing to their intrinsic multi-channel architecture, high theoretical capacity, and precise adjustability. However, the low conductivity and poor structural stability lead to unsatisfactory rate and cycling performance, greatly hindering their practical application. Herein, we propose a sea urchin-like Co-ZIF-L superstructure using molecular template to induce self-assembly followed by ion exchange method, which shows improved conductivity, successive channels, and high stability. The ion exchange can gradually etch the superstructure, leading to the reconstruction of Co-ZIF-L with three-dimensional (3D) cross-linked ultrathin porous nanosheets. Moreover, the precise control of Co to Ni ratios can construct effective micro-electric field and synergistically enhance the rapid transfer of electrons and electrolyte ions, improving the conductivity and stability of CoNi-ZIF-L. The Co6.53Ni-ZIF-L electrode exhibits a high specific capacity (602 F g-1 at 1 A g-1) and long cycling stability (95.3% retention after 4,000 cycles at 5 A g-1). The Co6.53Ni-ZIF-L//AC asymmetric flexible supercapacitor employing gel electrolyte also exhibits excellent cycling stability (93.3% retention after 4000 cycles at 5 A g-1). This discovery provides valuable insights for electrode material selection and energy storage efficiency improvement.

20.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 397-402, 2024 Jun 18.
Article Zh | MEDLINE | ID: mdl-38864123

OBJECTIVE: To explore the association between self-control and the co-occurrence of depressive symptoms and overweight or obesity from adolescence to early adulthood in the Chinese population, and to provide a scientific basis for personalized interventions targeting individuals with different risks in the future. METHODS: From a prospective cohort study that lasted for 10 years: The China family panel studies (CFPS), a total of 608 children and adolescents meeting the following inclusion and exclusion criteria were included as study subjects: (1) Aged 10 to 19 years, at normal weight according to Chinese standards, and without depressive symptom in 2010; (2) Had self-control scores, and with at least two measurements of depressive symptoms and body mass index (BMI) between 2010 and 2020; (3) The only one or the youngest child and adolescent from each family. The co-occurrence of depressive symptoms and overweight or obesity was defined in three ways: Both of the average level of standardized scores of depressive symptoms and BMI Z-scores across multiple measurements over time were at a high level, or both of the trajectories of depressive symptoms and BMI over time based on the latent classification trajectory model (LCTM) belonging to the "risk-type", or individuals had depressive symptoms and overweight/obesity at the last follow-up survey. The multinomial Logistic regression model was used to examine the association between standardized scores of self-control and the co-occurrence of depressive symptoms and overweight or obesity. RESULTS: The score of self-control was associated with the co-occurrence of depressive symptoms and overweight or obesity when using healthy individuals as the reference group after adjusting for age (years), gender (male/female), area (urban/rural), weekly physical activity duration (high/low), parental education level (college or above/high school or below), parental weight status (overweight or obese or not), and parental depressive symptoms (with depressive symptoms or not), regardless of the definition of the risk population. Specifically, the risk of co-occurrence of depressive symptoms and overweight or obesity was reduced by 33% (95%CI: 14% to 48%, based on the average level across multiple measurements over time) to 78% (95%CI: 6% to 95%, based on the joint trajectories of depressive symptoms and BMI over time) per 1-standard deviation (1-SD) increase in self-control score. In addition, the risk of depressive-symptom-dominant and overweight-or-obesity-dominant was reduced by 25% (95%CI: 4% to 42%, only based on the average level across multiple measurements over time) and 21% (95%CI: 1% to 37%, only based on the joint trajectories of depressive symptoms and BMI over time) per 1-SD increase in self-control score, respectively. The results from sensitivity analysis that defined individuals' weight status according to World Health Organization (WHO) standards were consistent with our main findings. CONCLUSION: Individuals with higher self-control scores from adolescence to early adulthood have a lower risk of co-occurrence of depressive symptoms and overweight or obesity, suggesting that personalized interventions for co-occurrence of depressive symptoms and overweight or obesity can be carried out based on self-control scores in the future.


Body Mass Index , Depression , Obesity , Overweight , Self-Control , Humans , Adolescent , Prospective Studies , Depression/epidemiology , Female , Male , Overweight/epidemiology , Overweight/psychology , China/epidemiology , Obesity/epidemiology , Obesity/psychology , Obesity/complications , Child , Young Adult , Surveys and Questionnaires , Cohort Studies
...