Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.550
Filter
1.
Front Microbiol ; 15: 1453870, 2024.
Article in English | MEDLINE | ID: mdl-39224212

ABSTRACT

The synthesis of pseudo-healthy images, involving the generation of healthy counterparts for pathological images, is crucial for data augmentation, clinical disease diagnosis, and understanding pathology-induced changes. Recently, Generative Adversarial Networks (GANs) have shown substantial promise in this domain. However, the heterogeneity of intracranial infection symptoms caused by various infections complicates the model's ability to accurately differentiate between pathological and healthy regions, leading to the loss of critical information in healthy areas and impairing the precise preservation of the subject's identity. Moreover, for images with extensive lesion areas, the pseudo-healthy images generated by these methods often lack distinct organ and tissue structures. To address these challenges, we propose a three-stage method (localization, inpainting, synthesis) that achieves nearly perfect preservation of the subject's identity through precise pseudo-healthy synthesis of the lesion region and its surroundings. The process begins with a Segmentor, which identifies the lesion areas and differentiates them from healthy regions. Subsequently, a Vague-Filler fills the lesion areas to construct a healthy outline, thereby preventing structural loss in cases of extensive lesions. Finally, leveraging this healthy outline, a Generative Adversarial Network integrated with a contextual residual attention module generates a more realistic and clearer image. Our method was validated through extensive experiments across different modalities within the BraTS2021 dataset, achieving a healthiness score of 0.957. The visual quality of the generated images markedly exceeded those produced by competing methods, with enhanced capabilities in repairing large lesion areas. Further testing on the COVID-19-20 dataset showed that our model could effectively partially reconstruct images of other organs.

2.
Heliyon ; 10(16): e36190, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39224372

ABSTRACT

Objective: Proteus syndrome, a rare disorder with an incidence of one in a million, is characterized by connective tissue nevi, asymmetric limb overgrowth, and abnormal subcutaneous adipose tissue distribution. Limited awareness of this condition often hinders accurate clinical diagnosis. We report a case of Proteus syndrome with concurrent progressive paralysis in the unilateral lower limb, aiming to enhance understanding of the disease and its associated complications. Methods: The patient, an 11-year-old male, has been conclusively diagnosed with Proteus Syndrome. This diagnosis was established by analyzing clinical manifestations, imaging studies, and laboratory tests. In addition, a literature review was conducted to systematically elucidate the etiology, diagnosis, treatment, and prognosis of this condition. Results: According to the clinical manifestations, we confirmed a case of Proteus syndrome. This example exhibits the general characteristics of patients with severe hemihypertrophy of the bilateral lower limbs, anomalies in hypodermic and adipose distribution, and unilateral lower limb progressive paralysis. Pathological biopsy confirmed the right chest wall mass as a lipoma. Notably, the patient experiences lower limb movement disorders caused by intraspinal disease. At the same time, the gene sequencing results of this Proteus syndrome patient showed mutations in the IDUS gene and SPECC1L gene, which have not been reported before. Conclusion: We diagnosed Proteus Syndrome with lower limb sensorimotor abnormalities, which may be caused by mutations in the IDUS gene or SPECC1L gene. This is the first report of these kinds of gene mutations in association with Proteus Syndrome.

3.
Adv Sci (Weinh) ; : e2407069, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225567

ABSTRACT

Lipid metabolism reprogramming stands as a fundamental hallmark of cancer cells. Unraveling the core regulators of lipid biosynthesis holds the potential to find promising therapeutic targets in pancreatic ductal adenocarcinoma (PDAC). Here, it is demonstrated that platelet-derived growth factor C (PDGFC) orchestrated lipid metabolism, thereby facilitated the malignant progression of PDAC. Expression of PDGFC is upregulated in PDAC cohorts and is corelated with a poor prognosis. Aberrantly high expression of PDGFC promoted proliferation and metastasis of PDAC both in vitro and in vivo. Mechanistically, PDGFC accelerated the malignant progression of PDAC by upregulating fatty acid accumulation through sterol regulatory element-binding protein 1 (SREBP1), a key transcription factor in lipid metabolism. Remarkably, Betulin, an inhibitor of SREBP1, demonstrated the capability to inhibit proliferation and metastasis of PDAC cell lines, along with attenuating the process of liver metastasis in vivo. Overall, the study underscores the pivotal role of PDGFC-mediated lipid metabolism in PDAC progression, suggesting PDGFC as a potential biomarker for PDAC metastasis. Targeting PDGFC-induced lipid metabolism emerges as a promising therapeutic strategy for metastatic PDAC, with the potential to improve clinical outcomes.

4.
Clin Spine Surg ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226101

ABSTRACT

STUDY DESIGN: Retrospective cohort study. OBJECTIVE: To evaluate the effectiveness of pedicle screw trajectory planning based on artificial intelligence (AI) software in patients with different levels of bone mineral density (BMD). SUMMARY OF BACKGROUND DATA: AI-based pedicle screw trajectory planning has potential to improve pullout force (POF) of screws. However, there is currently no literature investigating the efficacy of AI-based pedicle screw trajectory planning in patients with different levels of BMD. METHODS: The patients were divided into 5 groups (group A-E) according to their BMD. The AI software utilizes lumbar spine CT data to perform screw trajectory planning and simulate AO screw trajectories for bilateral L3-5 vertebral bodies. Both screw trajectories were subdivided into unicortical and bicortical modes. The AI software automatically calculating the POF and pullout risk of every screw trajectory. The POF and risk of screw pullout for AI-planned screw trajectories and AO standard trajectories were compared and analyzed. RESULTS: Forty-three patients were included. For the screw sizes, AI-planned screws were greater in diameter and length than those of AO screws (P<0.05). In groups B-E, the AI unicortical trajectories had a POF of over 200N higher than that of AO unicortical trajectories. POF was higher in all groups for the AI bicortical screw trajectories compared with the AO bicortical screw trajectories (P<0.05). AI unicortical trajectories in groups B-E had a lower risk of screw pullout compared with that of AO unicortical trajectories (P<0.05). CONCLUSIONS: AI unicortical screw trajectory planning for lumbar surgery in patients with BMD of 40-120 mg/cm3 can significantly improve screw POF and reduce the risk of screw pullout.

5.
Cell Mol Biol Lett ; 29(1): 118, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237880

ABSTRACT

BACKGROUND: Vasculogenic mimicry (VM) is a potential cause of resistance to antiangiogenic therapy and is closely related to the malignant progression of tumors. It has been shown that noncoding RNAs play an important role in the formation of VM in malignant tumors. However, the role of circRNAs in VM of bladder cancer and the regulatory mechanisms are unclear. METHODS: Firstly, hsa_circ_0000520 was identified to have circular character by Sanger sequencing and Rnase R assays. Secondly, the potential clinical value of hsa_circ_0000520 was explored by quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence in situ hybridization (FISH) of clinical specimens. Thirdly, the role of hsa_circ_0000520 in bladder cancer invasion, migration, and VM formation was examined by in vivo and in vitro experiments. Finally, the regulatory mechanisms of hsa_circ_0000520 in the malignant progression of bladder cancer were elucidated by RNA binding protein immunoprecipitation (RIP), RNA pulldown, co-immunoprecipitation (co-IP), qRT-PCR, Western blot (WB), and fluorescence co-localization. RESULTS: Hsa_circ_0000520 was characterized as a circular RNA and was lowly expressed in bladder cancer compared with the paracancer. Bladder cancer patients with high expression of hsa_circ_0000520 had better survival prognosis. Functionally, hsa_circ_0000520 inhibited bladder cancer invasion, migration, and VM formation. Mechanistically, hsa_circ_0000520 acted as a scaffold to promote binding of UBE2V1/UBC13 to Lin28a, further promoting the ubiquitous degradation of Lin28a, improving PTEN mRNA stability, and inhibiting the phosphorylation of the PI3K/AKT pathway. The formation of hsa_circ_0000520 in bladder cancer was regulated by RNA binding protein QKI. CONCLUSIONS: Hsa_circ_0000520 inhibits metastasis and VM formation in bladder cancer and is a potential target for bladder cancer diagnosis and treatment.


Subject(s)
Cell Movement , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , RNA, Circular , RNA-Binding Proteins , Signal Transduction , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Movement/genetics , Male , Animals , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Female , Neovascularization, Pathologic/genetics , Mice, Nude , Mice , Middle Aged , Mice, Inbred BALB C
6.
Mar Biotechnol (NY) ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249630

ABSTRACT

As a prerequisite for the success of embryo development, embryonic genome activation (EGA) is an important biological event in which zygotic gene products in the embryo are activated to replace maternal-derived transcripts. Although EGA has been extensively studied in a large number of vertebrates and invertebrates, there is a lack of information regarding this event in crustacean crab. In this study, the timing of EGA was confirmed by examining a transcriptomic dataset of early embryonic development, including mature oocytes and embryos through six early developmental stages, and signaling pathways associated with EGA were identified in the mud crab, S. paramamosain. The comprehensive transcriptomic data identified a total of 53,915 transcripts from these sequencing samples. Notable transcriptomic change was evident at the 1-cell stage, indicated by a 36% transcript number shift and a reduction in transcript fragment length, compared to those present in the mature oocytes. Concurrently, a substantial increase in the expression of newly transcribed transcripts was observed, with gene counts reaching 3485 at the 1-cell stage, indicative of the onset of EGA. GO functional enrichment revealed key biological processes initiated at the 1-cell stage, such as protein complex formation, protein metabolism, and various biosynthetic processes. KEGG analysis identified several critical signaling pathways activated during EGA, including the "cell cycle," "spliceosome," "RNA degradation", and "RNA polymerase", pathways. Furthermore, transcription factor families, including zinc finger, T-box, Nrf1, and Tub were predominantly enriched at the 1-cell stage, suggesting their pivotal roles in regulating embryonic development through the targeting of specific DNA sequences during the EGA process. This groundbreaking study not only addresses a significant knowledge gap regarding the developmental biology of S. paramamosain, especially for the understanding of the mechanism underlying EGA, but also provides scientific data crucial for the research on the individual synchronization of seed breeding within S. paramamosain aquaculture. Additionally, it serves as a reference basis for the study of early embryonic development in other crustacean species.

7.
Chin J Integr Med ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39240290

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder affecting multiple systems, characterized by the development of harmful autoantibodies and immune complexes that lead to damage in organs and tissues. Chinese medicine (CM) plays a role in mitigating complications, enhancing treatment effectiveness, and reducing toxicity of concurrent medications, and ensuring a safe pregnancy. However, CM mainly solves the disease comprehensively through multi-target and multi-channel regulation process, therefore, its treatment mechanism is often complicated, involving many molecular links. This review introduces the research progress of pathogenesis of SLE from the aspects of genetics, epigenetics, innate immunity and acquired immunity, and then discusses the molecular mechanism and target of single Chinese herbal medicine and prescription that are commonly used and effective in clinic to treat SLE.

8.
Hum Reprod ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237109

ABSTRACT

STUDY QUESTION: Can a simplified ovarian hyperstimulation syndrome (OHSS) risk assessment index be developed and validated with sufficient discrimination of moderate/severe OHSS from those without OHSS? SUMMARY ANSWER: This easy-to-use OHSS risk assessment index shows good discriminative power and high calibration accuracy in internal and external validation cohorts. WHAT IS KNOWN ALREADY: An early alert and risk stratification is critical to prevent the occurrence of OHSS. We have previously developed a multi-stage smartphone app-based prediction model to evaluate the risk of OHSS, but app use might not be so convenient in many primary institutions. A simplified OHSS risk assessment index has been required. STUDY DESIGN, SIZE, DURATION: This training and internal validation of an OHSS risk assessment index used retrospective cohort data from January 2016 to December 2020. External validation was performed with a prospective cohort database from January 2021 to May 2022. There were 15 066 cycles in the training cohort, 6502 cycles in the internal validation cohort, and 8097 cycles in the external validation cohort. PARTICIPANTS/MATERIALS, SETTING, METHODS: This study was performed in the reproductive medicine center of a tertiary hospital. Infertile women who underwent ovarian stimulation were included. Data were extracted from the local database with detailed medical records. A multi-stage risk assessment index was constructed at multiple stages. The first stage was before the initiation of ovarian stimulation, the second was before the ovulation trigger, the third was after oocyte retrieval, and the last stage was on the embryo transfer day if fresh embryo transfer was scheduled. MAIN RESULTS AND THE ROLE OF CHANCE: We established a simplified multi-stage risk assessment index for moderate/severe OHSS, the performance of which was further evaluated with discrimination and calibration abilities in training and internal and external validation cohorts. The discrimination abilities of the OHSS risk assessment index were determined with C-statistics. C-statistics in training (Stages 1-4: 0.631, 0.692, 0.751, 0.788, respectively) and internal (Stages 1-4: 0.626, 0.642, 0.755, 0.771, respectively) and external validation (Stages 1-4: 0.668, 0.670, 0.754, 0.773, respectively) cohorts were all increased from Stage 1 to 3 with similar trends, and were comparable between Stages 3 and 4. Calibration plots showed high agreement between observed and predicted cases in all three cohorts. Incidences of OHSS based on diverse risk stratification (negligible risk, low risk, medium risk, and high risk) were 0%, 0.6%, 2.7%, and 8.3% in the training cohort, 0%, 0.6%, 3.3%, and 8.5% in the internal validation cohort, and 0.1%, 1.1%, 4.1%, and 7.2% in the external validation cohort. LIMITATIONS, REASONS FOR CAUTION: The influence from clinical interventions including cryopreservation of all embryos cannot be eliminated and thus certain risk factors like estrogen level on trigger day might be assigned with a lower risk score. Another weakness of the study is that several preventive treatments, for instance oral aspirin and letrozole, were not recorded and evaluated in the model. Despite the robust reliability of OHSS assessment index, this tool cannot be used directly for clinical decision-making or as a diagnostic tool. Its value lies in its capacity to evaluate the prognosis of various interventions and to facilitate clinician-patient communication. The combination of this tool and further symptoms and examinations should be all taken into consideration for accurate and personalized management of OHSS. WIDER IMPLICATIONS OF THE FINDINGS: The OHSS risk assessment index can be implemented to facilitate personalized counseling and management of OHSS. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by National Key R&D Program of China (2022YFC2702504), Medical Research Fund Guangdong Provincial (A2024003), and Xinjiang Support Rural Science and Technology (Special Correspondent) Program in Guangdong Province (KTPYJ 2023014). All authors had nothing to disclose. TRIAL REGISTRATION NUMBER: N/A.

9.
Microbiome ; 12(1): 163, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39232827

ABSTRACT

BACKGROUND: Our facial skin hosts millions of microorganisms, primarily bacteria, crucial for skin health by maintaining the physical barrier, modulating immune response, and metabolizing bioactive materials. Aging significantly influences the composition and function of the facial microbiome, impacting skin immunity, hydration, and inflammation, highlighting potential avenues for interventions targeting aging-related facial microbes amidst changes in skin physiological properties. RESULTS: We conducted a multi-center and deep sequencing survey to investigate the intricate interplay of aging, skin physio-optical conditions, and facial microbiome. Leveraging a newly-generated dataset of 2737 species-level metagenome-assembled genomes (MAGs), our integrative analysis highlighted aging as the primary driver, influencing both facial microbiome composition and key skin characteristics, including moisture, sebum production, gloss, pH, elasticity, and sensitivity. Further mediation analysis revealed that skin characteristics significantly impacted the microbiome, mostly as a mediator of aging. Utilizing this dataset, we uncovered two consistent cutotypes across sampling cities and identified aging-related microbial MAGs. Additionally, a Facial Aging Index (FAI) was formulated based on the microbiome, uncovering the cutotype-dependent effects of unhealthy lifestyles on skin aging. Finally, we distinguished aging related microbial pathways influenced by lifestyles with cutotype-dependent effect. CONCLUSIONS: Together, our findings emphasize aging's central role in facial microbiome dynamics, and support personalized skin microbiome interventions by targeting lifestyle, skin properties, and aging-related microbial factors. Video Abstract.


Subject(s)
Bacteria , Face , Microbiota , Skin Aging , Skin , Humans , Skin/microbiology , Face/microbiology , Middle Aged , Skin Aging/physiology , Female , Adult , Male , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Aged , Aging , Metagenome , Young Adult , High-Throughput Nucleotide Sequencing , Sebum/metabolism
10.
Rev Cardiovasc Med ; 25(8): 287, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39228499

ABSTRACT

Background: Recent studies have indicated a close relationship between the thickness of epicardial adipose tissue (EAT) and the occurrence as well as persistence of atrial fibrillation (AF). However, the pathogenesis of this association is still in the exploratory stage. The aim of this study is to explore the correlation EAT, as measured by echocardiography, and P-wave dispersion (Pd) in the context of atrial fibrillation. Additionally, the study seeks to analyze the utility of EAT at different anatomical sites in identifying individuals who are predisposed to atrial fibrillation. Methods: A total of 136 subjects were enrolled and categorized into groups based on the guidelines: paroxysmal atrial fibrillation group (PAF group), persistent atrial fibrillation group (AF group), and non-atrial fibrillation group. Comprehensive clinical data, including general information and medications that could impact the occurrence of atrial fibrillation, were gathered for all patients. Echocardiography was employed to measure the maximum EAT thickness near the apex of the heart on the anterior right ventricular wall and near the base of the right ventricle for each participant. Pd values were computed for each patient based on standard 12-lead synchronous electrocardiogram (ECG). The study involved comparing the disparity in EAT thickness between the two specified sites across the three groups. Additionally, correlation analyses were performed to assess the relationship between EAT thickness at the two sites and Pd. Regression analysis was applied to explore potential risk factors for atrial fibrillation. The diagnostic value of EAT at each site in predicting atrial fibrillation was evaluated using Receiver Operating Characteristic curve (ROC) analysis. Results: EAT thickness of the anterior wall near the apex of the heart and near the base of the right ventricle were significantly positively correlated with Pd (p < 0.05), EAT thickness near the base and left atrial diameter were independent risk factors for atrial fibrillation (OR = 13.673, 95% CI 2.819~66.316, p = 0.001; OR = 2.294, 95% CI 1.020~5.156, p = 0.045). ROC analysis showed that the area under the curve of EAT thickness near the heart base was 0.723, and the best threshold for predicting the occurrence of AF was 1.05 cm. Conclusions: The echocardiography-measured epicardial adipose tissue thickness, particularly in proximity to the heart base, exhibits a significant correlation with Pd. Notably, EAT thickness near the heart base demonstrates superior predictive capability for atrial fibrillation compared to thickness near the apex.

11.
J Chem Phys ; 161(5)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39105554

ABSTRACT

Conducting a comprehensive molecular-level evaluation of a photoacid generator (PAG) and its subsequent impact on lithography performance can facilitate the rational design of a promising 193 nm photoresist tailored to specific requirements. In this study, we integrated spectroscopy and computational techniques to meticulously investigate the pivotal factors of three prototypical PAG anions, p-toluenesulfonate (pTS-), 2-(trifluoromethyl)benzene-1-sulfonate (TFMBS-), and triflate (TF-), in the lithography process. Our findings reveal a significant redshift in the absorption spectra caused by specific PAG anions, attributed to their involvement in electronic transition processes, thereby enhancing the transparency of the standard PAG cation, triphenylsulfonium (TPS+), particularly at ∼193 nm. Furthermore, the electronic stability of PAG anions can be enhanced by solvent effects with varying degrees of strength. We observed the lowest vertical detachment energy of 6.6 eV of pTS- in PGMEA solution based on the polarizable continuum model, which prevents anion loss at 193 nm lithography. In addition, our findings indicate gas-phase proton affinity values of 316.4 kcal/mol for pTS-, 308.1 kcal/mol for TFMBS-, and 303.2 kcal/mol for TF-, which suggest the increasing acidity strength, yet even the weakest acid pTS- is still stronger than strong acid HBr. The photolysis of TPS+-based PAG, TPS+·pTS-, generated an excited state leading to homolysis bond cleavage with the lowest reaction energy of 83 kcal/mol. Overall, the PAG anion pTS- displayed moderate acidity, possessed the lowest photolysis reaction energy, and demonstrated an appropriate redshift. These properties collectively render it a promising candidate for an effective acid producer.

12.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39105601

ABSTRACT

The discharge arc of a high-current gas spark switch has a strong mechanical effect on the electrode and adjacent objects. The measurement of this mechanical effect on the electrode plays a very important role in switch design and the theoretical study of spark discharge. However, in traditional stress measurement systems, the spatial electromagnetic interference caused by the discharge and the high electrode voltage affects the measurement accuracy and can even damage the experimental instrument. In this paper, an electrode impact stress measurement system based on PVDF piezoelectric film is designed to measure the electrode stress under a strong spatial electromagnetic field and high voltage. The experimental results show that the system can measure the impact pressure of high-voltage and high-current gas spark switch electrodes. The starting time of the stress measurement waveform shows that the shock to the electrode is formed in the initial stage of current buildup. The measured results clearly show the high magnetic field force component in the electrode impact pressure waveform. The shock waveforms induced by different pulse capacitor values, breakdown voltages, and loads are examined. It is found that the shock stress waveforms applied to the electrodes are affected by the peak value of the current, dI/dt, and the discharge duration.

13.
Cell Biochem Biophys ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174865

ABSTRACT

This study established an LPS-induced RAW264.7 macrophage inflammatory injury model and an AS mouse vulnerable plaque model to observe the effect of JPHYP on macrophage inflammation, plaque formation, blood lipids, inflammation levels, intestinal flora and the influence of TLR4/MyD88/MAPK pathway, and explore the anti-AS effect and molecular mechanism of JPHYP, and detected 16S rRNA of mice intestinal microbes. The difference of intestinal flora in different groups of mice was compared to further explore the intervention effect of JPHYP and clarify the molecular biological mechanism of JPHYP in preventing and treating AS by regulating TLR4/MyD88/MAPK inflammatory signaling pathway and improving intestinal flora.

14.
Technol Health Care ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39177627

ABSTRACT

BACKGROUND: NiaoDuQing Particle is the first Chinese herbal medicine approved by the China Food and Drug Administration for the treatment of chronic kidney disease. It has been used in clinical practice in China for over twenty years. However, there is limited literature reporting on the long-term therapeutic effects of NiaoDuQing Particles on chronic kidney disease patients. OBJECTIVE: This research aimed to comprehensively assess the therapeutic effect of NiaoDuQing Particles (NDQP) on chronic kidney disease patients based on clinical data analysis. METHODS: This study was carried out on a total of 148 participants diagnosed with different types of chronic kidney disease. Demographics information, chronic kidney disease classification and chronic kidney disease diganostic indicators were collected and analyzed before and after NiaoDuQing Particles treatment for 3, 6, 9, 12 and 18 months respectively. RESULTS: In all 148 patients, mean eGFR value was increased after NiaoDuQing Particles treatment for up to 18 months, and was statistically significant at month 3, 6, 9, 12 and 18 (P< 0.05). Mean uric acid value was decreased after NiaoDuQing Particles treatment for up to 18 months, and was statistically significant at month 3, 6, 9, 12 and 18 (P< 0.05). Mean urea nitrogen value was decreased after NiaoDuQing Particles treatment for up to 18 months and was statistically significant at month 3, 6, 9, 12 and 18 (P< 0.05). While mean creatinine value was decreased after NiaoDuQing Particles treatment for up to 18 months and was statistically significant at month 6 (P< 0.05). CONCLUSIONS: NiaoDuQing Particles could maintain the stable state of chronic kidney disease patients for up to 18 months especially in improving diagnostic indicators like eGFR, uric acid and urea nitrogen.

15.
Cell Discov ; 10(1): 87, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39160208

ABSTRACT

Individuals' continuous success in competitive interactions with conspecifics strongly affects their social hierarchy. Medial prefrontal cortex (mPFC) is the key brain region mediating both social competition and hierarchy. However, the molecular regulatory mechanisms underlying the neural ensemble in the mPFC remains unclear. Here, we demonstrate that in excitatory neurons of prelimbic cortex (PL), lncRNA Sera remodels the utilization of Pkm Exon9 and Exon10, resulting in a decrease in the Pkm1/2 ratio in highly competitive mice. By employing a tet-on/off system, we disrupt or rebuild the normal Pkm1/2 ratio by controlling the expression of Pkm2 in PL excitatory neurons. We find that long-term Pkm2 modulation induces timely competition alteration and hysteretic rank change, through phosphorylating the Ser845 site of GluA1. Together, this study uncovers a crucial role of lncRNA Sera/Pkm2 pathway in the transition of social competition to rank by remodeling neural ensemble in mPFC.

16.
Clin Exp Ophthalmol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39089870

ABSTRACT

BACKGROUND: Accurate prognostic factors for primary ocular adnexal lymphoma (POAL) are scarce. Survival models and prognostic factors derived without considering competing risk factors suffer from major statistical errors. This study aimed to accurately assess prognostic factors in POAL patients using competing risk models, and compare this to the traditional COX proportional hazards model. METHODS: This retrospective study utilised data from the Surveillance, Epidemiology, and End Results (SEER) program 2010-2015 and included patients with B-cell POAL. The cumulative incidence function and Gray's test for cause-specific survival were calculated as univariate analysis. The competing risk models were a Fine-Gray subdistribution hazard model and a cause-specific model, and a traditional COX model was employed as a multivariate analysis. RESULTS: This study enrolled 846 eligible patients with POAL: 60 patients (7.09%) died from POAL and 123 patients (14.54%) died from other causes. Multivariate competing risk models indicated that age, laterality, histology subtype, the 7th edition of American Joint Committee on Cancer stage T, and radiotherapy were independent predictors for cause-specific survival of patients with POAL. There was high consistency between the two competing risk models. The COX model made several misestimations on the statistical significance and hazard ratios of prognostic factors. CONCLUSIONS: This study established competing risk models as a method to assess POAL prognostic factors, which was more accurate than traditional methods that do not consider competing risk elements.

17.
J Integr Plant Biol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092779

ABSTRACT

Gene innovation plays an essential role in trait evolution. Rhizobial symbioses, the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae, is one of the most attractive evolution events. However, the gene innovations underlying Leguminosae root nodule symbiosis (RNS) remain largely unknown. Here, we investigated the gene gain event in Leguminosae RNS evolution through comprehensive phylogenomic analyses. We revealed that Leguminosae-gain genes were acquired by gene duplication and underwent a strong purifying selection. Kyoto Encyclopedia of Genes and Genomes analyses showed that the innovated genes were enriched in flavonoid biosynthesis pathways, particular downstream of chalcone synthase (CHS). Among them, Leguminosae-gain type Ⅱ chalcone isomerase (CHI) could be further divided into CHI1A and CHI1B clades, which resulted from the products of tandem duplication. Furthermore, the duplicated CHI genes exhibited exon-intron structural divergences evolved through exon/intron gain/loss and insertion/deletion. Knocking down CHI1B significantly reduced nodulation in Glycine max (soybean) and Medicago truncatula; whereas, knocking down its duplication gene CHI1A had no effect on nodulation. Therefore, Leguminosae-gain type Ⅱ CHI participated in RNS and the duplicated CHI1A and CHI1B genes exhibited RNS functional divergence. This study provides functional insights into Leguminosae-gain genetic innovation and sub-functionalization after gene duplication that contribute to the evolution and adaptation of RNS in Leguminosae.

18.
Phys Rev Lett ; 133(3): 035201, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39094144

ABSTRACT

Wave-particle resonance, a ubiquitous process in the plasma universe, occurs when resonant particles observe a constant wave phase to enable sustained energy transfer. Here, we present spacecraft observations of simultaneous Landau and anomalous resonances between oblique whistler waves and the same group of protons, which are evidenced, respectively, by phase-space rings in parallel-velocity spectra and phase-bunched distributions in gyrophase spectra. Our results indicate the coupling between Landau and anomalous resonances via the overlapping of the resonance islands.

19.
ISA Trans ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39095287

ABSTRACT

This paper investigates the fixed-time bipartite consensus control problem of stochastic nonlinear multi-agent systems (MASs) with performance constraints. A constraint scaling function is proposed to model the performance constraints with user-predefined steady-state accuracy and settling time without relying on the initial condition. Technically, the local synchronization error of each follower is mapped to a new error variable using the constraint scaling function and an error transformation function before being used to design the controller. To achieve fixed-time convergence of the local tracking error, a barrier function transforms the scaled synchronization error to a new variable to guarantee the prescribed performance. Then, an adaptive fuzzy fixed-time bipartite consensus controller is developed. The fuzzy logic system handles the uncertainties in the designing procedures, and one adaptive parameter needs to be estimated online. It is shown that the closed-loop system has practical fixed-time stability in probability, and the antagonistic network's consensus error evolves within user-predefined performance constraints. The simulation results evaluate the effectiveness of the developed control scheme.

20.
Environ Pollut ; 360: 124666, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098640

ABSTRACT

Cooking oil fumes (COF) are known to emit a wide range of organic compounds with significant impacts on human health and urban air quality. This study used HPLC-QToF-MS and Vocus PTR-TOF to explore the chemical constituents and influencing factors of the COF generated from eight typical Chinese dishes representing different areas in a laboratory kitchen. The results revealed that both CHO and CHON compounds exhibited strong reducibility and saturability, with CHO compounds being the dominant and CHON compounds showing greater diversity. 24 among 168 CHO compounds were identical with those generated from heating soybean oil, representing 72.4%-92.3% in abundance and 22.2%-29.2% in quantity. That was 5 among 113 CHON compounds, accounting for 7.8%-10% in abundance and 4.7%-6.7% in quantity. These findings suggest that the major CHO compounds from heating soybean oil continued to dominate the abundances in dishes. The diversity of CHO compounds and the presence of CHON compounds were influenced by the food ingredients. The VOC analysis indicated that oxygen-containing organics were the major components. 6 identical VOC species between cooking dishes and heating soybean oil were identified, comprising 36.02%-67.84% of the total VOCs mass. Notably, poor ventilation could result in even higher COF concentrations in the connected room compared to the kitchen itself.

SELECTION OF CITATIONS
SEARCH DETAIL